
Prediction of Batch Processes Runtime
Applying Dynamic Time Warping and Survival Analysis

Paolo Graniero1 and Marco Gärtler2
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Abstract. Batch runs corresponding to the same recipe usually have
different duration. The data collected by the sensors that equip batch
production lines reflects this fact: time series with different lengths and
unsynchronized events. Dynamic Time Warping (DTW) is an algorithm
successfully used, in batch monitoring too, to synchronize and map to
a standard time axis two series, an action called alignment. The online
alignment of running batches, although interesting, gives no information
on the remaining time frame of the batch, such as its total runtime, or
time-to-end. We notice that this problem is similar to the one addressed
by Survival Analysis (SA), a statistical technique of standard use in
clinical studies to model time-to-event data. Machine Learning (ML) al-
gorithms adapted to survival data exist, with increased predictive perfor-
mance with respect to classical formulations. We apply a SA-ML-based
system to the problem of predicting the time-to-end of a running batch,
and show a new application of DTW. The information returned by open-
ended DTW can be used to select relevant data samples for the SA-ML
system, without negatively affecting the predictive performance and de-
creasing the computational cost with respect to the same SA-ML system
that uses all the data available. We tested the system on a real-world
dataset coming from a chemical plant.

Keywords: Batch Process Monitoring � Dynamic TimeWarping � Time-
to-end Prediction � Survival Analysis

1 Introduction

Batch production is a common manufacturing technique for chemical, pharma-
ceutical and food industries where a given product is realized in a stage-wise
manner following a given formula or recipe. Such recipe defines rigorously the
sequence of steps that each batch run follows. Nonetheless, it is quite common
that distinct batch runs for the same recipe differ in several aspects, some of
them time-related. For example, total duration or duration of the individual sub-
phases can vary and, even in synchronized phases, significant events or alarms
can happen at different relative positions in time. The magnitude of such varia-
tions requires advanced process monitoring techniques to ensure the consistency
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and the quality of the product, to improve the safety levels of the plant, and to
better understand and control the process [16]. This monitoring is, in turn, ben-
eficial to the process operations, planning and can lead to overall improvements.
A particular branch of process monitoring is statistical process monitoring: these
techniques rely on mathematical tools that help to identify and control varia-
tions in the production process, analyzing data coming from the reactors. This
data, collected from a large number of sensors, comes with some peculiar char-
acteristics as a consequence of the temporal variability stated above, affecting
the analysis performed. Many established statistical techniques for process mon-
itoring, such as Multiway Principal Component Analysis (MPCA), require that
the input data have equal length, that for a batch process is its duration. As
stated above, even in case of the same duration, significant events could be asyn-
chronous, leading to problems during the analysis, such as comparing different
but synchronous events. These issues are not unique to batch data: Dynamic
Time Warping (DTW), originated in signal processing [19], is a widely success-
ful and often adopted technique to homogenize data with a different time frame
to a standard duration and synchronization of characteristics. An adoption to
batch data is given, for example, in [9].

There exist different versions of DTW. In batch monitoring, standard DTW
is used to align two completed batches, mainly during offline analysis when
completed batches are available. The open-ended version is useful in online sce-
narios, where a running, and therefore incomplete, batch is aligned to a prefix
of a completed batch. As such, a comparison between the running batch and
a historical one is straightforward. Unfortunately, such alignment does not give
any information on the remaining time frame; for example, the time left before
completion of the batch, the focus of our work. This specific issue can be seen
as a time-to-event modeling problem, addressed by techniques such as Survival
Analysis (SA). SA is a standard adopted technique in clinical studies to model
the time until the occurrence of an event of interest, usually linked to the course
of an illness. Many machine learning (ML) algorithms, like the ones described in
[6], have been adapted to handle survival data, resulting in improved predictive
performance over more standard techniques.

In this work, we propose a system combining DTW and SA that aims at
predicting the total duration of a running batch given historical information on
the process. We first check the feasibility of using SA in the context of batch
monitoring. Then we investigate if by applying DTW, it is possible to obtain
any improvement regarding the predictive performance or the computational
cost. As described in Section 5, we apply DTW, not as a time normalization
technique or to compute a distance measure, but as a data-selection tool: we use
the mapping information contained in the warping path, one of the algorithm’s
output, to select only a fraction of the data available. This data is used to train a
SA-ML-based algorithm that, followed by a standard regression model, returns
an estimate of the time-to-end of a running batch. We show that the same SA
model trained only on the fraction of data selected via DTW performs as good
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as the same model trained on all the data available, sometimes even better. A
significant improvement is observable in the computational cost of the approach.

The rest of the paper is organized as follows. Section 2 and 3 expose some
useful facts about Dynamic Time Warping and Survival analysis, respectively.
Section 4 briefly describes the batch data used in evaluating the system proposed,
and some data preprocessing realized. Section 5 describes in detail the proposed
system, while Section 6 shows an evaluation of the results obtained. Finally,
Section 7 concludes the paper.

2 Dynamic Time Warping

Dynamic Time Warping (DTW) is the name of a class of algorithms used to
compare two series of values with possibly different length; the main applications
regard time series. The idea behind this technique is to stretch and compress
the two series to make one resemble the other as much as possible. This warping
accounts for non-linear fluctuations of the time axis.

Once warped, the two series have the same length, and similar patterns are
aligned. These are the time-normalization and event synchronization effects, re-
spectively.

The main objects of interest are two: the warping path and the DTW dis-
tance. The warping path is a mapping between the time indexes of the two series.
We can interpret multiple correspondences between one index on a series and
multiple ones on the other as the stretches and compressions mentioned above.
The warping path is the optimal mapping that minimizes the distance between
the warped series: this minimal distance is the so-called DTW distance.

Usually, when using DTW, we identify a reference series and a query one.
The usual set-up is to select only one reference Y to which we align several
queries Xi, i ∈ {1, . . . , I}.

The standard version of DTW aligns the two series in their entirety, mapping
the end-points of the two series to each other. Formally, if

Y = (y1, . . . , yN ) X = (x1, . . . , xM )

then the standard alignment satisfies the following condition for the end-points

x1 −→ y1 xM −→ yN

On the other hand, the open-ended version aligns a query to a reference’s prefix:

x1 −→ y1 xM −→ yn, 1 ≤ n ≤ N (1)

In this work, we mainly use the open-ended version, that is suited for online
applications, being able to align an incomplete batch to a reference one.

DTW has been applied for time series classification, clustering, in various do-
mains. References to such applications can be found in [5]. In these applications,
the quantity of interest is mainly the DTW distance.
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First applications of DTW to batch process monitoring can be found in [17,9].
The emphasis of these works is on the alignment of batch data, but only offline
(completed batches). Online applications of DTW are present in the literature,
for example in [4], mainly in conjunction with more advanced monitoring tech-
niques as MPCA. In this work we use open-ended DTW as a data-selection tool:
we use the index n in Equation 1 to select the points xi

Ni
of the historical batches

that were mapped to the same point. We suppose that these points are the ones
containing most of the relevant information to the time-to-end prediction at the
given time on the running batch.

3 Survival Analysis

Survival Analysis (SA) is a sub-field of statistics where the goal is to analyze
and model the data where the outcome is the time until the occurrence of an
event of interest [20]. The main feature of SA is the ability to deal with censored
data, that is when the event could be unobserved in the time-frame considered
in an experiment. Standard approaches to SA allow to model the time to the
event of interest and obtain an estimate of it. The statistical modeling is the
focus of classical approaches, while their predictive performance is limited. More
recent developments focus on machine learning approaches to SA [6], adapting
loss functions of known algorithms to the specific problem of SA, time until the
event of interest. For survival models that do not rely on Cox’s proportional
hazards assumption [3], the predictions are risk scores of arbitrary scale and not
the actual time-to-event. If samples are ordered according to their predicted risk
score (in ascending order), one obtains the sequence of events, as predicted by
the model [2]. In this work, we use one of these algorithms, Gradient Boosting
Survival Analysis [6,1]; we apply a standard regression algorithm to convert the
predicted risk to an actual time-to-event estimate.

4 Data

The data used to test the proposed system comes from a chemical batch pro-
duction line. The data consists of 383 batches, spanning three years (2015-2017)
of measurements, with a duration between 146 and 960 minutes. We represent
each batch as a multivariate time series: each dimension is a process variable
(PV), with a standard sampling rate of 1 value per minute for every batch and
every PV. The PVs come from different sensors that equip the production line:
they can represent engineering variables, control variables, or state variable. The
exact nature of the PVs is confidential.

Data normalization. The application of DTW requires the data to be nor-
malized to avoid artifacts due to different scales of the values. When applying
DTW, we have to select a batch as reference, to which we align every other
batch. To have a coherent online normalization, we decided to use a Min-Max
scaling approach, and as the normalizing interval, we chose the range of values
of each PV in the reference batch. This choice makes the normalization of the
data coming from the running batch straightforward.
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Reference batch and significant features. For every set of batches consid-
ered during the experiments, we had to select one batch as reference, considered
the typical one. Following domain expert’s advice, we chose the batch with me-
dian duration. Since constant variables have no warping information, we disre-
garded PVs with a constant trend in the reference, removing them from the rest
of the batches too.

5 Proposed System

The system proposed in this work, which we call SA+DTW-system, is schemat-
ically represented in Figure 1. It has two phases: offline and online.

Fig. 1: Overview of the proposed system

During the offline phase, the historical data about previous batches is aligned
to the selected reference batch using open-ended DTW on every prefix of the
batches, storing the information about DTW distance and alignment. The re-
sulting dataset contains the following information:

– The current time index on the running batch
– The index n of Equation 1. It’s the end point of the reference’s prefix to

which the running batch has been aligned
– The DTW distance between the query batch and the reference’s prefix
– The value of every PV of the query batch at the given time
– The time-to-end of the batch. This quantity is the target variable of the

model

During the online phase, the running batch is aligned to the same reference
as in the offline phase via open-ended DTW. From this alignment, we get two
pieces of information: the index n of the mapped prefix on the reference and the
DTW distance. n is used to filter the dataset obtained offline: only the entries
mapped to the same n are selected and kept for the next step. This step consists
of training a SA-ML-based model to learn the risk score based on the features
mentioned above. The model is then able to assign a risk score to the running
batch. This risk score is then converted to an actual time-to-end estimate by
a regression model (Random Forest) trained on the risk scores assigned to the
filtered dataset.
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Table 1: SA-system stats
Year 2015 2016 2017

Training dataset size
[rows × columns]

39431×28 77989×34 79833×34

Training time
[minutes]

34 126 134

Single prediction time
[seconds]

∼ 0.6 ∼ 1.1 ∼ 1.1

Table 2: SA+DTW-system stats
Year 2015 2016 2017

Average dataset size
[rows × columns]

149×28 180×34 131×34

Single prediction time
[seconds]

< 1 < 1 < 1

Software used We used the Python [18] programming language to develop the
whole system. The python packages we used are: Numpy [11], Scikit-learn [12],
SciPy [8], Matplotlib [7], Pandas [10], Scikit-survival [14,15,13]

6 Results

The data set had distinct characteristics in each year. Thus we split the overall
data set into three parts and considered them on their own. For each year we
considered approximately the first 2/3 of the batches as historical data, and
the remaining 1/3 of the batches was used to test the system. In particular, we
have for the three years considered the following historical/test batches: 80/40,
101/50, 75/37.

The focus of this work is on the improvements that can be obtained select-
ing the data via DTW, in particular before applying SA. We compared three
methods to this end. The first method uses the average duration of the batches
longer than the running batch as an estimate for the total duration of the run-
ning batch. This method uses only historical information, and it is considered as
a minimum performance to be reached by any system to be considered useful.
The second method, the SA-system, uses all the historical data at once as train-
ing data for a SA-ML based algorithm, followed by a regression model (Random
Forest) for the conversion of the risk score to time-to-end estimate. All the pre-
dictions obtained by this method come from the same model. The third method
is the system proposed, the SA+DTW-system described in Section 5. Figure 2
shows the results for the 2017 data. The results of the other two years show no
significant differences from this one.
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Fig. 2: Comparison of the performance (mean absolute error) of the three
models tested (2017 data). The SA+DTW-system shows a comparable

performance to the SA-system

7 Conclusion

The results from last section show two main facts. Firstly, Survival Analysis is
suited to be used in batch process monitoring. The information contained in the
process variables can be used to model the time-to-end of a batch process, at
least for this type of process, with a sufficiently good performance, as judged by
some domain experts to which the results were shown. Secondly, the mapping
between running and reference batch performed by Dynamic Time Warping is
an effective tool to select relevant data from the historical one. The consistent
performance between the SA and the SA+DTW system can be interpreted as a
good action of the DTW mapping in reducing the noise contained in the data:
the relevant information to model the time-to-end is retained when cutting out,
on average, more than 99% of the samples available.

These results represent only a first approach to this problem. We think that
many improvements could be obtained with careful tuning of the system. Firstly,
we used non-optimized parameters for the SA-ML algorithm: the definition of a
global performance metric could help in choosing optimal parameters for a given
process. Then, the DTWmapping has been performed using the standard version
of DTW, but more sophisticated approaches are already present in literature,
such as shape-DTW [21]. We think that the performance on the data-selection
side could improve given more stable alignment since the version of the algorithm
used is susceptible to the noise in the process variables. We think that taking
into account this noise is an effective way to stabilize the online alignment and
possibly remove the need to aggregate successive predictions of the system to
stabilize them.
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Open  Access This chapter is licensed under the terms of the Creative Commons Attri-
bution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which 
permits use, sharing, adaptation, distribution and reproduction in any medium or for-
mat, as long as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons license and indicate if changes were made.

 The images or other third party material in this chapter are included in the 
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the chapter’s Creative Commons license and 
your intended use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright holder.


	6Prediction of Batch Processes Runtime Applying Dynamic Time Warping and Survival Analysis
	1 Introduction
	2 Dynamic Time Warping
	3 Survival Analysis
	4 Data
	5 Proposed System
	6 Results
	7 Conclusion
	References




