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Summary

Aeronautical structures are increasingly aging, and the occurrence of unex-

pected loads could reduce their operability. A health and usage monitoring sys-

tem would enable the continuous monitoring of the state of health of a

structure and track its aging by a load monitoring system, which aims at the

real-time reconstruction of the loads acting on a structure. However, some-

times the loads and the induced strain and stress fields are difficult to be

reconstructed exactly, as for complex loading due to flight maneuvers. In this

work, the full strain and load fields of a structure are reconstructed by an

inverse-direct approach, leveraging on the calibration matrix approach. The

latter exploits a least-squares minimization of an error functional, defined as

the comparison between measured strains in discrete positions and a numeri-

cal formulation of the same, to reconstruct an equivalent, however representa-

tive, load set. By assuming a linear relationship between strain and load

through a calibration matrix, this minimization can be performed analytically,

leading to a computationally very efficient algorithm that can be operated

online. Once the equivalent load set is computed, the full strain field can be

estimated relying on a second calibration matrix linking the external loads to

the strain field of the complete structure. The method has been numerically

tested with an unmanned aerial vehicle (UAV) subjected to aerodynamic pres-

sure loads simulating flight maneuvers. Finally, the results are experimentally

validated during a ground test program on a real UAV, proving the robustness

to different experimental uncertainties.
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1 | INTRODUCTION

In the last decades, the research on health and usage monitoring systems (HUMS) is driven by the need for aircraft
operational life extension. HUMS is intended to monitor the health state of a structure and its consumed life, based on
a series of permanently installed sensors.1–3 In this framework, knowledge of the real load spectra4 to which a structure
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is subjected during its service life and thus the associated strain and stress fields are mandatory for computing the con-
sumed life and exploiting HUMS system data on real structures.5–7 Thus, load monitoring is a requirement for aircrafts
to promote the switch from the safe-life design to the damage-tolerant concept8 since it allows continuous monitoring of
the structure.

Different load monitoring approaches exist in the literature, either training-based or training-free. Training-
based load monitoring makes wide use of machine learning (ML) techniques relying on a series of data, either
real or simulated, collected in different scenarios to predict the most likely flight maneuvers9 or to define mathe-
matical models linking different input parameters to the load estimate, for example, strains and stresses10 or
forces11 in discrete positions. The latter is usually implemented by exploiting either artificial neural network
(ANN)12,13 or Gaussian process (GP) regression models.11,14 However, both of them require a training data set,
which highly influences the quality of their estimate. A considerable amount of data is usually required to provide
a good estimate and to assure a proper input–output space exploration. Training-free load monitoring techniques,
on the other hand, do not require a training data set since they rely mainly on a physical model of the structure
to estimate the loading condition based on some physical input parameter, for example, strain measures in dis-
crete positions. Some of them15,16 consider the modal response of the structure to link the strain measures in dis-
crete locations to the strain estimate in predetermined positions of the component. However, difficulties in the
strain prediction arise when structures with closely spaced mode shapes are considered, thus limiting their appli-
cability to a case-by-case analysis. Some17–19 exploit regressions between the excitation source and some residuals
to identify the load but suffer from computational resources demand when a high number of degrees of freedom
is present in the considered structure. Others,20–24 falling under the category of shape sensing, aim at
reconstructing the full displacement and thus, strain, fields of a structure based on a least-squares minimization of
an error functional defined as a comparison between discrete strain measurements and a numerical formulation
of the same without requiring any a priori knowledge of the load boundary condition and the material properties.
However, the latter are limited to date to plates and beam-like structures discretized with inverse finite elements
method (iFEM). Another method, sometimes referred to as the calibration matrix approach, reconstructs a set of
loads minimizing an error functional comparing discrete strain measures with a numerical formulation of the
same, function of the unknown loads. Many applications can be found in the literature of the calibration matrix
approach spanning from railway transportation leveraging on the wheel-rail contact force25,26 to civil and aeronau-
tical applications either at a numerical level27,28 or experimentally.29–33

However, even though the general framework of the calibration matrix approach is already available for estimating
loads at a global level, for example, total lift and drag, few applications can be found in the literature of the use of the
method for full strain reconstruction of aerodynamic flight maneuvers exploiting a numerical model of the complete
structure. In particular, once a calibration matrix linking the strain in discrete positions to an equivalent load set repre-
sentative of the real load condition is computed based on an FEM of the structure, the full strain field can be estimated
exploiting an inverse-direct approach. Indeed, after the equivalent load set is computed by a least-squares approach, the
full strain field can be reconstructed by simple matrix–vector multiplication, assuring real-time operability at a reduced
computational burden.

The method is numerically verified with a full-scale Unmanned Aerial Vehicle (UAV) loaded by different aerody-
namic pressure fields simulating aircraft flight maneuvers to demonstrate the method applicability for full strain field
reconstruction. An on-ground experimental verification is also performed to consider possible disturbances and to deal
with possible model-reality discrepancies.

The paper is structured as follows. A comprehensive mathematical description of the calibration matrix approach is
provided in Section 2. The UAV structure, the model, the sensor network, and the equivalent load set used for full
strain and load reconstruction are described in Section 3. Then, the results of both the numerical and experimental tests
are presented in Section 4. Finally, a conclusive section is provided.

2 | MATHEMATICAL FRAMEWORK

A comprehensive description of the mathematical framework of the proposed load monitoring approach is provided in
this section, clarifying some steps not fully detailed in the literature for the interested reader.

Suppose a structure is subjected to an unknown and arbitrary load, Lu. As a direct consequence of the load Lu, the
structure undergoes a unique deformation, resulting in a strain field εu function of the load Lu itself.
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Consider the same structure is instrumented with ns sensors measuring the deformation at ns discrete positions, xs,
within the component and the measures at the time instant t are collected in a ns × 1 vector ε:

ε=

ε1

..

.

εns

8><
>:

9>=
>;

ð1Þ

The external loads, expressed as a series of nlr discrete real loads, or a simplified equivalent representative version, are
computed through a least-squares approach by minimizing an error functional e, defined as the comparison between
measured strain, εm, and a numerical formulation of the same, εn, function of the load (or equivalent load) set, F:

e Fð Þ= εm−εn Fð Þð Þ2 = εm−εn Fð Þð ÞT εm−εn Fð Þð Þ ð2Þ

By assuming a linear-elastic behavior of the structure, which is plausible in many engineering applications, the ith
strain measure, εi, in the vector εn can be written as follows:

εi = ε1i + ε2i +…+ εnlri =
Xnlr
j=1

εji ð3Þ

where εji is the strain in position xi when only the jth load is acting on the structure.
Furthermore, a linear relationship exists between the load and the strain such that

εji = αij Fj ð4Þ

in which the αij term is the strain-force proportionality factor, often referred to as “influence” or “calibration”
coefficient.

By considering all the ns strain measures together, the relation in Equations 3 and 4 can be written in vector
form as

εn tð Þ= ε1 tð Þ+ ε2 tð Þ+…+ εnlr tð Þ=
Xnlr
j=1

εj tð Þ=
Xnlr
j=1

αjFj tð Þ= αF tð Þ ð5Þ

where F is a nlr × 1 vector containing all the loads that one aims to reconstruct at the time t and hereon referred to as
load (or equivalent load) vector

F =

F1

..

.

Fnlr
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while α is a ns × nlr proportionality matrix, from here onward referred to as calibration matrix, containing the propor-
tionality or influence coefficients between strain and load:

α=

α11 � � � α1nlr

..

. . .
. ..

.

αns1 � � � αnsnlr

2
664

3
775 ð7Þ
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Notice that each αij component of the α matrix can be interpreted as the strain in the position xi that one reads if a sin-
gle unitary force j is acting on the structure. Thus, the calibration matrix is constructed column by column by activating
one unitary load per time among the possible set of equivalent loads F. The α matrix can also be interpreted as the lin-
ear operator mapping loads in the load space into deformation in the strain space.

By plugging Equation 5 in the error functional of Equation 2, the error functional formulation becomes as follows:

e= εm−αFð ÞT εm−αFð Þ= εmTεm−εmTαF−FTαTεm +FTαTαF ð8Þ

Finally, by minimizing the error with respect to the unknown vector of the equivalent loads, F

∂e
∂F

=0 ð9Þ

the solution of the inverse problem is found as follows:

αTαF−αTεm = 0 ð10Þ

or simply

F = αTα
� �−1

αTεm =α+ εm ð11Þ

being α+ the Moore–Penrose inverse or pseudo-inverse matrix of the calibration matrix α.
It is worth noticing that the ns × nlr calibration matrix α is usually not squared (i.e., ns ≠ nlr), and for the inverse

problem to be solvable, one has to verify that the matrix αTα is invertible, which results in the following requirement:

rank αð Þ=nrl ð12Þ

Equation 12 contains the sensor network requirements for a load monitoring system. In fact, not only must the sensors
be at least nlr for the problem to be determined, but they also have to be placed34–36 in a way that they provide different
information for each load in the equivalent load set; that is, the columns of the calibration matrix must be linearly inde-
pendent. Furthermore, Equation 12 enables the introduction of the concept of observability requirement for the inverse
problem. Indeed, since the load monitoring algorithm aims to reconstruct the unknown equivalent load set, F, based
on sensors' discrete strain measures, one has to be sure that the network guarantees the “observability,” that is, the load
reconstruction, prior to the real on-board installation. Hereafter, ensuring that the calibration matrix's rank is equal to
the number of loads, nlr, results in the satisfaction of the observability requirement before the actual implementation of
the load monitoring system on the structure.

Once the equivalent load set F is reconstructed through Equation 11 at each time instant t, the full strain field, εfield,
can be estimated by applying a direct approach, as described in Equation 13:

εfield =αfield F ð13Þ

where αfield is another calibration matrix linking the equivalent load set F to the quantity of interest in the monitored
areas, which, in the most general case, can include the entire structure. In particular, the columns of αfield are still nlr,
but the number of rows becomes equal to the number of positions to be monitored. The extrapolated strain field can be
exploited in additional algorithms (e.g., for anomaly identification), and, since the optimization procedure is performed
on the strain, the latter can be recovered quite accurately also in the case of nonideal behavior of the structure. In the
last case, one should consider some loss of accuracy in load reconstruction. However, once the strain field is available
online and offline, further refinement of the load reconstruction algorithm is possible.

Furthermore, it is worth noticing that both the inverse step, for the load estimation, and direct step, for the full
strain field reconstruction, involve just matrix–vector multiplications, resulting in a very efficient algorithm that can be
operated online, since the pseudo-inverse matrix α+ is computed just once offline.
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3 | THE CASE STUDY

The case study for the load monitoring methodology described in Section 2 is presented in this section. In particular,
the strategy for applying the load monitoring algorithm to an UAV is presented in Section 3.1. The aeronautical struc-
ture considered in this work as a bench test is briefly described in Section 3.1.1, while the numerical model of the UAV
used for the structural simulation is shown in Section 3.1.2. The realistic aerodynamic load scenario, representative of
the flight maneuvers, is described in Section 3.1.3, while the simplified equivalent load set processed by the load moni-
toring algorithm is introduced in Section 3.1.4. Finally, the strain sensor network installed on the structure is described
in Section 3.2.

3.1 | Load monitoring strategy for an UAV

The load monitoring strategy is applied on a full-scale UAV described in Section 3.1.1. In particular, the UAV is tested
both numerically and experimentally, relying on a numerical structural model. Since the experimental test rig is
bounded by previous static tests on the structure which required the use of four saddles mounted on the two wings and
loaded by concentrated forces as well as fixing of the aircraft to a support structure through some connecting elements,
the numerical model is built accordingly.

Furthermore, it is widely recognized that aeronautical structures are subjected to aerodynamic loads during their
operation. However, supppose one wants to test the UAV before its operational deployment. In that case, it is neither
easy nor economical to load the structure by aerodynamic pressure fields. Thus, the use of lumped loads representative
of the flight maneuvers is usually a practical alternative to expensive wind tunnel sessions. In this work, the value of
the lumped loads is calculated using the calibration matrix approach with a simulated set of discrete strain measures in
the sensor positions obtained from a computational fluid dynamics (CFD) software when simulating flight maneuvers.
The obtained equivalent load set, F, represents both the considered flight maneuver and the complete strain field in the
structure caused by the maneuver itself and can be further exploited for the computation of the consumed life.

Once the numerically equivalent load sets are computed from the simulated flight maneuvers, this realistic loading
condition is used for the experimental verification of the method, proving the possibility of reconstructing the external
loads and the localized strains in the presence of experimental uncertainties.

3.1.1 | The UAV

The load monitoring methodology described in Section 2 is tested on a full-scale UAV employed as an aerial target dur-
ing military training sessions of the Polish Air Force, namely, the Hornet.37 The UAV, shown in Figure 1, is a modified
version of the originally developed structure, designed and manufactured by the Air Force Institute of Technology
(AFIT) and the Military Aviation Works No. 1 (MAW1). In particular, the Hornet is made of composite material
(mainly glass fiber [FB]) with a length of about 1.7 m, a wingspan of about 3.2 m, and capable of reaching a maximum
speed of about 230 km/h. Further specifications are reported in Table 1. Specifically, this work focuses on the wing of
the UAV, which is made of two main spars and three ribs glued on the two skins of the wing. All these main parts are
made of composite material with sandwich structures formed in negative molds using vacuum techniques. The wings
are then connected to the fuselage using a circular beam made of Dural.

FIGURE 1 The UAV
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3.1.2 | The UAV FEM

As described in Section 2, the inverse problem is tackled using a calibration matrix α linking loads and deformation.
The influence coefficients αij in α are numerically computed exploiting the FEM of the structure shown in Figure 1.
The UAV's structural model, developed in ABAQUS, is a slight simplification of the real aircraft in which the overall
structural behavior of the Hornet in terms of strain patterns is not compromised. Indeed, although the internal combus-
tion engine, the propeller, the most complicated fasteners, and slivers have not been modeled, the structural response is
correctly captured. This structural response has been confirmed by a previously performed experimental validation of
the overall strain field and the particular strain field in the two wings, focus of the present study. Furthermore, since
the current work is not aimed at the modeling of the interaction between different components in the structure, linear
constraints have been used to connect the different regions of the aircraft. An overview of the FEM is shown in
Figure 2.

The UAV in the previously performed static tests was supported by a rigid frame shown in Section 3.1.4. Thus, a
clamp boundary condition was imposed in the FE model (Figure 3) at the interface regions between the UAV and the
supporting frame. The latter is considered infinitely rigid and thus not modeled.

Notice that, since the focus of the work is on the two wings, adopring a rigid clamp at the interface between the
frame and the aircraft fuselage will not affect the results in the analyzed area, being the latter far from the boundaries.
Furthermore, although the adoption of linear constraints for connecting the different parts of the UAV may result in a
localized increase of stiffness and imprecise modeling of the interfaces' structural behavior at small loads, the structure's
overall behavior is correctly captured. In particular, excellent agreement is found with operational loads impacting the
structural integrity.38

TABLE 1 UAV technical

specifications
Parameter Value

Length 1.7 m

Wing span 3.2 m

Starting weight 38 kg

Fuel tank capacity 8 L (6.3 kg)

Useful weight (payload) 5 kg

Min–cruise–max speed 85 − 150 − 230 km/h

Operating range 40 km

Maximum climbing speed 16 m/s (at 140 km/h)

FIGURE 2 The UAV finite element model; (a) FEM overview; (b) FEM top view; (c) FEM front view; (d) FEM lateral view
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3.1.3 | The simulated aerodynamic pressure field

Different loading conditions in terms of varying aerodynamic pressure fields are applied to the FEM to verify in a simu-
lated environment the ability of the method to correctly reconstruct the full-strain field εfield, even in locations not con-
sidered for the input strain measures, εm. In particular, a total of 1,440 aerodynamic CFD simulations with varying
parameters performed through the PANUKL39 software are considered to simulate a realistic loading conditions the
UAV might undergo during operation maneuvers. Assuming small displacements of the structure during operation, the
CFD and FE simulations have been separated, thus computing the aerodynamic pressures on the infinitely rigid struc-
ture and then applying the resulting pressures on the deformable FE model.

The complete set of flight parameters simulating different flight manoeuvers is reported in Table 2. For brevity and
without any loss of generality, only the results with 55 m/s flight speed, 5� angle of attack, and 5� left and right aileron
deflections are shown in this work, corresponding to the aerodynamic pressure field reported in Figure 4.

3.1.4 | The equivalent load set

As the inverse reconstruction of the aerodynamic pressure distribution is not practical due to the high number of vari-
ables, the matrix-based load monitoring method requires the definition of an equivalent load set, F, optimized in a way
that the strain distribution along the structure has a limited error compared to the one associated to the real loading
condition. In this study, aiming the on-ground validation of the method with static lumped loads, F is defined as four
concentrated forces applied on some locations where saddles are mounted on the Hornet's wings, as shown in
Figure 5b. The saddles, modeled in the FEM as in Figure 5a, distribute the forces along the wing chord, originating a

FIGURE 3 The boundary conditions

TABLE 2 The CFD simulations

parameters
Parameter Min. Max Step N� of levels

Flight speed 20 m/s 60 m/s 5 m/s 9

Angle of attack −5� 10� 1� 16

Left aileron deflection −10� 20� 5� 7

Right aileron deflection −10� 20� 5� 7

FIGURE 4 Aerodynamic pressure field in

[MPa] for a flight speed of 55 m/s and an angle

of attack, left and right aileron deflection of 5�
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lumped pressure distribution. As demonstrated in Section 4, this simplification of the load condition produces a limited
error in the reconstructed strain distribution, at least far from the discontinuity regions where the load is applied.
Finally, as detailed in Section 4.2, the magnitude of the forces in F during validation was selected to represent flight
maneuvers associated with the aerodynamic pressures fields described in Section 3.1.3.

3.2 | The strain sensor network

The last step before implementing the matrix-based load monitoring system is the definition of a strain sensor network
for the input measures, εm. In particular, two different types of networks are numerically and experimentally defined,
namely, the input sensor network and the test sensors network. The former is used as input to the load monitoring
algorithm. The latter serves as verification for the strain field reconstruction based on the inverse-direct approach.

3.2.1 | The input sensors network

A set of ns = 20 sensors positioned symmetrically between left and right wings was defined in the FEM based on the
observability requirement and engineering judgment, as shown in Figure 6a. In particular, the sensors were positioned
to consider at least one sensor in each bay created by the saddles. This setup ensures that the different forces have a dif-
ferent effect on the sensors and, thus, that rank(α) = 2. Although a symmetrical loading was performed to avoid that
the UAV would accidentally overturn due to the structure's symmetry and without loss of generality, the experimental
validation of the method was performed by instrumenting one wing of the UAV and, thus, considering only its relative
sensor measures. An optical FB equipped with 10 fiber Bragg grating (FBG) sensors was installed on the external skin
surface of the UAV's left wing in the same positions considered in the FEM, as illustrated in Figure 6b. It is worth notic-
ing that, as defined in Equation 12, the calibration matrix's rank, rank(α), has to be equal to the number of unknowns
to be estimated, meaning that at least two sensors should be used to determine the two forces acting on each wing.
However, the input sensors cannot be positioned randomly because adhering to the requirement of the minimum num-
ber of sensors is not sufficient to guarantee that the observability requirement is satisfied. Indeed, one always has to ver-
ify before the sensor installation that the calibration matrix's rank is equal to the number of unknown loads to be
reconstructed.

FIGURE 5 Equivalent load set definition; (a) FEM

concentrated forces acting on the saddles; (b) experimental setup

with four forces applied symmetrically on the wings
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3.2.2 | The test sensors network

Two different test sensor networks are used for the numerical (a) and experimental (b) verification of the method.
The method's abilities (i) to reconstruct a strain field similar to that originated by the aerodynamic pressure field

exploiting the equivalent lumped load sets and (ii) to extrapolate strain information in positions not seen as input are
numerically verified by defining (a) eight virtual optical FBs in correspondence of critical structural elements of both
wings, that is, the spar and the skin, as illustrated in Figure 7. In particular,

• FB1, FB2, FB5, and FB6 are defined on the top and bottom of the two wings spars
• FB3, FB4, FB7, and FB8 are defined on the top and bottom of the two wings skins.

The FBs are used as testing positions, εt, for the reconstructed strain field, εfield, and are not included in the strain input
vector, εm. Thus, the vector of test strains, εt, simulates the strain values a physical sensor would measure if subjected
to the considered flight maneuver and has to be compared with the strain reconstructed by the algorithm, εfield.

FIGURE 6 The input sensor network for load monitoring. The

sensor ID is reported only for the left wing sensor network; (a) sensor

network for load monitoring and equivalent force reconstruction in

the FEM; (b) sensor network for load monitoring and equivalent

force reconstruction in the real UAV structure

FIGURE 7 Test sensors network; (a) overall view; (b) detail of the right wing
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Due to experimental limitations, a limited sensor network is used to experimentally verify the methodology, specifi-
cally considering (b) subsets of the available sensor network as εm and using the remaining sensors as testing positions,
εt. An example of the experimental input and test subsets is shown in Figure 8. The red squares refer to the sensors used
as input, and the green squares mark the sensors used for testing. Note that, in correspondence to the input strain loca-
tions, the input and reconstructed strains can differ due to algorithm smoothing. Thus, in the most general case, the
input strain locations can also be part of the test vector.

4 | RESULTS

The results are reported in this section for the UAV structure described in Section 3.1. In particular, the numerical
results with the structure subjected to simulated maneuvers are described in Section 4.1, while the experimental verifi-
cation of the method is reported in Section 4.2.

4.1 | The numerical test

The algorithm is numerically tested by applying the aerodynamic pressure field calculated for one example maneuver,
as in Figure 4, over the structural elastic model. The continuous red lines in Figure 9 represent the target strain in the
test positions (Figure 7) of the structure subject to aerodynamic load, to be compared with the strain reconstructed by
the algorithm in the same test positions. The latter are based on the input sensor grid shown in Figure 6a and the esti-
mated equivalent lumped load set reported in Table 3. Note that the reconstructed equivalent load set values in Table 3
are used in the following experimental validation for loading the UAV during on-ground tests.

The results in Figure 9 show that a good strain reconstruction in positions different than those considered for the
equivalent load set reconstruction can be obtained by exploiting a limited number of input measures. Excellent

FIGURE 8 Example of the experimental input and test sensors

networks: Red squares mark the sensors used both as input and test;

green squares mark the sensors used only as test

FIGURE 9 Comparison between

reconstructed strains, εfield and the strain in the

testing positions, εt. The testing positions refer to

Figure 7
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reconstruction of the strain field is found in correspondence of the two spars (FB1, FB2, FB5, and FB6) because they
are more rigid than the two skins and, thus, less affected by local effects due to the concentrated loading choice. Indeed,
the concentrated loading through the four saddles and the rigid connection between the saddles and the wings cause
discontinuities in the reconstructed strain in correspondence of the saddle locations. However, this is limited to the
neighboring zone, and thus, the general trend of deformation is correctly captured.

Furthermore, the root mean square error (RMSE) between the reconstructed (εfield) and the test strain (εt) has been
calculated, obtaining a value of 44.25 με. Even though the concentrated forces introduce an intensification of the error
close to the saddle areas negatively affecting the RMSE, the value of the RMSE remains quite low compared to the max-
imum level of the strain. Indeed, an error of about 44 με over a maximum strain level of about 700 με means an error of
about 6%, which is acceptable, considering the simplified choice of the equivalent load set compared to the aerody-
namic condition. It is worth remarking that most of the error in the strain reconstruction is due to the concentration of
the aerodynamic load in only two locations per wing. The concentrated load produces an intensification of the strain
due to higher resultant forces than the locally distributed load. Additional localized error is introduced with the rigid
connection modeling between the saddles and the wing, which induces an additional deformation of the structure,
especially in the wing's low stiffness area. However, the error can be decreased if a distributed lumped load is consid-
ered in more positions of the wing, reducing the local intensification effect of simplifying a distributed pressure with
concentrated loads.

Finally, a graphical comparison of the full-strain field reconstruction in terms of equivalent strain (Von Mises
strain) in the whole UAV structure with respect to the full-strain field generated by the aerodynamic pressure field is
shown in Figure 10. A good agreement is observed despite a discretization of the loading condition with only four
forces, especially in the wing root region where the strain level is highest. Notice that, despite only a qualitative com-
parison can be performed considering Figure 10, one can observe that the maximum strain level is obtained in the cor-
rect position, and the overall strain distribution is correctly captured, producing encouraging results for further
investigations.

4.2 | The experimental verification

The experimental verification of the load monitoring method for the UAV described in Section 3.1 is presented in this
section. The UAV is loaded with concentrated forces applied to four saddles exploiting the numerical results presented
in Table 3, as anticipated in Section 3.1, to obtain a similar effect of a flight maneuver in terms of strain and displace-
ment fields. Furthermore, since the experimental sensor network has been installed only on the external skin of the left

TABLE 3 Equivalent load set

reconstruction
Load 1 Load 2 Load 3 Load 4

Magnitude (N) 49.67 97.58 50.88 98.27

FIGURE 10 Full strain field comparison considering a Von Mises strain; (a) test strain field caused by a CFD pressure distribution;

(b) reconstructed strain field using equivalent forces
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wing due to the symmetry of the structure and independence between the loading in the two wings, only the equivalent
Loads 1 and 2 are estimated, although the structure is loaded symmetrically to avoid undesired overturning during the
loading (Figure 11).

The load monitoring method's performance was tested analyzing the reconstruction capabilities of different subsets
of the experimental sensor network shown in Figure 6b and reconstructing the strains and loads in all the sensor posi-
tions available. A reduced calibration matrix, that is, computed from just a few of the available sensors, was defined for
each subset of the input sensor network, always verifying that the observability condition is respected, that is,
rank(α) = 2.

Figure 12 shows the reconstruction results for an input sensors network of six sensors (specifically, sensor ID 1, 2,
3, 6, 7, and 9 in Figure 8) separately for loads and strains. The load reconstruction ability of the method is confirmed by
the results of Figure 12a, which particularly demonstrates that the experimental lumped loads can be reconstructed
exploiting a sensors network composed of only six sensors also in the presence of experimental uncertainties. Load 1 is
slightly underestimated but compensated by a barely visible overestimation of Load 2. This is due to a low effect of the
bending moment on the sensors close to Load 1. However, despite these little discrepancies in the load reconstruction,
the strain field reconstruction is in excellent agreement with the experimental measures, demonstrating the method
robustness also for the full-strain field estimation.

The reconstructed load sets and strains as a function of different input sensor networks are reported in Tables 4 and
5, respectively. The results presented in Table 4 demonstrate that the load estimation accuracy increases with the
increase of the number of input sensors. However, the accuracy is already quite good with the minimum amount of
sensors. Furthermore, the reconstructions dispersion between different sensor networks decreases, meaning the input
sensor network's optimization becomes a critical step for sensor grids with a limited number of sensors. Indeed, the
requirement of observability only guarantees that the load can be mathematically estimated; however, the accuracy of
the reconstruction depends on the quality and the level of the strain measurements, which can vary point by point on
the structure. Table 4 suggests that the observability requirement becomes particularly relevant when the number of
input sensors is limited. Indeed, as the results with only two sensors show, only 27 out of 45 possible combinations sat-
isfy the observability condition (i.e., rank [α] = 2). This means that 40% of the available sensors' combinations do not
allow a reconstruction of the load set. However, the observability requirement can be verified before the actual sensor

FIGURE 11 Symmetrical experimental loading

FIGURE 12 Comparison between the experimental value and the average reconstruction with the input sensors network of Figure 8

composed of six sensors; (a) comparison between the experimental and the reconstructed loads; (b) comparison between the measured and

the reconstructed strains in the testing positions
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installation to avoid subsequent spoiling of the reconstruction results. Similar results can be noticed in Table 5 for the
strain. The dispersion of the strain reconstruction with different sensor grids decreases increasing the number of sen-
sors. In contrast, the reconstruction's accuracy slightly increases, even though a good estimation is achieved for all the
cases considered.

Finally, the RMSE is considered to evaluate the reconstruction procedure's performances quantitatively. Figure 13
shows the RMSE results for all the feasible combinations of input sensor networks for the strains and the loads. In par-
ticular, the error decreases as far as the number of input sensors increases both in terms of load and strain reconstruc-
tions, as shown in Figure 13a. Indeed, the sensor networks characterized by only two sensors are featured by the most
significant error. The inverse problem is simply determined. Thus, the results are highly affected by the noise in the
input strains, which determines the quality of the load estimation and strain reconstruction. Furthermore, by looking
at Figure 13b, one can notice that Load 2 is reconstructed less accurately than Load 1, especially with a low number of
input sensors. This is because both loads produce mainly a bending on the wing. Thus, since Load 1 features a bigger
arm than Load 2, the former produces higher strain levels, and, during optimization, an error in Load 1 reconstruction
has a higher weight that in Load 2. However, the reconstruction's error is quite satisfactory even with a low number of
sensors, for example, about 8 N over a level of about 100 N with only three sensors, meaning less than 10% of error in
the loads and even lower for the strains (i.e., about 1%).

TABLE 4 Number of feasible sensor network subsets and average values of Loads 1 and 2 reconstructed considering different subsets of

input sensor networks

No. of unique sensor
combinations

No. of sensor combinations with
max rank Load 1 (N) Load 2 (N)

Experimental values - - 49 98

Reconstructed (2
sensors)

45 27 45.4 ± 3.4 103.5 ± 12.4

Reconstructed (4
sensors)

210 195 46.8 ± 0.9 98.7 ± 4.7

Reconstructed (6
sensors)

210 209 46.8 ± 0.6 99.1 ± 2.9

Reconstructed (8
sensors)

45 45 46.8 ± 0.4 99.6 ± 1.6

Reconstructed (10
sensors)

1 1 46.8 ± 0.4 99.7 ± 1.1

TABLE 5 Average values of the reconstructed strain in the testing position as a function of different input sensor networks

No. of sensors

Sensor ID Experimental strain (με) 2 (με) 4 (με) 6 (με) 8 (με) 10 (με)

1 503.25 501.1 ± 10.9 499.2 ± 6.5 500.1 ± 4 500.9 ± 1.8 501.1 ± 0.9

2 350.84 350 ± 10.7 354.3 ± 3 354.7 ± 2.1 354.8 ± 1.5 354.9 ± 1.3

3 139.55 134.3 ± 10.2 138.6 ± 2.8 138.7 ± 1.8 138.6 ± 1.3 138.5 ± 0.1

4 86.43 84.2 ± 6.4 86.9 ± 1.7 86.9 ± 1.1 86.9 ± 0.8 86.9 ± 0.7

5 −6.93 −8.5 ± 0.6 −8.8 ± 0.1 −8.8 ± 0.1 −8.8 ± 0.1 −8.8 ± 0.1

6 516.75 516.2 ± 9.9 515.2 ± 6.1 516.1 ± 3.8 516.8 ± 1.8 517.1 ± 0.9

7 354.60 351.1 ± 8.8 354.5 ± 2.8 354.88 ± 2 355.1 ± 1.4 355.2 ± 1.1

8 169.24 160.7 ± 12.2 165.8 ± 3.3 165.8 ± 2.1 165.7 ± 1.6 165.7 ± 1.3

9 88.90 85.5 ± 6.2 88.1 ± 1.7 88.1 ± 1.1 88.1 ± 0.8 88.1 ± 0.7

10 11.63 12.2 ± 0.8 12.5 ± 0.2 12.5 ± 0.1 12.5 ± 0.1 12.5 ± 0.1
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5 | CONCLUSIONS

In this work, a calibration matrix-based load monitoring is presented and successfully applied to an UAV. A limited
number of sensors is exploited to initially reconstruct an equivalent load set consisting of concentrated forces applied to
discrete saddles on the wings and to then reconstruct the full strain field in the UAV resulting from unknown flight
maneuvers without requiring any training data set, thereby reducing the required effort for the real-life implementation
of the method.

A least-squares minimization of an error functional defined as a comparison between discrete input strain mea-
sures, intrinsically function of the unknown load boundary condition, and a numerical formulation of the same, is used
to reconstruct an equivalent load set. In particular, by exploiting the linearity, the functional minimization can be per-
formed analytically, leading to a computationally very efficient procedure that can be operated online, since the calibra-
tion matrix inversion is done only once offline.

The numerical results prove the calibration matrix-based load monitoring algorithm can efficiently reconstruct the
full-strain field in an aeronautical structure subjected to unknown flight maneuvers, without requiring any training
data set. In particular, a proper strain field reconstruction is obtained exploiting discrete unidirectional input strain
measures in the presence of complex unknown load boundary conditions despite a rather simple definition of the
equivalent load set. Furthermore, the experimental results allow verifying the method's ability to cope with uncer-
tainties, due to both noisy measurements and model simplification compared to the real platform. Thus, the results sug-
gest the potential exploitation of the method for a realistic representation of complex aerodynamic fields by simplified
lumped loads applicable in the laboratory.

Further testing will be devoted to verifying the method in the presence of dynamic disturbances, for example,
engine vibrations. However, the physical pertinence of the reconstructed equivalent load set with reality is expected to
decrease if very high-frequency disturbances produce a non-negligible effect on the input strain measurements, even
though they do not interfere with the strain extrapolation by the algorithm. Furthermore, the exploitation of more com-
plex equivalent load sets to better identify complex loading conditions in the view of the full strain and displacement
fields reconstruction, and the validation of the method with real flight tests is a future research topic.
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