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    1   Conceptualisations    of Proof 

    1.1   Conceptions by Mathematicians 

 The education of professional mathematicians very successfully transmits a 
practically precise conception of proof. Mathematically educated persons who spe-
cialise in and know a certain domain of mathematics will generally agree that a 
given piece of mathematical text is an adequate proof of a given statement. 
Nevertheless, no explicit general defi nition of a proof is shared by the entire 
mathematical community. Consequently, in attempting such a conceptualisation it 
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is wise to resort fi rst to mathematical logic for a defi nition of proof and to look 
afterwards at how working mathematicians comment on such a defi nition. 

 According to Rav  (  1999 , p. 11), in a formalised theory  T  a linear derivation is a 
fi nite sequence of formulas in the language of  T , each member of which is a logical 
axiom, or an axiom of  T , or the result of applying one of the fi nitely many explicitly 
stated rules of inference to previous formulas in the sequence. A tree derivation can 
be similarly defi ned. A formula of  T  is said to be derivable if it is the end-formula 
of a linear or tree derivation. 

 Obviously, the structure characterised in this formal defi nition echoes the axiom-
atic method of Euclid’s  Elements  (c. 300 B.C.). Hence, we can consider the notion 
of proof as some combination of the axiomatic method and formalism, the latter 
called ‘rigour’ since the time of Cauchy. 

 That defi nition may be considered as a ‘projection’ of the real practice of math-
ematical proof onto the skeleton of formal logic. A projection inherits some properties 
of the original, but is as a rule, poorer. Consequently, Rav distinguishes the formal 
idea of proof from that of a ‘conceptual proof’, by which he means an informal 
proof “of customary mathematical discourse, having an irreducible semantic content” 
(Rav  1999 , p. 11; see also Hanna and Barbeau  2009 , p. 86). As a rule, working 
mathematicians insist on the informal and semantic components of proof. As Rav 
stresses, beyond establishing the truth of a statement, proof contributes to getting 
new mathematical insights and to establishing new contextual links and new 
methods for solving problems. (Functions of proof beyond that of verifi cation are 
also discussed by Bell  (  1976  ) , de Villiers  (  1990  ) , and many others.) 

 Working mathematicians also stress the  social process  of checking the validity of 
a proof. As Manin put it: “A proof only becomes a proof after the social act of 
‘accepting it as a proof’. This is true for mathematics as it is for physics, linguistics, 
and biology” (Manin  1977 , p. 48). By studying the comments of working mathema-
ticians Hanna came to the conclusion that the public process of accepting a proof 
not only involves a check of deductive validity, but is also determined by factors like 
‘fi t to the existing knowledge’, ‘signifi cance of the theorem’, the ‘reputation of the 
author’ and ‘existence of a convincing argument’ (Hanna  1983 , p. 70; see also 
Neubrand  1989  ) . Bell  (  1976  )  also stressed the essentially public character of proof. 

 All in all, formal defi nitions of proof cover the meaning of the notion only incom-
pletely, whereas mathematicians are convinced that, in practice, they know precisely 
what a proof is. This situation is diffi cult to handle in the teaching of mathematics 
at schools, since there exist no easy explanations of what proof and proving are that 
teachers could provide to their pupils. Proof is not a “stand-alone concept”, as 
Balacheff nicely puts it  (  2009 , p. 118), and is aligned to the concept of a “theory” 
(see also Jahnke  2009b , p. 30).  

    1.2   Conceptions by Mathematics Educators 

 Genuinely  didactical  conceptions of proof are determined by two clearly distin-
guishable sets of motives. One line of thought tries to devise genetic ideas of proof. 
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These ideas are pedagogically motivated in that they try to devise a learning path 
from a cognitive state in which an individual learner is able to construct argumenta-
tions with some deductive components to a state in which the learner manages to 
understand and develop mathematical proofs in their proper sense. The other line of 
thought builds conceptions of proof with the intention of doing empirical research. 
Both lines of thought defi ne categories that allow one to classify individuals’ 
argumentative behaviours and strategies observed in classrooms or in interview 
situations. In both, it is essential to distinguish between arguments which are not yet 
proofs from mathematical proofs proper. No wonder different researchers come to 
different conclusions about the demarcation between the two modes of reasoning. 
Balacheff  (  1988  )  and Duval  (  1991  ) , for example, draw a sharp line of demarcation, 
whereas other authors stress the continuity between argumentation and proof – thereby 
embedding proof in a general theory of argumentation. In mathematics education, 
in recent years it has become customary to use the term ‘argumentation’ for reasoning 
which is ‘not yet’ proof and the term ‘proof’ for mathematical proof proper. 

    1.2.1   Genetic Ideas of Proof 

 Genetic conceptions distinguish between different stages in the development of 
proof essentially along three lines. First, the  type of warrant  for a general statement 
is at stake. Pupils might infer from some special cases a general rule or statement. 
In such cases problems of proof and generalisation are intermingled. Generalisation 
is an important scientifi c activity but, of course, different from proof. Consequently, 
it is an important step in these pupils’ cognitive development to understand that a 
general statement can only be derived from other general statements. Second, if 
pupils argue on the level of general statements the  type of principle  they refer to 
differs according to their proximity to established mathematical principles and 
norms. For example, in comparing the lengths of different paths between two points, 
pupils might apply a physical argument like the stretching of an elastic band as a 
warrant. Whether this is accepted as a valid argument is, in principle, a matter of 
classroom convention. Nevertheless, some authors would not classify this as a math-
ematical proof, because the principle does not belong to the accepted principles of 
mathematics proper. Third, the  mode of representing  an argument might also be a 
distinguishing feature between different stages in the acquisition of proof. Though, 
in principle, it is extrinsic to the very heart of proof whether it is displayed in verbal 
or symbolic form, growth in the ability to handle the symbolic language of mathe-
matics is an indispensable condition for growth of a learner’s ability to understand 
and develop mathematical proofs; the complexity of most mathematical relations is 
such that they can hardly be expressed without recourse to symbolic representation. 

 A famous paper by van Dormolen  (  1977  )  exemplifi es genetic conceptions of 
proof. In regard to different proof situations, van Dormolen gives possible solutions 
which refl ect different stages in the development of argumentative skills. One task 
asks for a proof of the statement that the diagonals in an isosceles trapezium are 
equal (Fig.  7.1 ). A beginning pupil might react by measuring the diagonals and 
fi nding them equal. On a second level, the pupil might mentally cut out the trapezium, 
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turn it about and put it back into its hole, with the result that each diagonal is now in 
the position of the other. On a third level, a pupil might formally argue from the 
symmetry of the fi gure and apply a refl ection, so that one diagonal is mapped on the 
other.  

 Van Dormolen considers these three stages in the framework of van Hiele’s the-
ory of levels of thinking. On a fi rst level the student is bound to special objects. On 
a second level the student can think about properties of classes of objects, and on the 
third level the student is able to logically organise an argument. 

 As a further example of such a pedagogically motivated genetic conception, 
Kirsch  (  1979  )  distinguished between ‘pre-mathematical’ and ‘mathematical’ proofs, 
referring to the earlier paper  (  Semadeni n.d.  ) . Later, Kirsch changed his terminol-
ogy and spoke about ‘pre-formal’ versus ‘formal’ proofs (Blum and Kirsch  1991  ) .  

    1.2.2   Conceptions from Empirical Research 

 In discussing conceptions of proof motivated by empirical research, Balacheff 
 (  1988 ) states explicitly that his view rests on an experimental approach and that he 
is interested in studying pupils’ practices. For this purpose, he distinguishes between 
‘pragmatic’ and ‘conceptual’ proofs. Pragmatic proofs have recourse to real actions, 
whereas conceptual proofs deal with properties and the relations between them and, 
consequently, do not involve actions. However, there can and should be bridges 
between the two types, insofar as pragmatic proofs might have a generic quality and 
be a step towards conceptual proofs. Though Balacheff’s primary interest lies in the 
classifi cation of pupils’ practices, these distinctions interfere with genetic ideas, 
since pragmatic proofs operate on a lower, earlier level than conceptual proofs. 
Balacheff explicitly says that his categories “form a hierarchy … Where a particular 
type of proof falls in this hierarchy depends on how much the demands of generality 

  Fig. 7.1    Van Dormolen’s 
trapezium problem       
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and the conceptualisation of knowledge are involved,” (Balacheff  1988 , p. 218). It 
is also plausible to see in the distinction between pragmatic and conceptual proofs 
an infl uence of Piaget’s cognitive psychology which is based on the idea that 
thoughts are preceded by actions. 

 Balacheff has further refi ned the distinction between pragmatic and conceptual 
proofs into sub-categories. Pragmatic proofs split into ‘naïve empiricism’ and 
‘crucial experiment’: ‘Naïve empiricism’ refers to asserting the truth of a result by 
verifying special cases. ‘Crucial experiment’ means that a pupil considers a special 
example and argues that the proposition in question must be true if it is true for this 
(extreme) example. Argumentative behaviour of this kind shows some attention to 
the problem of a statement’s generality, but is still bound to the special case. 

 The ‘generic example’, Balacheff’s fi rst sub-category of a conceptual proof, is 
different. The generic example makes the reasons for the truth of an assertion 
explicit by operations or transformations on an object that is a characteristic repre-
sentative of its class. The difference from the ‘crucial experiment’ is subtle but 
decisive. The fi nal category, ‘thought experiment’, invokes internalised actions and 
is detached from particular representations. If we understand Balacheff, this level 
still falls short of a professional approach to proof but represents the best students 
can attain in their school lives. 

 Harel and Sowder  (  1998  )  have proposed another infl uential system of categories. 
They give priority to the function of proof as a  convincing argument  and derive from 
this idea categories for classifying individuals’ argumentative behaviours. Their 
starting point is a pedagogical motive. “The goal is to help students refi ne their own 
conception of what constitutes justifi cation in mathematics: from a conception that 
is largely dominated by surface perceptions, symbol manipulation, and proof ritu-
als, to a conception that is based on intuition, internal conviction, and necessity” 
 (  1998 , p. 237). Consequently, their categories refl ect students’ ideas about what a 
convincing argument might be. These categories they call ‘proof schemes’: 
Individuals’ ways of thinking associated with the proving act and consisting of 
“what constitutes ascertaining and persuading for that person”  (  1998 , p. 244). 

 Harel and Sowder’s  (  1998  )  whole system of categories rests on a number of 
empirical studies and splits into three large domains: ‘External conviction proof 
schemes’, ‘Empirical proof schemes’ and ‘Analytical proof schemes’. In the domain 
of ‘External conviction proof schemes’ the authors distinguish between 
‘Authoritarian’, ‘Ritual’ and ‘Symbolic’ proof schemes. Authoritarian means that 
students refer to an authority – be it their teacher, a book or whatever – to convince 
themselves of the truth of a statement. Ritual and Symbolic proof schemes refl ect 
the fact that many students come to the conclusion that ritual and form constitute 
mathematical justifi cation. The Symbolic schemes describe a behaviour of approach-
ing a solution without fi rst comprehending the meaning of the symbols involved. 

 In the domain of Empirical proof schemes, the authors distinguish between 
‘inductive’ and ‘perceptual’ proof schemes (Harel and Sowder  1998  ) . ‘Inductive’ 
means obtaining a general statement from some special examples or measurements, 
whereas ‘perceptual’ designates uncritically taking for granted some visual property 
of an object or a confi guration. 
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 In general, Harel and Sowder defi ne an Analytical proof scheme as one “that 
validates conjectures by means of logical deductions”  (  1998 , p. 258). At fi rst glance, 
it seems surprising that this scheme splits into a ‘Transformational’ and an 
‘Axiomatic’ proof scheme. The ‘Axiomatic’ can be considered as what an educated 
mathematician might mean when speaking about proof. The ‘Transformational’ 
refers to arguments which identify an invariant by systematically changing a 
confi guration. For example, consider angles inscribed in a circle over a fi xed chord. 
According to a well-known theorem these angles are equal. If the vertex of an angle 
is moved on the circumference to one of the end-points of the chord, then in the 
limiting position one of the legs coincides with the tangent and the other with the 
chord. Consequently, the inscribed angle becomes the angle between chord and 
tangent and equal to the latter. Of course, this is also a well-known theorem in ele-
mentary geometry. Obviously, such a transformational argument is not a rigorous 
proof; yet it operates on a general level and can rightly be considered as belonging 
to an analytical domain. 

 Both Balacheff’s     (  1988 ) and Harel and Sowder’s  (  1998  )  systems of categories 
have been applied with some modifi cations in a number of empirical studies. Both 
systems share the problem that it is not always straightforward to relate an argumen-
tative behaviour to a certain category; rather, it may require a considerable amount 
of interpretation. What distinguishes the two systems is the fact that Balacheff’s 
system involves a genetic sequence whereas Harel and Sowder do not seem to be 
interested in such a sequence; their point of view is more the co-existence or even 
competition between conceptions of proof and argumentation in various fi elds of 
human life (everyday life and other sciences). This difference might be due to the 
fact that their subjects are college students, whereas Balacheff is mostly interested 
in grade-school teaching.    

    2   Proving and Beliefs of Teachers and Students 

    2.1   The System of Beliefs 

 This sub-chapter examines the epistemological and pedagogical beliefs about the 
practice of proof in the classroom:

   beliefs about the nature and role of proof in mathematics.  • 
  beliefs about the role of proof in school mathematics.  • 
  beliefs about diffi culties in proving.  • 
  beliefs about how proof should be taught in school.  • 
  beliefs about oneself as mathematical thinker in the context of proof.    • 

 Moreover, due to the central role of proof in mathematical activity, beliefs 
involved in the practice of proof are not confi ned to the subject of proof but also 
include beliefs about mathematics, about mathematics teaching and learning, about 
oneself in relation to mathematics, and so on. 
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 Furinghetti and Pehkonen  (  2002  )  have shown to what extent beliefs and related 
concepts are controversial issues. They also have pointed out the different uses of 
the term ‘conception’ and the mutual relationship of beliefs, conceptions and knowl-
edge. Following their recommendations, below we clarify our assumptions about 
the meanings of the terms we use and their mutual relationships. 

 As regards conceptions and beliefs, we follow Philipp  (  2007 , p. 259) who describes 
conception as “a general notion or mental structure encompassing beliefs, meanings, 
concepts, propositions, rules, mental images, and preferences”. As regards beliefs 
and knowledge, our position is expressed by the following passage by Leatham:

  Of all the things we believe, there are some things that we “just believe” and other things we 
“more than believe – we know”. Those things we “more than believe” we refer to as knowl-
edge and those things we “just believe” we refer to as beliefs. Thus beliefs and knowledge 
can profi tably be viewed as complementary subsets of the things we believe.  (  2006 , p. 92)   

 For us, “things we know” are those that rely on a social agreement inside a given 
community (for mathematics, the community of mathematicians). 

 In the same vein, Philipp describes knowledge as “beliefs held with certainty or 
justifi ed true belief. What is knowledge for one person may be belief for another, 
depending upon whether one holds the conception as beyond question.”  (  2007 , 
p. 259). Philipp goes on to describe beliefs as:

  Psychologically held understandings, premises, or propositions about the world that are 
thought to be true. Beliefs are more cognitive, are felt less intensely, and are harder to 
change than attitudes. Beliefs might be thought of as lenses that affect one’s view of some 
aspect of the world or as dispositions toward action. Beliefs, unlike knowledge, may be held 
with varying degrees of conviction and are not consensual. Beliefs are more cognitive than 
emotions and attitudes. (I do not indent this defi nition under affect because, although beliefs 
are considered a component of  affect  by those studying affect, they are not seen in this way 
by most who study teachers’ beliefs.) (ibid., p. 259)   

 We mainly use the term ‘belief’; we use ‘conception’ (in the sense explained 
above) when referring to a set of beliefs.  

    2.2   Teachers’ Epistemological and Pedagogical Beliefs 

 Researchers have investigated the beliefs about proof of pre-service and in-service 
elementary and secondary school teachers. We have organised their fi ndings around 
four major themes: teachers’ knowledge of proof, teachers’ beliefs about the nature 
and role of proof in mathematics, teachers’ beliefs about the role of proof in school 
mathematics and teachers’ beliefs about themselves as mathematical thinkers in the 
context of proof. 

    2.2.1   Teachers’ Knowledge of Proof 

 The majority of researchers who have investigated teachers’ knowledge of proof 
have focused on teachers’ acceptance of empirical versus deductive arguments as 
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valid proofs. Knuth  (  2002a  ) , who investigated what constitutes proof for 16 in-service 
secondary school mathematics teachers, and Martin and Harel  (  1989  ) , who assessed 
the notions of proof held by 101 pre-service elementary school teachers, gave their 
participants statements accompanied by predetermined arguments and asked them 
to rate these in terms of their validity. Whereas Martin and Harel asked for written 
responses only, Knuth conducted in-depth interviews with his participants. 

 Both Knuth  (  2002a  )  and Martin and Harel  (  1989  )  concluded that although most 
teachers correctly identify a valid argument, they also wrongly accept invalid argu-
ments as proofs. Several pre-service elementary teachers accepted empirically based 
arguments as proofs (Martin and Harel  1989 ; see also Morselli  2006 ; Simon and 
Blume  1996  ) . What secondary school teachers fi nd convincing in an argument – 
inclusion of a concrete feature, specifi c examples and visual reference – (Knuth 
 2002a  )  might also explain why elementary teachers accepted empirical arguments 
as proofs. (On visualisation, see Biza et al.  2009  )  

 The criteria teachers used to evaluate an argument differed widely but there were 
some commonalities. Several teachers adopted Symbolic or Ritual proof schemes 
(Harel and Sowder  1998 ; see Sect.  1.   2.2  above). For example, some teachers focused 
on the correctness of the algebraic manipulations or on the form of an argument as 
opposed to its nature, (Knuth  2002a  ) , whilst others accepted false proofs based on 
their ritualistic aspects (Martin and Harel  1989  ) . Although they rated correct deduc-
tive arguments as valid proofs, teachers still did not fi nd them convincing (Knuth 
 2002a  ) . Treating the proof of a particular case as the proof for the general case was 
also common amongst most teachers (Knuth  2002a ; Martin and Harel  1989  ) . 

 Employing a different method, Jones  (  2000  )  asked recent mathematics graduates 
enrolled in a 1-year course to become secondary school teachers to construct con-
cept maps refl ecting their conceptions of mathematical proof. Analysis of the 
concept maps revealed that participants who had barely received pass degrees in 
mathematics courses needed “considerable support in developing a secure knowl-
edge base of mathematics”  (  2000 , p. 57). On the other hand, Jones reported, technical 
fl uency in writing proofs did not necessarily imply richly connected knowledge 
of proof.  

    2.2.2   Teachers’ Beliefs About the Nature and Role of Proof in Mathematics 

 Chazan stated that “many teachers do not seem to understand why mathematicians 
place such a premium on proof”  (  1993 , p. 359). However, all of the in-service sec-
ondary school teachers in Knuth’s  (  2002a  )  study indicated that the role of proof in 
mathematics was to establish the truth of a statement. They also suggested various 
other roles: explaining why something is true with a procedural focus rather than 
promoting understanding; the communicative role of proof (social interaction, commu-
nicating and convincing others); and the creation of knowledge and systematisation 
of results. 

 In a survey study with 30 pre-service elementary school teachers and 21 students 
majoring in mathematics with an emphasis in secondary education, Mingus and 
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Grassl  (  1999  )  asked the participants what constitutes a proof and asked about the 
role of proof in mathematics. In their defi nitions of proof, the secondary-education 
majors emphasised explanatory power, whereas the elementary-education majors 
focused on verifi cation. The majority of the participants also pointed out the 
importance of proofs in helping “students understand the mathematics they are 
doing”  (  1999 , p. 441). Furthermore, the secondary-education majors “also consid-
ered the role of  proof  for maintaining and advancing the structure of mathematics” 
(ibid., p. 441). 

 Although the teachers in Knuth’s  (  2002a  )  study could identify the roles of proof 
in mathematics and the explanatory power of proofs was mentioned by the secondary-
education majors in the Mingus and Grassl  (  1999  )  study, Harel and Sowder later 
concluded from a review of the literature that teachers “do not seem to understand 
other important roles of proof, most noticeably its explanatory role”  (  2007 , p. 48). 
Also, one important question is how teachers’ beliefs about proof relate to other 
aspects of their classroom practice. In a small qualitative study, Conner  (  2007  )  
found that three student teachers’ conceptions of proof (particularly their beliefs 
about the purpose and role of proof in mathematics) aligned closely with how they 
supported argumentation (not proof in particular, but asking for and providing data 
and warrants for claims) in secondary classrooms.  

    2.2.3   Teachers’ Beliefs About the Role of Proof in School Mathematics 

 The roles of proof in school mathematics that the secondary teachers in Knuth’s 
 (  2002b  )  study talked about included all the roles they mentioned for proof in 
mathematics in general (Knuth  2002a  )  except for systematising statements into an 
axiomatic system. In the subsequent report (Knuth  2002b  ) , the secondary teacher 
participants added some new roles for proof when they discussed it in the con-
text of school mathematics: developing logical-thinking skills and displaying 
student thinking. 

 Although the roles that the teachers attached to proof in secondary-school math-
ematics seemed promising, their beliefs about the centrality of proof were limited 
(Knuth  2002a,   b  ) . Several teachers did not think that proof should be a central idea 
throughout secondary school mathematics, but only for advanced mathematics 
classes and students studying mathematics-related fi elds. On the other hand, all the 
teachers considered that  informal  proof should be a central idea  throughout  secondary-
school mathematics. This is consistent with Healy and Hoyles’ reporting: “For 
many teachers it was more important that the argument was clear and uncomplicated 
than that it included any algebra”  (  2000 , p. 413). 

 The majority of the teachers in Knuth’s research  (  2002b  )  viewed Euclidean 
geometry or upper-level mathematics classes as appropriate places to introduce 
proof to students. All of them said that they would accept an empirically based argu-
ment as a valid argument from students in a lower-level math class. Two of them, 
however, explained that they would discuss its limitations. Probably these beliefs 
were shaped by the teachers’ own experiences with proofs, since high-school 
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Euclidean geometry is the “usual locus” (Sowder and Harel  2003 , p. 15) for 
introducing proof in U.S. curricula. Furthermore, “the only substantial treatment of 
proof in the secondary mathematics curriculum occurs” (Moore  1994 , p. 249) in 
this (usually 1-year) geometry course. Knuth’s fi ndings also point out that teachers 
view proof as a subject to be taught separately rather than as a learning tool that can 
be integrated throughout mathematics. 

 On the other hand, the majority (69%) of the pre-service teachers in Mingus and 
Grassl’s  (  1999  )  study advocated the introduction of proof before 10th-grade geometry 
classes. Furthermore, the participants who had taken college-level mathematics 
courses believed that proofs needed to be introduced earlier, in the elementary 
grades, in contrast to the participants who had only experienced proofs at the high-
school level. Mingus and Grassl argued that the former group “may have recognized 
that a lack of exposure to formal reasoning in their middle and high school 
backgrounds affected their ability to learn how to read and construct  proofs ”  (  1999 , 
p. 440). 

 Other studies reveal different beliefs about the role of proof. Furinghetti and 
Morselli  (  2009a  )  investigated how secondary teachers treat proofs, and which 
factors (especially beliefs) affect that treatment, in a qualitative study of ten cases 
via individual, semi-structured interviews. Nine of the ten teachers declared that 
they teach proof in the classroom. The other said that she does not because Euclidean 
geometry is not in her school curriculum. The other teachers also referred mainly to 
Euclidean geometry as the most suitable domain for teaching proof. Sowder and 
Harel  (  2003  )  already pointed out beliefs about geometry being the ideal domain for 
the teaching of proof or, even more, the teaching of proof being confi ned to geometry. 
Concerning the way proof is treated in the classroom, Furinghetti and Morselli 
 (  2009a  )  identifi ed two tendencies: teaching theorems versus teaching via the proof. 
The fi rst sees proof as a means for convincing and systematising mathematical facts, 
whilst the second uses proof mainly to promote mathematical understanding. The 
fi rst focuses on proof as a product, the second as a process.  

    2.2.4   Teachers’ Beliefs About Proof and Themselves 
as Mathematical Thinkers 

 Teacher attitudes towards using mathematical reasoning, their abilities in constructing 
proofs, and their abilities to deal with novel ideas are especially important, because 
“ideas that surprise and challenge teachers are likely to emerge during instruction” 
(Fernandez  2005 , p. 267). In such situations teachers should be able to “reason, not 
just reach into their repertoire of strategies and answers” (Ball  1999 , p. 27). 
However, the U.S. teachers in Ma’s  (  1999  )  study were not mathematically confi -
dent to deal with a novel idea and investigate it. Like students, these teachers relied 
on some authority – a book or another teacher – to be confi dent about the truth of 
a statement. 

 Although it was not their main purpose, Simon and Blume  (  1996  )  also found 
evidence that prospective elementary teachers appealed to authority. Their study 
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differed from others in the sense that they investigated pre-service elementary-school 
teachers’ conceptions of proof in the context of a mathematics course “which was 
run as a whole class constructivist teaching experiment”  (  1996 , p. 3). The partici-
pants had previously experienced mathematics only in traditional classrooms where 
the authority was the teacher; the goal of the instructor in the study was to shift the 
“authority for verifi cation and validation of mathematical ideas from teacher and 
textbook to the mathematical community (the class as a whole)” (ibid., p. 4). The 
authors argued that this shift was signifi cant because it “can result in the students’ 
sense that they are capable of creating mathematics and determining its validity” 
(ibid., p. 4). 

 Simon and Blume’s  (  1996  )  fi ndings illustrate how pre-service teachers’ prior 
experiences with proofs (or the lack thereof) and views about mathematics infl uence 
how they initially respond to situations where proof is necessary. At the beginning 
of the semester when the study’s instructor asked them to justify mathematical 
ideas, the participants referred to their previous mathematics courses or provided 
empirical reasons. They also did not necessarily make sense of the others’ general 
explanations if they were not operating at the same level of reasoning. However, 
Simon and Blume claimed that “norms were established over the course of the 
semester, that ideas expressed by community members were expected to be justifi ed 
and that those listening to the justifi cation presented would be involved in evaluating 
them”  (  1996 , p. 29). 

 More recently, Smith  (  2006  )  compared the perceptions of, and approaches to, 
mathematical proof by undergraduates enrolled in lecture and problem-based 
“transition to proof” courses, the latter using the “modifi ed Moore method,”  (  2006 , 
p. 74). Their key fi nding: “while the students in the lecture-based course demonstrated 
conceptions of proof that refl ect those reported in the research literature as insuffi -
cient and typical of undergraduates, the students in the problem-based course were 
found to hold conceptions of, and approach the construction of, proofs in ways that 
demonstrated efforts to make sense of mathematical ideas” (ibid., p. 73). These 
promising results “suggest that such a problem-based course may provide opportunities 
for students to develop conceptions of proof that are more meaningful and robust 
than does a traditional lecture-based course” (ibid., p. 73).   

    2.3   Students’ Beliefs About Proof 

 Many studies deal with students’ approaches to proof. They mainly focus on 
students’ diffi culties; only rarely do they address the issue of beliefs directly and 
explicitly. Their most prevalent fi ndings on students’ beliefs about proof are that 
students fi nd giving proofs diffi cult and that their views of the purpose and role of 
proof are very limited (Chazan  1993 ; Harel and Sowder  1998 ; Healy and Hoyles 
 2000  ) . Some students are ignorant of the need to give a mathematical proof to verify 
a statement; others appeal to an authority – a teacher, a book or a theorem – to establish 
a truth (Carpenter et al.  2003  ) . 
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 According to Ball and Bass  (  2000  ) , third-grade students “did not have the 
mathematical disposition to ask themselves about the completeness of their results 
when working on a problem with fi nitely many solutions”  (  2000 , p. 910) early in the 
year. Similarly, Bell  (  1976  )  found that 70% of the 11- to 13-year-olds in his study 
could recognise and describe patterns or relationships but showed no attempt to 
justify or deduce them. Even some students at the university level may believe that 
“proof is only a formal exercise for the teacher; there is no deep necessity for it” 
(Alibert  1988 , p. 31). 

 A common research fi nding is that students accept empirical arguments as 
proofs. They believe that checking a few cases is suffi cient (Bell  1976  ) . Healy and 
Hoyles  (  2000  )  found that 24% of 14- and 15-year-old algebra students, assigned a 
familiar mathematical problem accompanied by different arguments, indicated that 
the empirical argument would be the most similar to their own approach (39% for 
an unfamiliar problem). Chazan  (  1993  ) , in his study of high-school geometry 
students’ preferences between empirical and deductive reasoning, documented 
similar results. 

 Some students are aware that checking a few cases is not tantamount to proof, 
but believe that checking more varied and/or randomly selected examples  is  proof. 
They try to minimise the limitations of checking a few examples in a number of 
ways, including use of a pattern, extreme cases or special cases. In Chazan’s  (  1993  )  
study, some students believed that if they tried different kinds of triangles – acute, 
obtuse, right, equilateral, and isosceles – they would verify a given statement about 
triangles. One of Ball’s third graders gave as a reason for accepting the truth of the 
statement that the sum of two odd numbers is even that she tried “almost 18 of them 
and even some special cases” (Ball and Bass  2003 , p. 35). 

 On the other hand, some students are aware of the fact that checking a few examples 
is not enough and are also not satisfi ed with trying different cases. Interviews in 
Healy and Hoyles’s  (  2000  )  study revealed that some students who chose empirical 
arguments as closest to their own were not really satisfi ed with these arguments but 
believed that they could not make better ones. There are also students who realise 
that some problems contain infi nitely many numbers, so one cannot try them all; 
consequently, rather than considering a general proof, these students believe that no 
proof is possible (Ball and Bass  2003  ) . 

 Bell  (  1976  )  found that students, although unable to give complete proofs, showed 
different levels of deductive reasoning, ranging from weak to strong. Some students 
can follow a deductive argument but believe that “deductive proof is simply evidence” 
(Chazan  1993 , p. 362). Fischbein  (  1982  )  found that although 81.5% of them believed 
that a given proof was fully correct, just 68.5% of a student population accepted the 
theorem. Some students, given a statement claiming the same result for a subset of 
elements from an already generally proven category, think that another specifi c 
proof is necessary (Healy and Hoyles  2000  ) . Some students also think that either 
further examples are necessary or that a deductive argument is subject to counterex-
amples. In Fischbein’s  (  1982  )  study, only 24.5% of the students accepted the 
correctness of a given proof and “ at the same time ”  (  1982 , p. 16) thought that they 
did not need additional checks. 
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 Student-constructed proofs may take various forms. Even students who can 
produce valid mathematical proofs do not tend to give formal arguments using symbols. 
Healy and Hoyles found that students who went beyond a pragmatic approach were 
“more likely to give arguments expressed informally in a narrative style than to use 
algebra formally”  (  2000 , p. 408). In Bell’s  (  1976  )  study, none of the students used 
algebra in their proofs. Porteous  (  1990  )  also reported that it was “disappointing to 
fi nd an almost total absence of algebra”  (  1990 , p. 595). According to Healy and 
Hoyles, students did not use algebraic arguments because “it offered them little in 
the way of explanation … and [they] found them hard to follow”  (  2000 , p. 415). 

 All the aforementioned studies mainly refer to pre-secondary school. Studies 
carried out at the more sophisticated high-school and college levels have had to 
consider further elements and diffi culties. 

 As Moore claims, “the ability to read abstract mathematics and do proofs depends 
on a complex constellation of beliefs, knowledge, and cognitive skills”  (  1994 , 
p. 250). Furinghetti and Morselli’s study  (  2007,   2009b  )  instantiates how beliefs may 
intervene in this constellation and, at the same time, hints at the interpretative dif-
fi culties linked to this kind of investigation. Their analyses show the weight and role 
of beliefs as driving forces throughout the proving process as well as their mutual 
relationship with cognitive factors. For instance, in one case study (Furinghetti and 
Morselli  2009b  )  the student’s choice of the algebraic representation, and the 
revision of such a choice after a diffi culty is met, are hindered by the student’s 
beliefs about self (low self-confi dence), about mathematical activity as an automatic 
activity, and about the role of algebra as a proving tool. In another case (Furinghetti 
and Morselli  2007  )  the proving process is supported by the student’s self-confi dence 
and his belief about proof as a process aimed not only at proving but also at 
explaining. In this latter case, the authors underline the positive role of beliefs in 
supporting the construction of a proving process as well the fi nal systematisation 
of the product.   

    3   Metaknowledge About Proof 

    3.1   Metaknowledge 

 Literally, metaknowledge is knowledge about knowledge. We use the term 
‘metaknowledge about proof’ to designate the knowledge needed to refl ect about, 
teach and learn proof. We distinguish metaknowledge from beliefs by placing beliefs 
closer to individuals’ opinions, emotions and attitudes, whereas “metaknowledge” 
refers to consensually held ideas. Metaknowledge about proof includes concepts 
which refer to:

   the  • structure of mathematical theories , like axiom/hypothesis, defi nition, 
theorem;  
  formal  • logic , like truth, conditional, connectives, quantifi ers;  
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   • modes of representation , like symbolic, pictorial and verbal reasoning; and  
  relationships between proof in mathematics and related processes of argumentation • 
in  other fi elds , especially the empirical sciences.    

 Above, in Sects   .  2.2  and  2.3 , we discussed research fi ndings about problematic 
dimensions of teachers’ and students’ beliefs about proof – above all, the prepon-
derance of empirical ways of justifi cation. These fi ndings are internationally valid; 
consequently, we have to consider the problematic beliefs as outcomes of the usual 
way of teaching proof at school and university. Here, we expound our  thesis  that 
these shortcomings of teaching can be successfully overcome only when meta-
knowledge about proof is made a theme of mathematics teaching, beginning with 
the explicit introduction of the very notion of proof. The opinions of many educators, 
for example Healy and Hoyles  (  2000  )  and Hemmi  (  2008  )  support this view.  

    3.2   Place of Metaknowledge in the Curriculum 

 The role of proof in the curriculum varies across different countries. Of course, 
there is a broad international consensus that learning mathematical argumentation 
should start with the very beginning of mathematics in the primary grades (e.g. Ball 
and Bass  2000 ; Bartolini  2009 ; Wittmann  2009  ) . However, the situation is different 
with regard to the explicit introduction of the notion of proof  per se . In some coun-
tries, such as France, Germany and Japan, proof is seen as something to be explicitly 
taught. Cabassut  (  2005  )  notes that the introduction of proof in France and Germany 
takes place mostly in grade 8, which is also the situation in Japan (Miyazaki and 
Yumoto  2009  ) . In these countries, the offi cial syllabus makes explicit what should 
be taught about proof and/or textbooks contain chapters about proof (Cabassut 
 2009 ; Fujita, Jones, and Kunimune  2009  ) . In other countries, such as Italy 
(Furinghetti and Morselli  2009a  )  and the United States (National Council of 
Teachers of Mathematics [NCTM]  2000  ) , proof remains a more informal concept 
but is nevertheless made a theme by individual teachers. Furinghetti and Morselli 
report that most of the Italian teachers they have interviewed respond that they treat 
proof in their classes. In the United States, ‘reasoning and proof’ is identifi ed as a 
process standard (NCTM  2000  )  to be integrated across content and grade levels 
rather than taught explicitly as one object of study. Regardless of whether proof is 
explicitly treated, it is important that mathematics teachers have well-founded meta-
knowledge about proof in order to communicate an adequate image of mathematics 
to their students.  

    3.3   Basic Components of Metaknowledge About Proof 

 In the practice of teaching, the attitude seems frequently to prevail that metaknowledge 
about proof emerges spontaneously from examples. Only a few ideas are available 
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about how to provide metaknowledge about proof explicitly to pupils or teachers. 
For example, Arsac et al.  (  1992  )  give explicit ‘rules’ for discussions with pupils of 
the lower secondary level (11–15 years old): a mathematical assertion is either true 
or false; a counter-example is suffi cient for rejection of an assertion; in mathematics 
people agree on clearly formulated defi nitions and properties as warrant of the 
debate; in mathematics one cannot decide that an assertion is true merely because a 
majority of persons agree with it; in mathematics numerous examples confi rming an 
assertion are not suffi cient to prove it; in mathematics an observation on a drawing 
is not suffi cient to prove a geometrical assertion. However, listing such rules is not 
suffi cient to develop metaknowledge, because the latter is broader and includes 
relationships to other fi elds. 

 Here, in identifying basic components of metaknowledge about proof, we confi ne 
ourselves to metaknowledge which should be made a theme already in the lower 
secondary grades and which ( a fortiori ) should be provided to future teachers of 
mathematics. We leave aside metaknowledge related to formal logic, since this topic 
is treated in other chapters of this volume and is appropriate only for a more advanced 
level. (We also exclude ‘modes of representation’; see Cabassut  2005,   2009  ) . 

 When introducing proof in the mathematics classroom, teachers usually say two 
things to their students: fi rst, that proofs produce  certain knowledge , “We think that 
this statement might be true, but to be sure we have to prove it”; second, that proof 
establishes  generally valid statements  – statements true not only for special 
cases but for all members of a class (e.g., all natural numbers or all triangles). 
Teachers all over the world thus try to explain proof to their students; we take those 
two messages as basic components of the necessary metaknowledge about proof. 
However, many teachers and educators are unaware that the two messages are 
incomprehensible by themselves and need further qualifi cations. One reason is the 
difference between these statements and statements made in science courses. Conner 
and Kittleson  (  2009  )  point out that students encounter similar problem situations in 
mathematics and science, but the ways in which results are established differ 
between these disciplines. In mathematics, a proof is required to establish a result; 
in science, results depend on a preponderance of evidence (not accepted as valid 
in mathematics). 

    3.3.1   The Certainty of Mathematics 

 It is important to convey to students the idea that proofs do not establish facts but 
‘if-then-statements’. We do not prove a ‘fact’  B  but an implication ‘If  A  then  B ’. 
Boero, Garuti and Lemut  (  2007 , p. 249  ff ) rightly speak about the conditionality of 
mathematical theorems. For example, we do not prove the ‘fact’ that all triangles 
have an angle sum of 180°; rather we prove that in a certain theory this consequence 
can be derived. The angle-sum theorem is an ‘if-then-statement’ whose ‘if’ part 
consists ultimately of the axioms/hypotheses of Euclidean geometry. Thus the 
 absolute certainty  of mathematics resides not in the facts but in the logical 
inferences, which are often implicit. 
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 Whether mathematicians believe in the ‘facts’ of a theory is dependent on their 
confi dence in the truth of the hypotheses/axioms. This confi dence is the result of a 
more or less conscious  process of assessment . Mathematicians fi nd the axioms of 
arithmetic highly reliable and therefore can believe that there are infi nitely many 
prime numbers. The situation is different in geometry; with ‘medium-sized’ objects 
Euclidean geometry is the best available theory, but in cosmological dimensions 
Riemannian geometry is taken as the appropriate model. The situation is even more 
complicated with applied theories in physics and other sciences. 

 The issues of the potential certainty of mathematical proof and of the condition-
ality of the theorems have to be made frequent themes in mathematics education, 
beginning at the secondary level. Teachers should discuss them with students in 
various situations if they expect the students to get an adequate understanding of 
mathematical proof. In particular, they should make students aware of the necessary 
process of assessing the reliability of a theory.  

    3.3.2   Universally Valid Statements 

 To an educated mathematician, it seems nearly unimaginable that the phrase “for all 
objects  x  with a certain property the statement  A  is true” should present any diffi -
culty of understanding to a learner. Many practical experiences and some recent 
empirical studies show, however, that it does exactly that. Lee and Smith, in a recent 
study  (  2008,   2009  )  of college students, found that some of their participants held the 
notion that “true rules could always allow exceptions” or that “true means mostly 
true” or that there might be an “unknown exception to the rule.” (Lee and Smith 
 2009 , pp. 2–24). This is consistent with the experiences of students frequently not 
understanding that  one  counterexample suffi ces for rejection of a theorem. Galbraith 
 (  1981  )  found, for example, that one third of his 13- to 15-year-old students did not 
understand the role of counterexamples in refuting general statements (see also 
Harel and Sowder  1998  ) . 

 Frequently, students do not think that the set to which a general statement refers 
has a defi nite extension but assume tacitly that under special circumstances an 
exception might occur. From the point of view of classical mathematics this is a 
‘misconception’; however considering general statements outside of classical math-
ematics one fi nds that concepts are generally seen as having indefi nite extensions. 
Both everyday knowledge and the empirical sciences consider general statements 
which under certain conditions might include exceptions. To cover this phenome-
non, one can distinguish between  open  and  closed  general statements, having 
respectively indefi nite and defi nite domains of validity (Durand-Guerrier  2008 ; 
Jahnke  2007,   2008  ) . In principle, closed general statements can occur only in math-
ematics, whereas disciplines outside of mathematics operate with open general 
statements with the tacit assumption that under certain conditions exceptions might 
occur. At the turn from the eighteenth to the nineteenth centuries even mathemati-
cians spoke of “theorems which might admit exceptions” (on this issue see Sørensen 
 2005  ) . Also, intuitionistic mathematics does not consider the concept of the set of 
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all subsets (e.g., of the natural numbers) as a totality of defi nite extension. We well 
know that in cases where the domain for which a statement is valid does not have a 
defi nite extension the usual logical rules, especially the rule of the excluded middle, 
are no longer valid. 

 All in all, the seemingly simple phrase “for all” used in the formulation of 
mathematical theorems is not an obvious concept for the beginner. Rather, it is a 
sophisticated theoretical construct whose elaboration has taken time in history and 
needs time in individuals’ cognitive development. Durand-Guerrier  (  2008 , pp. 379–80) 
provides a beautiful didactic example about how to work on this concept with 
younger pupils.  

    3.3.3   Defi nitions 

 The theories which mathematicians construct by way of proof are hypothetical and 
consist of ‘if-then-statements’. This fact implies that mathematical argumentation 
requires and presupposes  rigour . Hypotheses/axioms and defi nitions have to be 
understood and applied in their exact meanings. This requirement sharply contrasts 
with everyday discourse, which does not commonly use defi nitions, at least in the 
mathematical sense. Consequently, the development of a conscious use of defi ni-
tions is an important component of proof competence. 

 Most students at the end of their school careers do not understand the importance 
and meaning of mathematical defi nitions, even many university students (Lay  2009  ) . 
Explicit efforts in teaching are required to develop a habit of using defi nitions 
correctly in argumentations. Since such a habit does not emerge spontaneously, 
students need metaknowledge about defi nitions. They should know that defi nitions 
are conventions but are not arbitrary; in general, a defi nition is constructed the way 
it is for good reasons. 

 Beginning university students of mathematics encounter an impressive example 
of the importance and meaning of defi nitions when they fi rst operate with infi nite 
sets: namely, how can one determine the ‘size’ of an infi nite set? If one compares 
sets by way of the relation ‘⊂’, then the set  N  of natural numbers is a proper subset 
of the set  Q  of rational numbers:  N  ⊂  Q , and  N  is ‘smaller’ than  Q . If, however one 
compares sets by means of bijective mappings, a fundamental theorem of Cantorian 
set theory says that  N  and  Q  have the same cardinality. Hence, the outcome of a 
comparison of two sets depends on the defi nition of ‘size’. Numerous further exam-
ples occur in analysis: for instance, whether an infi nite series is convergent depends 
on the defi nition of convergence. 

 Not many examples of this type arise in secondary teaching. One instance of the 
importance and relevance of alternative defi nitions is the defi nition of a trapezoid 
(trapezium) as having at least two parallel sides versus having exactly two parallel 
sides. Asking whether a rectangle is a trapezium requires a student to look past the 
standard fi gures depicting the two types of quadrangle. If they apply a particular set 
of defi nitions, they conclude that answer is affi rmative. Proof and deduction enter 
the game when the student realises that consequently the formulae for the perimeter 
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and area of a trapezium must also give the perimeter and area of a rectangle. (For 
further ideas about teaching the construction of defi nitions, see Ouvrier-Buffet  2004  
and  2006 .)  

    3.3.4   Mini-theories as a Means to Elaborate Metaknowledge About Proof 

 We have suggested three basic components of metaknowledge about proof which 
naturally emerge in the teaching of proof and which should be more deeply elabo-
rated in teaching: the  certainty  ( conditionality ) of mathematical theorems, the 
 generality  of the theorems and the conscious use of  defi nitions . One possible method 
to further this learning is to develop  mini-theories  accessible to learners and suffi -
ciently substantial to discuss meta-issues. The idea of such mini-theories, not com-
pletely new, resembles Freudenthal’s  (  1973  )  concept of ‘local ordering’ or the use 
of a fi nite geometry as a surveyable example of an axiomatic theory. However, the 
study of fi nite geometries is not feasible in secondary teaching. Besides, our idea of 
a mini-theory differs in two aspects from Freudenthal’s concept of local ordering. 
First, we would include in the teaching of a mini-theory phases of explicit refl ection 
about the structure of axiomatic theories, the conditionality of mathematical theo-
rems and the set of objects to which a theorem applies. Second, we would also take 
into account ‘small theories’ from physics, like Galileo’s law of free fall and its con-
sequences, and other examples of mathematised empirical science (Jahnke  2007  ) . 

 Treating a mathematised empirical theory would provide new opportunities to 
make students aware of the process of assessing the truth of a theory (see above on 
certainty; Conner and Kittleson  2009 ; Jahnke  2009a,   b  ) . Usually, teachers only tell 
students that the axioms are intuitively true and that therefore all the theorems which 
can be derived from them are true; however, this is a one-sided image. In many other 
cases, one believes in the truth of a theory because its consequences agree with 
empirical evidence or because it explains what one wants to explain. For example, 
teachers generally treat Euclidean geometry in the latter way, at least at pre-tertiary 
levels. In the philosophy of science, this way of constructing and justifying a theory 
is called the ‘hypothetico-deductive method’. 

 Barrier et al.  (  2009  )  developed a related idea for teaching the metaknowledge of 
proof. They discuss a dialectic between an ‘indoor game’ and an ‘outdoor game’. The 
indoor game refers to the proper process of deduction, whereas the outdoor game 
deals with “the truth of a statement inside an interpretation domain”  (  2009 , p. 78).    

    4   Conclusion 

 Our discussion in Sect. 1 has shown how strongly conceptualisations of proof are 
dependent of the professional background and aims of the respective researcher. 
Practising mathematicians, whilst agreeing on the acceptance of certain arguments 
as proof, stray from a formal defi nition of proof when explaining what one is. 



1877 Conceptions    of Proof – In Research and Teaching

Consequently, it is diffi cult to explain precisely what a proof is, especially to one 
who is a novice at proving (such as a child in school). Mathematics educators also 
differ in their distinctions between argumentation and proof (or inclusion of one in 
the other). Regardless of the classifi cation scheme of the researchers, research 
reveals that students and teachers often classify arguments as proofs differently 
from the classifi cations accepted in the fi eld of mathematics. 

 Existing research on beliefs about proof has focused on investigating proof con-
ceptions of prospective and practising elementary and secondary school teachers 
(Sect. 2). Their beliefs about proving are wrapped around two main issues: what 
counts as proof in the classroom and whether the focus of teaching proof is on the 
product or on the process. Research has clearly hinted at the fact that quite a number 
of teachers tend to accept empirical arguments as proofs and have limited views 
about the role of proof in school mathematics. Given the infl uence of beliefs on the 
teaching and learning process at all levels of schooling continued research on beliefs 
about proof that focuses not only on detecting beliefs but also on understanding 
their origins seems highly necessary. 

 Research strongly suggests that beliefs about proof should be addressed more 
intensely in undergraduate mathematics and mathematics education courses and 
during professional development programmes in order to overcome the shortcomings 
which have been identifi ed in the beliefs about proof. Consequently, we discuss in 
the last section of the chapter (Sect. 3) which type of metaknowledge about proof 
should be provided to students and how this can be done. We identify three com-
ponents of metaknowledge about proof which should be made a theme in teacher 
training as well as in school teaching. These are the certainty of mathematics ,  
universally valid statements and the role of defi nitions in mathematical theories. 
The elaboration of teaching units which allow an honest discussion of metaknowledge 
about proof seems an urgent desideratum of future work. Mini-theories could 
be one possible way of achieving this, and further research is necessary both to 
examine the feasibility of the use of mini-theories and to develop other ways of 
developing metaknowledge about proof.      
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