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Abstract
This paper deals on artificial intelligence (AI) application for the estimation of kerf geometry and hole diameters for laser micro-
cutting and laser micro-drilling operations. To this aim laser cutting and laser drilling operation were performed on NIMONIC
263 superalloy sheet, 0.38 mm in nominal thickness, by way of a 100 W fibre laser in modulated wave regime. Linear cuts and
holes (by trepanning) were performed fixing the average power at 80 W and changing the pulse duration, the cutting speed, the
focus depth and the laser path (the latter only for the drilling operations). Kerf width and the holed diameter, at the upper and
downsides, were measured by digital microscopy. Different artificial neural networks (ANNs) were developed and tested to
predict the kerf widths and the diameters (at the upper and downside). Two ANNs were addressed to the linear cutting process
modelling; also, two further ANNs were developed for micro-drilling on the base of the linear cutting process features. The
networks were trained with a subset of data containing the process conditions and the kerf/hole geometry. The ANN test was
performed with the remaining data. The results show that ANNs can model the cut and hole geometry as a function of the process
parameters. Moreover, the ANN trained with kerf geometry is more efficient. Therefore, a functional correlation between the kerf
geometries achievable in the linear cutting process and micro-drilling was assessed.
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1 Introduction

Lately, manufacturing processes for material processing ex-
tensively apply laser technologies [1] due to some peculiar
features of these methods such as precision, flexibility, low
thermal impact on substrates and elevated productivity. These
characteristics are critical, especially for all those sectors with
tight quality requirements in terms of tolerances and metallur-
gical characteristics when no burr and recast layer are allowed.

Electrical discharge machining (EDM) represents state-of-
the art in micro-drilling systems. It allows the production of

accurate holes satisfying tight standard. Nevertheless, an ex-
tended process duration is needed, along with the use of pol-
luting substances [2]. The laser beam machining (LBM) tech-
nology represents a viable alternative ensuring several bene-
fits such as high productivity, process flexibility and geomet-
rical accuracy [3–5]. Also, many substrates are suitable for
this technology [6–11]. In general, two types of LBM process-
es were proposed: percussion drilling and trepanning drilling.
The former provides for a laser beam passing through the
workpiece producing a hole, while the latter cuts around a
circumference. To perform the LBM, many studies in litera-
ture exploited Nd/YAG pulsed laser sources due to the high
pulse energy that allows a high geometrical accuracy.
However, several detrimental effects afflict the holes pro-
duced [12–14]. A viable alternative is represented by the fibre
laser, a cheap and practical device to achieve high kerf quality
[15–17]. Experimental tests assessed the influence of the pro-
cess parameters on kerf geometry for a linear laser cutting
process [18]. However, the LBM is a thermal process; the heat
diffusion phenomena occurring during the machining heavily
affect the kerf geometry like different cutting strategies (per-
cussion or trepanning), which modify the heat input on the
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material at different depths and, therefore, the kerf edge ge-
ometry. Indeed, in trepanning micro-drilling processes, the
same control variables affect the upper and lower kerf differ-
ently [19]. However, the knowledge of the hole geometry in
trepanning micro-drilling as a function of the linear LBM kerf
geometry would represent an enhancement in processes man-
agement and performance. In industrial environments, the kerf
geometry evaluation of linear cuts is easier than micro-drilling
characterization, since the latter requires the observation of the
hole just in the middle.

Artificial intelligence (AI) and machine learning (ML) are
recent fields that have already proved to have great potential to
be a valuable and efficient aid in manufacturing process man-
agement [20–22]. Many industrial duties for function fittings,
pattern classification and clustering tasks extensively exploit
the cognitive system and artificial neural networks (ANNs).
Indeed, they are reliable systems capable of modelling complex
phenomena on the basis of empirical surveys [23]. ANNs are
information processing structures that reproduce the biological
neural system performance. Artificial neurons process a set of
input variables, weighting and combining the data to achieve a
set of output values. Following, the difference between output
and target is calculated and the weight modified to minimize an
error function [24–27]. In general, the ANNs are a versatile tool
and find many applications in several fields such as decision-
making processes [28–30], classification tasks [31, 32], phe-
nomena modelling [33, 34], design optimization [35–38] and
material characterization [39, 40]. Concerning laser applica-
tions, several efforts were made to apply ML and ANNs for
different tasks such as laser welding [41], laser engraving [42],
additive manufacturing [43] and, in a broad sense, operational
parameters optimization [44]. In [45], support vector machines
were integrated with a geometric feature extraction process, a
principal component analysis and a hidden Markov model to
highlight crucial aspects of laser welding processes. In [46],
molecular dynamics was applied in digital twin framework in
cooperation with hidden Markov model for the simulation of
femtolaser ablation processes. With specific respect to ANNs,
many works were developed. In laser welding, they were ap-
plied with principal component analysis for real-time weld ap-
pearance estimation [47]. In [48], an ANN was applied to pre-
dict heat-affected zone and taper angle in laser percussion dril-
ling. Furthermore, an artificial neural network aimed at
predicting the holes’ geometry in Nd/KGW laser trepanning
drilling is proposed in [49]. However, no application regarding
kerf geometry prediction in fibre laser trepanning drilling was
available.

Purpose of the work presented is the development of an AI
system for the kerf geometry prediction in a fibre laser cutting
processes. In the first step, two ANNs were developed to
predict the upper and down kerf dimension of a linear cutting
process as a function of the process parameters. However, due
to the thermal nature of the process and different boundary

conditions, the same laser parameters affect the micro-drilling
differently. Therefore, two ANNs aimed at predicting the up-
per and lower diameter in a micro-drilling process were im-
plemented. The training was performed respectively on the
base of upper and down kerf of a linear cut, along with the
main process parameters. Experimental tests were performed
in several conditions monitoring the different kerf geometry
achieved to acquire an experimental dataset. The results show
how it is possible to find a functional correlation between the
kerf geometries achievable in linear cutting process and mi-
cro-drilling.

2 Materials and methods

The experimental tests were performed on nickel alloy
(NIMONIC 263) samples, whose composition is reported in
Table 1, in the form of rolled sheets of 0.38-mm thickness. A
fibre laser (Red Power SP100C by SPI), whose characteristics
are reported in Table 2, performs the laser cutting processes.
The device exploits an optical fibre to transfer the laser radi-
ation to a laser head (by HAAS LTI) mounted in a 3 + 1 axis
CNC system (Rofin finecut Y 340 M). It controls the laser
source power, the geometric patterns and the beam speed. An
external controller (MCA LCT3001) exerts the management
of power and operational mode. When operating in a modu-
lated mode, it allows the setting of pulse frequency and
duration.

Table 1 NIMONIC 263 composition

Composition [Wt%]

Co Cr Fe Mn Al Si

19.0–21.0 19.0–21.0 0–0.7 0–0.6 0–0.6 0–0.4

Cu C S B Ag Bi

0–0.2 0.04–0.08 0–0.007 0–0.005 0–0.0005 0–0.0001

Table 2 RedPower SP100C by SPI laser characteristics

Parameter Value Unit

Wavelength 1090 [nm]

Max. power 80 [W]

Mode operation CW or MW --

Laser beam diameter 5.0 ± 0.5 [mm]

Full angle divergence > 0.4 [mrad]

Focal length 50 [mm]

Beam diameter at focal spot ≈ 48 [μm]

Nozzle diameter 0.5 [mm]
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The data required for the neural network training were
achieved by performing experimental micro-drilling and line-
ar cuts on the NIMONIC 263 samples. Both were performed
with the same control factors and levels. The control parame-
ters considered were pulse duration (Pd), cutting speed (Cs),
focus depth (Fd) and laser path (Lp). The level values, report-
ed in Table 3, resulted from preliminary activities aimed at
assessing a range of the alloy machinability. The orbit variable
refers to the number of passes that the beam spot made to
realize the kerf in both the linear and circular configurations.
Specifically, P1 and P2 express 1 and 2 passes of the laser spot
to cut the NIMONIC 263 sheets, respectively. A schematic of
the paths followed in the micro-drilling is reported in Fig. 1.
After piercing the surface, the laser beam moves along the
radius and then describes 1 or 2 orbits of 0.4–mm diameter
to produce a hole. The same occurs on the linear configura-
tion, with the beam traversing the kerf distance once or twice.

Later, the samples were cut and polished up to a grit
size of P2500 to highlight the kerf cross-section. The
kerf geometry was evaluated by digital microscopy
(KH-8700 by Hirox), according to the UNI EN 12584
2001 and ISO 9013:2002 standard as described in [20].
The geometric variables measured in this configuration
were upper kerf “Uk” and down kerf “Dk,” as represent-
ed schematically in Fig. 2. The micro-drilling geometry
characterization was performed following the ISO
12181–1:2011 standard, as described in [21]. The pro-
cedure leads to the definition of a mean diameter of the
hole produced on the upper and the lower surfaces of
the samples, respectively indicated as Din and Dout.

As stated before, 4 ANNs were developed for the prediction
of Uk, Dk, Din and Dout. They are indicated in this paper as,
respectively, Uk-Net, Dk-Net, Din-Net and Dout-Net. In partic-
ular, backpropagation feedforward neural networks were

implemented in MATLAB environment and trained with the
experimental data achieved. During the training, several config-
urations were considered. The variables involved were the main
structure parameters such as the number of hidden layers, num-
ber of neurons, transfer functions and training algorithm. No
optimization was involved in network size assessment, which
was determined through a trial and error process evaluating the
means square error (MSE), as reported in Eq. 1.

MSE ¼ 1

n
∑
n

i¼1
ti−xið Þ2 ð1Þ

For the sake of briefness, only the networks offering the
best prediction, which structures and training parameters are
resumed in Table 4, are reported and discussed. The network
performances were accounted by means of three indicators,
which are mean percentage error xm (Eq. 2), standard devia-
tion xdv.std. (Eq. 3) and linear least square regression.

xm ¼ 1

n
∑
n

i¼1
ti−xi

� �
100 ð2Þ

xdv:std: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 ti−xið Þ2
n

s
ð3Þ

In Eq. 1 and following, n represents the instance s, xi the
network output and ti the target output. For both Uk-Net and
Dk-Net, proposed in Figs. 3 and 4, 4 input neurons stand for
the process parameters considered in the study (i.e. Pd, Cf, Fd
and Lp). Also, they have two hidden layers. While in Uk-Net,
they count, respectively, 10 and 4 neurons, in Dk-Net there are

Fig. 1 Path followed for the
microdrilling processes

Fig. 2 Schematic of a linear kerf cross-section

Table 3 Laser cutting control parameters

Pulse duration [ms] Cutting speed
[mm/min]

Focus
depth [mm]

Laser path

0.1–0.2–0.4 200–400–600 0–0.2 P1–P2
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8 and 3 neurons. The single neuron of the output layer stands
for the kerf geometry investigated. The transfer functions
exploited for the connection of layers were, from the input
to the output layer, respectively, the logsimoidal, the
tansigomoidal and the linear transfer function.

Considering Din-Net and Dout-Net, represented in Fig. 5,
both the networks have 5 neurons standing for the process and
geometry control variables of the kerfs. Specifically, Uk and
Dk were exploited in the training of, respectively, Din-Net and
Dout-Net. The hidden layer has the same neurons numbers in
Din-Net and Dout-Net, which are 7. A single neuron in the
output layer stands for the kerf geometry in the micro-drilling
process. The transfer functions exploited for the layers’ con-
nection were, from the input to the output layer, respectively,
logsimoidal and linear transfer function.

For each combination of control factors and levels, four
replicates were performed for a total of 144 experimental tests.
Then, the mean value and standard deviation were calculated
to assess the presence of outliers. Also, the mean values

calculated for each set of replicates was assumed as the actual
value of the kerf geometry achievable in a given condition.
Therefore, the datasets exploited for the ANN training were
composed of 36 examples. The division percentage between
the training and validation set of the experimental data set was
and 80–20. Therefore, the validation set counts 7 instances.
They were submitted to the network following the training
phase to test the ANN effectiveness in predicting the kerf
geometry.

Since a low number of examples were used in the trial, the
data needed for the training was carefully selected. The pro-
cedure aim was to give the broadest training range possible.
Therefore, the instances with the boundary level of each con-
trol factor were exploited in the training set. Instead, interme-
diate values were selected for the ANNs validation. Indeed,
validation instances outside the boundaries of a training set
may be wrongly interpreted by an ANN. In fact, such values
fall outside the range for which the weights among the neuron
connections have been trained.

Fig. 4 Dk-Net structure. In the figure, the numbers represent the adopted neurons

Fig. 3 Uk-Net structure. In the figure, the numbers represent the adopted neurons

Table 4 Uk-Net, Dk-Net, Din-
Net and Dout-Net structure and
training parameters

ANN parameters Uk-Net Dk-Net Din-Net Dout-Net

Input Pd; Cf; Fd; Lp Pd; Cf; Fd; Lp; Uk Pd; Cf; Fd; Lp; Dk

Output Uk Dk Din Dout

Hidden layers 2 1

Neuron number 4-10-4-1 4-8-3-1 5-7-1

Transfer function Logsimoidal—tansigomoidal—linear Logsimoidal—linear

Training algorithm Trainlm Traingd

Net goal (min. MSE) 1e-18 1e-18

Max. epochs number 35,000 35,000

Min. gradient 1e-10 1e-10
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MSE ¼ 1

n
∑n

i¼1 ti−xið Þ2 ð4Þ

Although the heat diffusion in the linear configuration is
less tangled than in micro-drilling, due to the simple geometry
of the cut, the ANNs are more complex. Indeed, these net-
works present a higher number of hidden layers and neurons.

However, the micro-drilling ANNs have 1 more input neuron
that refers to the linear cut geometry. It is a critical parameter
and a precious aid for achieving predictions about the kerf
characterization. Also, this confirms how the linear kerf may
be a valuable starting point for a micro-drilling kerf
characterization.

Fig. 5 Schematic of Din-Net and Dout-Net structures

Fig. 6 Images of hole and linear cut performed at Pd = 0.2 ms, Cs = 400 mm/min, Fd = 0.2 mm, Lp =M1: a hole entry, b hole exit, c hole section, d kerf
section

Table 5 Measured geometric kerf
features Average value Min. value Max. value Standard deviation

Uk 0.0991 0.0820 0.1144 0.0028

Dk 0.0423 0.0332 0.0517 0.0051

Din 0.3941 0.3810 0.4044 0.0023

Dout 0.3327 0.3215 0.3431 0.0034
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Fig. 7 Linear regression for Uk vs Dk and Din vs Dout

Fig. 8 Linear regression for Uk vs Din and Dk vs Dout
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3 Results and discussion

The experimental activities performed led to the production of
micro-drilled holes on the surface of the NIMONIC 263 sam-
ples. The main geometrical features of the kerf in both the
circular and linear configurations were assessed for each com-
bination of control factors and levels. Representative samples
cut and drilled are reported in Fig. 6. Therefore, a statistical
evaluation, whose results are reported in Table 5, was per-
formed. The mean values gauged for each combination of
factors vary in a short range. Also, Uk and Dk are in the order
of the hundredth of a millimetre. Instead, the Din and Dout
values in the micro-drilling were grater of one order of mag-
nitude. Indeed, the heat spreading into the bulk is greater in
linear cutting than in micro-drilling since, in the former con-
figuration, the heat spreads in a theoretically infinite plane. In
contrast, in the latter configuration, the heat spreading inside

the hole section gives a continuous thermal contribution that
enlarges the kerf geometry. Despite the difference in kerf
values, all the geometrical feature measured have a standard
deviation in the order of 10-3. Therefore, the mean values were
assumed as the actual kerf values achievable with given pro-
cess parameters. Also, it is worth noting that the standard
deviation is higher in the Dk and Dout. Indeed, the heat diffu-
sion has a more severe influence in defining the lower geom-
etry parameters since the heat must go through the bulk.

In a first attempt to correlate the geometrical feature, the Uk

vs Dk and Din vs Dout linear regression were produced. The
results are reported in Fig. 7. In the first case, it is possible to
find a linear correlation, net of variations due to diffusion
phenomena aleatory and cutting parameters. However, the
same does not occur for the other combinations. Also, a linear
regression was performed considering Uk vs Din and Dk vs
Dout. As highlighted in Fig. 8, to a maximum or a minimum of

Fig. 9 Uk-Net and Dk-Net per-
centage error

Fig. 10 Linear regression for Uk-Net predictions Fig. 11 Linear regression for Dk-Net predictions
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Uk and Dk do not correspond a brink value of Din and Dout. It
led to think that diffusion phenomenon affects laser cuttings as
a function of local bulk properties and, depending on cutting
configuration, produces different effects on the kerf geometry.
However, the physics behind the phenomena are strongly
non-linear; therefore, an AI model is necessary to express this
correlation.

The results achieved in the prediction of Uk and Dk are
reported in Fig. 9 in terms of percentage error. The training
led to achieving precise modelling of the linear cut geom-
etry, with a mean error and a standard deviation, respec-
tively, of 1.94 and 1.4% for Uk-Net and 3.66 and 2.15%
for Dk-Net. The high performance is highlighted by
analysing the linear regression of the prediction vs the tar-
get, reported in Figs. 10 and 11. Indeed, both the network
show an outstanding R-square which was respectively of
about 0.96 and 0.94. The results achieved in the prediction

of Din and Dout are reported in Fig. 12. The Din-Net train-
ing led to the implementation of accurate prediction net-
work. Indeed, the validation percentage error is of about
0.39% and dispersion of about 0.38%. Dout-Net also
achieves high accuracy in results prediction with a mean
error of 0.80% and a standard deviation of about 0.45%.
However, an increased difference between the network
prediction ability is noticeable by the linear regressions,
reported in Figs. 13 and 14, respectively, for Up-Net and
Down-Net. Indeed, Up-Net is characterized by a regression
coefficient of about 0.93 against of 0.73 achieved by
Down-net. Although the latter allows a minor generaliza-
tion ability, the behaviour is heavily influenced by the
dataset values dispersion obtained in the down kerf mea-
surement. However, the differences evaluated are in the
order of few or tens microns which is still an accuracy
compatible with the thigh standard available for the

Fig. 12 Din-Net and Dout-Net
validation results

Fig. 13 Linear regression for Din-Net predictions Fig. 14 Linear regression for Dout-Net predictions
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micro-drilling processes. Also, it demonstrates that it is
possible to relate the geometrical kerf feature obtainable
in a linear cutting to the geometry achievable in micro-
drilling. A resume of the ANN performance estimators is
reported in Table 6.

4 Conclusion

The present paper deals with the implementation of ANNs
aimed at the prediction of the geometrical features achiev-
able during laser linear cutting and micro-drilling.
Particular interest lied in achieving a correlation between
the geometries of the two processes. Therefore, for the
linear cutting processes, only the laser parameters were
investigated. Instead, for the micro-drilling, the kerfs pro-
duced in the linear cuts were also considered. Experimental
tests aimed at evaluating the different kerf geometries were
performed. The outputs of interest were upper and down
kerf for linear cutting while the upper and the lower diam-
eter in micro-drilling. The statistical investigation showed
how the laser processes performed were extremely reliable.
As a matter of facts, a low standard deviation was achieved
for each combination of the control levels. However, it
grows when the kerf characteristics on the lower surface
are evaluated. Being the laser cutting a thermal process, the
diffusion phenomena occurring inside the bulk heavily af-
fect the kerf features. Indeed, heat diffusion is affected by
the local condition of the material which cannot be thor-
oughly controlled. Furthermore, the ANNs implemented
for the linear process (Uk-Net and Dk-Net) needed a more
complex structure, with respect to the micro-drilling ANNs
(Din-Net and Dout-Net) in terms of hidden layers and neu-
ron number. However, the formers have an input neuron
less than the latters. It stands for the linear kerfs achieved
and represents a precious parameter for the neural model-
ling of the laser micro-drilling process as it allows a reduc-
tion of the complexity of the network. However, both the
micro-drilling and linear cutting network produced out-
standing results in kerf prediction. In particular, the highest
mean error is generated in Dout prediction that is the
harshest condition, and it is less than 4%. Therefore, two
goals were reached: the kerf prediction as a function of the

essential lasers’ parameters and a correlation between the
linear and the circular kerf for the same control parameters,
which was the main focus of the investigation.
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