
Detecting Resilient Structures in Stochastic Networks: A
Two-Stage Stochastic Optimization Approach

Maciej Rysz
National Research Council, Air Force Research Laboratory, 101 West Eglin Blvd, Eglin AFB, Florida 32542

Pavlo A. Krokhmal
Department of Systems & Industrial Engineering, University of Arizona, 1127 E James E. Rogers Way, Tucson,
Arizona 85721

Eduardo L. Pasiliao
Air Force Research Laboratory, 101 West Eglin Blvd, Eglin AFB, Florida 32542

We propose a two-stage stochastic programming frame-
work for designing or identifying “resilient,” or “repara-
ble” structures in graphs whose topology may undergo
a stochastic transformation. The reparability of a sub-
graph satisfying a given property is defined in terms
of a budget constraint, which allows for a prescribed
number of vertices to be added to or removed from the
subgraph so as to restore its structural properties after
the observation of random changes to the graph’s set of
edges. A two-stage stochastic programming model is for-
mulated and is shown to be NP -complete for a broad
range of graph-theoretical properties that the resilient
subgraph is required to satisfy. A general combinatorial
branch-and-bound algorithm is developed, and its com-
putational performance is illustrated on the example of a
two-stage stochastic maximum clique problem. © 2016
Wiley Periodicals, Inc. NETWORKS, Vol. 000(00), 000–000 2016

Keywords: maximum subgraph problem; stochastic graphs;
resilience of subgraphs; two-stage stochastic optimization; combi-
natorial branch-and-bound algorithm; stochastic maximum clique
problem

Received November 2016; revised November 2016; accepted December
2016
Correspondence to: P. A. Krokhmal krokhmal@email.arizona.edu; e-mail:
krokhmal@email.arizona.edu
Contract grant sponsor: AFOSR grant; Contract grant number: FA9550-12-
1-0142
Contract grant sponsor: DTRA grant; Contract grant number: HDTRA1-14-
1-0065
Contract grant sponsor: U.S. Department of Air Force grant; Contract grant
number: FA8651-14-2-0003
DOI 10.1002/net.21727
Published online in Wiley Online Library (wileyonlinelibrary.com).
© 2016 Wiley Periodicals, Inc.

1. INTRODUCTION AND MOTIVATION

An important feature to incorporate in a networked sys-
tem’s design is an inherent resilience to withstand random
structural changes that affect the relationship characteristics
between its components. A reliable system should, therefore,
possess a high tolerance against a broad range of possible
(failure) scenarios, and, moreover, be constructed in such
a way that its properties can be restored within available
resource limits.

In the present study, we pursue an approach that regards
a distributed subsystem, or subgraph, to be resilient if it can
be “repaired” at a minimum (or fixed) cost after a random
change in the underlying graph’s topology. More specifically,
many graph-theoretical and network optimization problems
consist in finding a subgraph with prescribed properties that
has the largest (respectively, smallest) size, weight, and so
on. Well-known examples include the shortest path prob-
lem, maximum clique/independent set problem, minimum
vertex cover problem, and so on. In situations when the
topology of the underlying graph or network may be sub-
ject to changes (e.g., deletions of vertices and/or edges), the
“resilience” of the selected subgraph is often of interest. A
large body of literature has been accumulated on this subject,
where various interpretations of “reliability,” “resilience,” or
“robustness” of subgraphs have been explored (see among
others [13, 15, 26, 29, 32]). Typically, robustness in this con-
text is associated with the ability of the selected subgraph
to satisfy (exactly or to a certain degree) a given property,
or perform a given function, and so forth, after deletion of
edges and/or vertices. Several examples include network flow
control, preservation of vertex and edge connectivity, maxi-
mization of overall algebraic connectivity, and prevention of
catastrophic cascade failures [6–8, 15].

NETWORKS—2016—DOI 10.1002/net

In this work, we adopt the point of view that a structure in a
network or graph is “resilient” if it is “reparable” with respect
to randomized changes in the graph’s topology. Namely, we
consider a general framework which assumes that a given
(original) graph may undergo randomized changes in the
form of edge failures or formations. It is then of interest
to identify a subset of vertices in the original graph whose
(user-defined) structural property can be repaired after the
edge modifications take place. In each random outcome,
the repairs are made by removing and/or adding vertices
to the selected subset, resulting in a “repaired” subset. We
additionally impose the following requirements:

i. the number of repairs made to the subset selected from
the original graph is within a prescribed limit

ii. the size of the selected subset and the expected size of
the repaired subsets should be as large as possible

In other words, the problem is to identify the largest pos-
sible set of vertices whose structural property can be repaired
within a fixed budget, such that the expected size of the
resulting subgraphs is also as large as possible.

The described concept has obvious interpretations in, for
example, the defense domain, where one may be interested
in identifying the largest networked or distributed system
that can maintain its structure—with, perhaps, necessary
repairs—under adversarial attacks. Alternatively, consider
the problem of harvesting information from social or com-
munications networks by means of planting sensory devices
or recruiting informers, where a link between two sources of
information indicates that the provided information may be
highly correlated or duplicated. In this context, one may be
interested in the largest possible independent set of sources,
so as to obtain maximally independent and diversified infor-
mation. We also want this independent set to be reparable, if
it turns out that some relations, or network properties were
unknown to us or have changed over time. In the financial set-
ting, one may be interested in identifying the largest subset
of banks that are not connected via borrowing/lending con-
tracts, and thus are less susceptible to the “domino effect” in
the event of a market crash. It is likewise desirable to have
this set reparable in the event new credit links are established
between banks, and so on.

Mathematically, the outlined framework lends itself nat-
urally to the context of two-stage stochastic optimization
[5, 23], which models the decision making process in the
presence of uncertainties that involves two sequential deci-
sions. The first-stage decision is made before the actual
realization of uncertain factors can be observed. The second-
stage, or recourse, decision is made on observing the real-
ization of uncertainties, and takes into account both the
preceding first-stage decision and the observed realization
of stochastic parameters.

Stochastic recourse problems have gained much attention
in the network literature due to their versatility for modeling
uncertainties. Particular emphasis has been placed on net-
work problems with random elements evidenced in forms

that influence the overall flow distribution, demands, and
costs. A number of applications examine stochastic factors
in the context of vehicle routing and network flow prob-
lems where uncertainties are attributed to arc capacities or
node demands (see e.g., [3, 9, 16, 18, 31]). Several similar
considerations utilized a two-stage recourse framework to
enhance the design of stochastic supply chain networks and
network resource allocation [11, 28]. Other studies examined
the preservation of connections between vertices when the
edge costs are uncertain [7, 19], as well as decision making
in routing problems with stochastic edge failures [30].

Although uncertainty in the aforementioned studies
mostly influenced decisions related to directed flows and
routing, less focus has been put on developing two-stage
recourse constructs for designing/identifying graphs that are
adept at maintaining their connection properties in situa-
tions when random factors affect/alter/damage their original
physical characteristics. A notable non-recourse problem of
finding the largest subset of vertices that form a clique with
a specified probability, given that edges in the graph can
fail with some probabilities, was studied in [20]. A similar
approach in application to certain clique relaxations was pur-
sued in [35]. In this work, we introduce a two-stage stochastic
recourse framework for identifying “sustainable” subgraphs
whose structural properties are influenced by definite edge
failures and/or construction in each random scenario realiza-
tion. The proposed model is general and can be adapted to
address a broad range of structural graph properties, along
with uncertainties in the form of vertex failures.

The remainder of the article is organized as follows.
In section 2, we discuss the deterministic graph-theoretic
underpinnings and establish a mathematical programming
representation of the two-stage stochastic recourse maximum
subgraph problem. Section 3 presents an efficient graph-
based (combinatorial) branch-and-bound solution algorithm
for instances when the desired subgraphs possess hered-
itary structural properties. Finally, section 4 considers a
numerical case study demonstrating the effectiveness of the
proposed algorithm for solving two-stage stochastic recourse
maximum clique (i.e., complete graph) problems.

2. PROBLEM DEFINITION

In this section, we present a formal graph-theoretical
description of the discussed framework. Before introduc-
ing the stochastic model that represents the focus of the
present work, we outline the relevant deterministic con-
cepts, which pertain to problems involving the identification
of the largest subgraph/subset of a system’s vertices that
collectively possess a specified structural property.

2.1. Deterministic Maximum Subgraph Problem

Let G = (V , E) represent an undirected graph where each
vertex i ∈ V is a component of the networked system, and an
edge (i, j) ∈ E defines a connection/relation between vertices
i and j. Then, the problem of finding the largest (sub)graph

2 NETWORKS—2016—DOI 10.1002/net

S ⊆ V of vertices with a prescribed structural property �,
also known as the maximum subgraph problem, or maximum
� problem, is given by

max
S⊆V

{|S| : G[S] � �} , (1)

where G[S] denotes the subgraph of G induced by S, that
is, a graph such that any of its vertices i, j are connected by
an edge if and only if (i, j) is an edge in graph G. Here and
throughout the text, the relation G[S] � � stands for “G[S]
satisfies property �” (we also say that S is a �-subgraph of
G); similarly, G[S] �/ � represents the negated statement.

In the context of the maximum subgraph problem (1),
an important class of graph-theoretical properties � is rep-
resented by properties that are hereditary with respect to
induced subgraphs (or just hereditary for short):

Definition 1 ([1, 4, 34]). Property � is called hereditary
with respect to induced subgraphs if for any graph that sat-
isfies �, the removal of any vertex from this graph results in
an induced subgraph that also satisfies �.

The class of hereditary properties encompasses many
well-known and important graph-theoretical properties, such
as completeness, independence, planarity, and so on.

The practical and theoretical significance of hereditary
properties in relation to the maximum subgraph problem
stems from the fact that a large number of important and
difficult graph-theoretical problems are special cases of (1)
when � is hereditary and “meaningful” in the context of the
following definition.

Definition 2 ([34]). Property � is called nontrivial if it
is satisfied by a single-vertex graph yet not satisfied by
every graph, and is called interesting if the order of graphs
satisfying � is unbounded.

Then, the following fundamental observation regarding
problem (1) holds:

Theorem 1 (Yannakakis [34]). If property � is hereditary
with respect to induced subgraphs, nontrivial, and inter-
esting, then the maximum subgraph problem (1) is NP-
complete.

In view of the above result, in this study we assume that
the property � is hereditary, nontrivial, and interesting.

In many practical applications, the topology of graph
G in the maximum subgraph problem (1) may not always
be assumed constant, and is subject to unpredictable, or
stochastic changes (e.g., edge and/or vertex failures). In the
next section, we present a mathematical framework for find-
ing maximum subgraphs in the presence of such stochastic
changes.

2.2. A Two-Stage Stochastic Maximum Subgraph Problem

If graph G is assumed to be stochastic, the maximum
subgraph problem does not provide a guarantee or condi-
tions under which the selected subgraph G[S] satisfies the
sought property �. Therefore, in the presence of uncertain-
ties, formulation (1) has to be modified to explicitly specify
the conditions under which its solution can be considered a
�-subgraph of (stochastic) graph G. One common approach
in the literature is to require that the solution of an opti-
mization problem with stochastic data satisfies the required
properties with a prescribed probability. An application of
this approach to a maximum clique problem on stochastic
graphs was considered in [20].

In the present endeavor, we require that the solution of the
maximum subgraph problem on a stochastic graph is “repara-
ble” in some sense. Particularly, we introduce an approach
for identifying resilient maximum �-subgraphs in situations
when the topology of the underlying graph G may be sub-
ject to uncertain (random) future changes that is based on
two-stage stochastic programming and which was tentatively
outlined in section 1.

Given a probability space (�, F , P), where � is the set of
random events, F is the sigma-algebra, and P is the prob-
ability measure, we assume that the topology of a graph
G = (V , E) may undergo a random transformation at some
moment in the future, resulting in an updated graph G(ω) =
(V , E(ω)), ω ∈ �. In this work, it is assumed for simplicity
that only the set of edges E = E(ω) may be dependent on
the random event ω, while the set of vertices V is constant.
As it will be seen next, the proposed formulation and solu-
tion method can be generalized to account for possibility of
a stochastic set V.

We also employ an assumption prevalent in stochas-
tic programming literature, that the set � is finite, � =
{ω1, . . . , ωN }, with P(ωk) = pk > 0 for k = 1, . . . , N , and∑

k pk = 1. Consequently, the possible changes to the topol-
ogy of graph G are observed in the form of N discrete sce-
narios {G(ω1), . . . , G(ωN)}, where G(ωk) = (V , E(ωk)). For
notational convenience, we will denote Gk = G(ωk), Ek =
E(ωk). Also, to emphasize that the original graph G rep-
resents the unchanged, or “initial” state of the distributed
system, we denote G0 = G = (V , E0), where E0 = E
represents the initial set of edges in the graph.

Characterization of “resilient” substructures in graphs
subjected to randomized topology changes via the formal-
ism of two-stage stochastic programming is the key feature
of the proposed approach. In general, a two-stage stochastic
programming model may be presented in the form

min{f1(x) + Ef2(x, y(ω), ω) :

h1(x) ≤ 0, h2(x, y(ω), ω) ≤ 0, ω ∈ �}. (2)

Here, x represents the first-stage decision/action that is made
before the actual realization of the uncertain event ω can
be observed. Associated with the first-stage decision are the
first-stage cost f1(x) and the first-stage constraints h1(x) ≤ 0.

NETWORKS—2016—DOI 10.1002/net 3

Since the first-stage decision x may not be optimal for every
possible realization of ω, a second-stage, or recourse, deci-
sion y = y(ω) is made after the actual realization of ω has
been observed, such that the second-stage cost f2(x, y(ω), ω)

is minimized. The recourse decision y(ω) must also satisfy
the second-stage constraints h2(x, y(ω), ω) ≤ 0 for any given
first-stage x. Importantly, the second-stage decision depends
explicitly on the specific realization ofω as well as on the first-
stage decision x. In turn, the first-stage decision must take
into account all possible realizations of ω and the subsequent
recourse decisions y(ω). This interdependency is emphasized
by the following “nested,” or recourse, representation of the
extensive form (2):

min {f1(x) + EQ(x, ω) : h1(x) ≤ 0} , (3a)

where Q(x, ω) = min {f2(x, y(ω), ω) : h2(x, y(ω), ω) ≤ 0} .
(3b)

According to the above, the following two-stage framework
is adopted for identification of “resilient” �-subgraphs in G0:

First stage: Given a graph G0 = (V , E0), find a set of
vertices S0 ⊆ V such that the induced subgraph G0[S0]
satisfies �.

Observation of uncertainty: Graph G0 undergoes a ran-
domized change of topology. It is assumed that the
resulting graph Gk = (V , Ek) is chosen at random with
probability pk from a collection of graphs {G1, . . . , GN }.

Second stage: For any given realization Gk , select sets
�+

k ⊆ V \ S0 and �−
k ⊆ S0, such that after “augmen-

tation” or “repair” of the original set S0, the resulting set
Sk ,

Sk := (S0 \ �−
k) ∪ �+

k ,

induces a subgraph Gk[Sk] on Gk that satisfies �.

Objective and reparability: Sets S0 and�±
k (equivalently,

Sk) must be chosen in such a way that the expected size of
a �-subgraph in the first and second stages is maximized,
and the sets �±

k contain no more than M vertices,

|�+
k | + |�−

k | ≤ M. (4)

Then, the two-stage stochastic maximum subgraph
(TSMS) problem can be stated in the graph-theoretical form
as follows:

max |S0| +
∑
k∈N

pk|Sk| (5a)

s.t. Gk[Sk] � �, ∀k ∈ {0} ∪ N (5b)

|S0 \ Sk| + |Sk \ S0| ≤ M, ∀k ∈ N (5c)

Sk ⊆ V , ∀k ∈ {0} ∪ N , (5d)

where N = {1, . . . , N}. Obviously, the defined above delta-
sets �±

k are related to the second-stage sets Sk as

�+
k = Sk \ S0, �−

k = S0 \ Sk , k ∈ N .

The extended formulation (5) of the two-stage stochastic
maximum subgraph problem can be presented in the recourse
form similar to (3):

max
S0⊆V

{
|S0| +

∑
k∈N

pkQk(S0) : G0[S0] � �

}
, (6a)

where the second-stage function Qk has the form

Qk(S) = max
Sk ⊆V

{|Sk| : Gk[Sk] � �, |S \ Sk| + |Sk \ S| ≤ M} .

(6b)

2.2.1. A Mathematical Programming Formulation of
the TSMS Problem A mathematical programming formu-
lation of the TSMS problem can be obtained in a straight-
forward way by introducing a binary vector x ∈ {0, 1}|V |
such that xi = 1 if i ∈ S0 and xi = 0 otherwise, and, similarly,
vectors yk ∈ {0, 1}|V |, k ∈ N , to indicate whether vertex
i ∈ V belongs to the subset Sk in the second stage. Further,
let �G(x) ≤ 0 be the “structural” constraints associated with
the property �; namely, �G(x) ≤ 0 if and only if G[S0],
where S0 = {i ∈ V : xi = 1}, satisfies �. Similarly, second-
stage sets Sk = {i ∈ V : yik = 1} , k ∈ N , represent induced
�-subgraphs in Gk if and only if �Gk (yk) ≤ 0, k ∈ N .
Obviously, the functional form �G(·) ≤ 0 of the structural
constraints may not be unique for any given property �.

The corresponding 0-1 integer programming formulation
of TSMS problem (5) then takes the form

max 1�x +
∑
k∈N

pk1�yk (7a)

s.t. �G0(x) ≤ 0 (7b)

�Gk (yk) ≤ 0, ∀k ∈ N (7c)

‖x − yk‖1 ≤ M, ∀k ∈ N (7d)

x, yk ∈ {0, 1}|V |, ∀k ∈ N , (7e)

where 1 denotes the vector of ones of an appropriate
dimension. Constraints (7d) impose the previously described
budgetary restrictions.

2.2.2. Computational Complexity. Complexity of the
two-stage stochastic maximum subgraph problem (5)–(6) is
established in the next two propositions. Let V (G) represent
the set of vertices in the graph G, and consider the follow-
ing decision version of the two-stage stochastic maximum
subgraph problem (5)–(6):

Decision problem 〈(G0, . . . , GN), (p1, . . . , pN), M, q〉:
Given a set of N + 1 graphs G0, . . . , GN such that V(G0) =
· · · = V(GN), a set of positive rational numbers p1, . . . , pN

such that p1 +· · ·+pN = 1, an integer M ≥ 0, and a rational
q ≥ 0, determine whether graphs Gi contain �-subgraphs Si

such that |S0 \ Si| + |Si \ S0| ≤ M for all i = 1, . . . , N , and
|S0| + ∑N

i=1 pk|Sk| ≥ q
Similarly, the decision version of the maximum subgraph

problem is as follows:

4 NETWORKS—2016—DOI 10.1002/net

Decision problem 〈G, m〉: Given a graph G and a nonneg-
ative integer m, determine whether G contains a �-subgraph
S such that |S| ≥ m

Proposition 1. The decision version of the two-stage
stochastic maximum subgraph problem (5) is NP -complete,
provided that the corresponding maximum subgraph problem
is NP -complete.

Proof. Noting that the two-stage stochastic maximum
subgraph problem is obviously in NP , we prove its NP-
completeness by reduction from the maximum subgraph
problem. Given an instance 〈G, m〉 of the maximum subgraph
problem, let N = 1, p∗

1 = 1, G∗
0 = G∗

1 = G, q∗ = 2m, and
select an arbitrary integer M∗ ≥ 0. Then, sets S∗

0 = S∗
1 ⊆

V(G∗
i) satisfy the conditions |S∗

0 \ S∗
1 | + |S∗

1 \ S∗
0 | ≤ M∗ and

|S∗
0 | + ∑N

i=1 p∗
i |S∗

i | ≥ m + m = q∗ if and only if there exists
S ⊆ V(G) of order |S| ≥ m. ■

Next, we observe that for any given first-stage solution,
“repairing” it in the second stage via solving the second-
stage problem (6b) is NP-complete as well. To this end, the
corresponding decision version 〈Gk , S, M, q〉 of the second-
stage maximum subgraph problem is formulated as follows:
given a second-stage graph Gk , a first-stage solution S ⊆
V(G0) = V(Gk), and integer numbers M ≥ 0 and q ≥ 0,
determine if a �-subgraph Sk ⊆ V(Gk) of order at least q
exists such that |S \ Sk| + |Sk \ S| ≤ M. Then, the next
observation holds.

Proposition 2. The decision version of the second-stage
maximum subgraph problem problem (6b) at any scenario
k ∈ N is NP -complete if property � is such that the
maximum subgraph problem is NP -complete.

Proof. Note that the second-stage maximum subgraph
problem is in NP . Next, observe that the order of a �-
subgraph of Gk that satisfies |S \ Sk| + |Sk \ S| ≤ M cannot
exceed min {|S| + M, |V |}. Then, given an instance 〈G, m〉
of the maximum subgraph problem, construct an instance
〈G∗

k , S∗, M∗, q∗〉 of second-stage maximum subgraph prob-
lem with G∗

k = G, S∗ = {i} for a fixed i ∈ V(G), M∗ = m−1,
and q∗ = m. The order of the largest �-subgraph S∗

k of the
instance 〈G∗

k , S∗, M∗, q∗〉 never exceeds m due to the above
observation, and is equal to m if and only if there exists a
�-subgraph of G of order m that contains vertex i. Thus,
existence of a �-subgraph of order m in G can be determined
by solving no more than |V(G)| instances 〈G, {i} , m − 1, m〉
of the second-stage problem as described above. ■

Note that while the introduced model assumes a common
property � for the subgraphs selected during both decision
stages, possible extensions may include distinct properties at
each stage. Further, the model may be enhanced by impos-
ing non-uniform cost structures associated with selecting,
adding and removing the vertices, or by introducing different
budgetary restrictions in different scenarios.

3. A COMBINATORIAL BRANCH-AND-BOUND
SOLUTION TECHNIQUE FOR THE TWO-STAGE
STOCHASTIC MAXIMUM SUBGRAPH PROBLEM

In this section, we introduce an exact graph-based, or
combinatorial, branch-and-bound (BnB) algorithm for solv-
ing the two-stage stochastic maximum subgraph problem
(5)–(6). The proposed BnB technique relies on the nested
representation (6), and, in view of the complexity analysis
presented above, comprises both a first- and a second-stage
BnB algorithm for problems (6a) and (6b), respectively. Tra-
ditional implementations of combinatorial BnB methods for
maximum � problems, such as the maximum clique prob-
lem, and so on [10, 17, 21, 27], maintain a partial solution
set S, which contains vertices that induce a �-subgraph, or
a feasible solution to the original problem, and a candidate
set C from which vertices are removed and added to S during
branching. The bounding step involves analysis of the current
feasible solution S and the candidate set C so as to obtain an
upper bound on the size of the largest �-subgraph that can
be constructed by adding vertices from C to S.

In the context of the proposed BnB method for the
two-stage stochastic maximum subgraph problem presented
below, it is assumed that S0 and Sk , k ∈ N , represent
first- and second-stage �-subgraphs from which vertices are
added and removed as the algorithms navigate their respec-
tive search space. Note that sets S0, ..., SN do not necessarily
constitute a feasible solution to the TSMS problem (5)–(6),
that is, they may not satisfy the budget constraints (5c) at
intermediate stages of the algorithm. A collection of �-
subgraphs S0, . . . , SN becomes an incumbent solution if these
subgraphs satisfy the budget constraints (5c) and the cor-
responding objective value exceeds the objective values of
prior feasible solutions, thereby setting the new value of the
global lower bound. The algorithms terminate after exhaust-
ing their respective search spaces, or BnB trees (note that
large portions of these may be pruned, especially at later
stages).

The first- and second-stage algorithms both work by nav-
igating between levels of their BnB trees, where the level, or
depth, of any tree node is indexed using a nonnegative inte-
ger � that is defined by the cardinality of the current partial
solution. We let the level of the root node be � = 0. An algo-
rithm branches into a deeper level of the BnB tree whenever
a branching vertex is added to the associated partial solution.
Branching vertices are selected from a candidate set that con-
tains vertices that can be added to the partial solution without
violating the property �. Similarly, an algorithm backtracks
to a lower level whenever a previously added branching vertex
is removed from the current partial solution.

The first-stage BnB algorithm begins by identifying a
first-stage �-subgraph S0 in G0 that satisfies property �.
It is then determined whether S0 is reparable within the bud-
get limit M in each of the second-stage scenarios k ∈ N .
If the latter condition holds, then a first-stage bounding
condition determines if the objective value in (6a) can poten-
tially be improved by solving the corresponding second-stage

NETWORKS—2016—DOI 10.1002/net 5

problems. Whenever such potential improvement is possi-
ble, the second-stage BnB algorithm solves the second-stage
problems Qk(S0), k ∈ N (6b) by finding the largest possi-
ble �-subgraphs Sk in Gk that can be obtained by removing
or adding vertices to S0 within the repair budget M. In this
case, bounding conditions on the sizes of the second-stage
subgraphs rely on the number of vertices that can be added
and removed from S0 without exceeding M. This search pro-
cedure repeats until the subgraphs S0 and Sk , k ∈ N , that
maximize the objective of (5)–(6) are found.

A cornerstone element of the described above BnB pro-
cedure is an ability to construct an upper bound on the order
of the largest �-subgraph contained in a given graph:

Definition 3. Given a subset S ⊆ V, let υ�(G[S]) repre-
sent an upper bound on the order of the largest possible
�-subgraph contained in the induced graph G[S]:

υ�(G[S]) ≥ |argmaxS′⊆S

{|S′| : G[S′] � �
} |.

The subscript � in υ�(G[S]) indicates that the properties
and computation of this bound depend explicitly on �.

Obviously, the best (i.e., tight) bound υ�(·) can be
obtained by solving the maximum subgraph problem. There-
fore, in practice it is necessary to select a bounding method,
that is, the method for computing υ�(·), that achieves a
necessary balance between the computational cost and the
quality (tightness) of the obtained bound. Computational
cost considerations necessarily require that υ�(·) should be
polynomially computable.

Finally, we would like to emphasize that the BnB methods
for the TSMS problem that are presented next are rather gen-
eral, and their computational efficiency will depend heavily
on the particular hereditary property � and the correspond-
ing branching and bounding criteria used for processing of
the search space. An illustration of the proposed procedure
is furnished in section 4 for the case when � represents the
completeness property of a subgraph.

3.1. First-Stage Branch-and-Bound Algorithm

The first-stage BnB algorithm is initialized at level � = 0
with a partial solution S0 := ∅, and partial and global lower
bounds on the objective value of problem (6a), Z := −∞
and Z∗ := −∞, respectively. It begins by branching to form
a partial solution (subgraph) S0 such that G0[S0] satisfies
property �. By employing the upper bound υ�(·) (see Def-
inition 3), it is then estimated if the property � of S0 can
be restored/repaired by removing no more than M vertices in
the second-stage scenarios k ∈ N . If S0 is deemed reparable,
a bounding criteria verifies whether an improvement in the
objective value of problem (6a) is possible with respect to the
maximum size that S0 may become by adding more vertices
to it (i.e., by branching further).

If an improvement in the objective value is not possible, or
if S0 is not reparable in some scenario k ∈ N , the correspond-
ing BnB node is fathomed and the algorithm backtracks by

removing the last branching vertex that was added to S0. If,
however, the bounding criteria demonstrates that an improve-
ment in the objective value is possible, the second-stage BnB
described in section 3.2 solves problems Qk(S0), k ∈ N , to
find the largest second-stage subgraphs S1, . . . , Sk . Assuming
feasible second-stage subgraphs are indeed found, the result-
ing objective value of problem (6a) is stored if it is greater than
any previously obtained objective value. The algorithm then
branches to form a new partial solution (i.e., a BnB node) if
there exist at least one vertex in the candidate set whose inclu-
sion in S0 would not violate property �. If no such vertices
exist in the candidate set, the algorithm backtracks.

Any time the algorithm backtracks, it subsequently
branches to form a new partial solution if such a solution
exists. If a new partial solution S0 is obtained, the repara-
bility check and bounding condition are evaluated at the
corresponding node of the BnB tree. The described process
repeats until the first-stage search space has been processed.
The details of the first-stage BnB algorithm are presented
next.

3.1.1. Reparability of S0. Whenever a partial solution S0

is constructed, it is first determined whether S0 can be suf-
ficiently modified in the second-stage scenarios so that the
resulting subgraphs satisfy property �. Observe that the most
“favorable” realization of uncertainties is such that the struc-
ture of edge sets Ek , k ∈ N , would preserve the property �

of S0 in each Gk[S0]. In such cases, no modifications (repairs)
in the form of removing vertices from S0 in the second-stage
would be required.

Obviously, the modified sets of edges Ek , k ∈ N , will
generally not preserve the property � of S0 as described.
Assuming otherwise would disregard structural variations
between G0 and Gk , particularly relative to how well solution
S0 will “perform” in any given scenario realization k ∈ N .
It is, therefore, of interest to introduce several feasibility and
reparability conditions in the context posed by the following
question: given a current first-stage solution S0, what is the
minimum number of modifications that must be made to S0

in any second-stage scenario k ∈ N in order to ascertain
property �?

Prior to solving the second-stage problems Qk(S0) for k ∈
N , one possibility is to perform the feasibility test furnished
by the next proposition.

Proposition 3 (Infeasibility certificate). For a given sce-
nario k ∈ N , let S(k)

0 represent a subset of S0 that induces a
�-subgraph in Gk[S0]. If the following condition is satisfied,

|S0| − max
S(k)
0 ⊆S0

{
|S(k)

0 | : Gk[S(k)
0] � �

}
> M, (8)

then subgraph S0 is an infeasible (irreparable) first-stage
solution to problem (5)–(6).

Proof. Recall that the induced subgraph G0[S0] has
property � by construction. Clearly, since the vertices remain

6 NETWORKS—2016—DOI 10.1002/net

fixed between the decision stages, the largest possible set of
vertices S(k)

0 such that Gk[S(k)
0] � � is no larger than |S0|

(i.e., S(k)
0 ⊆ S0). Hence, the left-hand side of expression (8)

represents the smallest number �−
k of vertices that must be

removed from S0 in order to obtain a subset S(k)
0 that induces

a subgraph Gk[S(k)
0] with property � under scenario k ∈ N .

This immediately implies that if condition (8) holds for any
k ∈ N , the budget constraint in (6b) cannot be satisfied. ■

If expression (8) is violated, then the expression in its left-
hand side provides the minimum number of vertices that must
be removed from S0 in order to restore property � in scenario
k ∈ N . However, finding the maximum subset S(k)

0 in (8)
by solving an NP-complete problem of type (1) for each
scenario k ∈ N is clearly computationally infeasible. Instead,
we utilize the fact that |S0| ≥ υ�(Gk[S0]) ≥ |S(k)

0 |, and
employ a more tractable condition by replacing the second
term in expression (8) by υ�(Gk[S0]):
Corollary 1 (Infeasibility certificate approximation). If the
following condition is satisfied for a given scenario k ∈ N ,

|S0| − υ�(Gk[S0]) > M, (9)

then (8) is also satisfied for the same k, and subgraph S0

is an infeasible (irreparable) first-stage solution to problem
(5)–(6).

If subgraph S0 is deemed feasible under the approximate
condition (9), the left-hand side of (9) represents an approx-
imation of the minimum number of vertices that must be
removed from S0 under scenario k ∈ N .

3.1.2. Candidate Set Generation and Refinement. At
the current node of the BnB tree, level � is associated with
the candidate set C� ⊆ V from which any single vertex can
be added to the partial solution S0 without violating property
�. Branching is conducted by removing a branching vertex q
from C� and adding it to S0. The algorithm is initialized with
C0 := V , and once a branching vertex q ∈ C� is selected, the
candidate set at level � + 1 is constructed by eliminating all
the vertices from C� whose inclusion in S0 would violate the
property �:

C�+1 := {i ∈ C� : G0[S0 ∪ i] � �} . (10)

Whenever the algorithm backtracks, the vertex q that was
selected prior to constructing C�+1 is removed from S0.

Provided that C�+1 is not an empty set, by virtue of Propo-
sition 3, it is possible to determine the number of vertices that
will have to be removed from subgraph S0 in the second stage
if a vertex i ∈ C�+1 is added to S0 in the first stage.

Proposition 4 (Candidate vertex infeasibility certifcate). If
inequality (8) or (9) is violated in scenario k ∈ N , then vertex
i ∈ C�+1 can be removed from C�+1 if the condition

|S0 ∪ i| − max
S(k)
i ⊆S0∪i

{
|S(k)

i | : Gk[S(k)
i] � �

}
> M, (11)

holds for some �-subgraph S(k)
i in the induced subgraph

Gk[S0 ∪ i]

Proof. The statement follows immediately from Propo-
sition 3. ■

As before, the above statement holds if the second term in
(11) is replaced by an approximation:

Corollary 2. The statement of Proposition 4 holds if
inequality (11) is replaced by an approximate condition

|S0 ∪ i| − υ�(Gk[S0 ∪ i]) > M. (12)

In addition to reducing the search space via removal of
potential branching vertices at level � + 1, a refined candi-
date set can produce a more conservative upper bound on the
objective value of problem (6a), as shown in the next subsec-
tion. Also, a brief discussion on the complexity associated
with generating candidate sets is furnished in section 3.3.
In what follows, we implicitly assume that the candidate set
C�+1 can be constructed in polynomial time.

3.1.3. Bounding If inequality (9) is violated for all sce-
narios k ∈ N at the current node of the BnB tree, then prior
to solving the second-stage problems Qk(S0), k = 1, . . . , N ,
an upper bound on the objective value of problem (6a) is
determined.

Proposition 5 (Myopic bounds). Given a partial solution
S0 and a candidate set C�+1, the expression

υ�(G0[S0 ∪ C�+1]) + min {υ�(G0[S0 ∪ C�+1]) + M, |V |}
(13)

provides an upper bound on the objective value for problem
(6a) that can result from any � subgraph in the set S0 ∪C�+1

Proof. By definition, the term υ�(G0[S0 ∪ C�+1]) pro-
vides an upper bound on the size of the largest � subgraph in
G0[S0 ∪ C�+1] by branching on the vertices in C�+1. Hence,
it is the maximum value that can be achieved in the first stage
by branching on vertices in C�+1.

Recall that a “most favorable” realization of uncertainties
would preserve the property � of the largest � subgraph in
G0[S0 ∪ C�+1]. Therefore, no modifications in the form of
removing vertices in the second stage would be required, and
the upper bound on the size of the largest � subgraph in each
graph Gk[S0 ∪ C�+1] would still be υ�(G0[S0 ∪ C�+1]). For
every scenario k ∈ N , additionally assume that sufficiently
many favorable edge modifications occur such that the budget
M can exclusively be used to add new vertices to subgraph
S0. In other words, the second term of expression (13) rep-
resents an upper bound on the potential contribution of the
recourse action under “ideal” circumstances. The statement
of the proposition immediately follows. ■

NETWORKS—2016—DOI 10.1002/net 7

Expression (13) can be enhanced by taking into account
the structural variations between G0 and the second-stage
graphs Gk , k ∈ N .

Proposition 6 (Scenario-based bounds). In the case when
inequality (9) is violated for all scenarios k ∈ N , the fol-
lowing expression provides an upper bound on the objective
value of problem (6a):

υ�(G0[S0 ∪ C�+1])
+

∑
k∈N

pk min {υ�(Gk[S0 ∪ C�+1]) + Mk , |V |} , (14)

where the Mk = M − (|S0|−υ�(Gk[S0])), k ∈ N , represent
reduced budgets obtained from (9).

Proof. The first term in the left-hand side of (14) fol-
lows the same logic as in Proposition 5. In the second
term, υ�(Gk[S0 ∪ C�+1]) represents the upper bounds on
the largest � subgraph in Gk[S0 ∪ C�+1]. Notice that if
inequality (9) is violated for all scenarios k ∈ N , then
(|S0| − υ�(Gk[S0])) gives the minimum number of vertices
that must be removed from S0 in scenario k in order to pre-
serve property � in the second stage. A reduced budget
Mk = M − (|S0| − υ�(Gk[S0])) represents the maximum
number of vertices that can be added in scenario k. Hence,
one immediately obtains

Qk(S0) ≤ min {υ�(Gk[S0 ∪ C�+1]) + Mk , |V |} ,

and expression (14) readily follows by considering all sce-
narios k ∈ N . ■

The last proposition readily implies that if inequality

υ�(G0[S0 ∪ C�+1])
+

∑
k∈N

pk min {υ�(Gk[S0 ∪ C�+1]) + Mk , |V |} ≤ Z∗

(15)

is violated, the algorithm proceeds to solve the second-stage
recourse problems (6b) for all k ∈ N , otherwise the algorithm
backtracks from the current node of the BnB tree.

In cases when inequality (15) is indeed violated, then
there are two possibilities that can arise with respect to the
second-stage problems (6b). First, the problem (6b) may be
infeasible for some k given the current solution S0. Then, the
corresponding second-stage function Qk(S0) and the respec-
tive recourse function Eω[Q(S0)] = ∑

k∈N pkQk(S0) assume
the value of −∞. In this case, the algorithm backtracks
by removing the most recent branching vertex q, and the
next branching vertex is selected from the candidate set if
C� �= ∅. An illustration of such a case is given in Figure 1.

Alternatively, all second-stage problems are feasible and the
functions Qk(S0), k = 1, . . . , N , are finite, whence the cur-
rent objective value associated with problem (6a) is updated
as Z = |S0| + ∑

k∈N pkQk(S0); the global lower bound Z∗
is replaced by Z if Z∗ < Z . Then, if the candidate set is non-
empty, C�+1 �= ∅, the algorithm selects a branching vertex
q from the next level � + 1. The branching vertex q at level
� is stored as q� for backtracking purposes. Alternatively, if
C�+1 = ∅, the algorithm backtracks by removing vertex q
from S0.

Whenever condition (15) is satisfied, there is no possibility
of achieving an improvement over the global lower bound
Z∗ by exploring further levels of the BnB tree; vertex q is
removed from S0. If C� = ∅, the algorithm backtracks to level
� − 1 by removing from S0 the most recent branching vertex
that was used at level �−1, namely vertex q�−1. The described
first-stage BnB procedure is formalized in Algorithm 1.

3.2. Second-Stage Branch-and-Bound Algorithm

If condition (15) is violated, a second-stage BnB proce-
dure is used to solve problem (6b) for each scenario. Namely,
the algorithm solves the second-stage problem Qk(S0), k ∈
N , by identifying the largest subgraph Sk ⊆ V(Gk) with
property � that satisfies the budgetary limit imposed by con-
straint (5c). The optimal solution S∗

k must be feasible with
respect to the first-stage partial solution S0 in the sense that
the total number of vertices added to and removed from S0

does not exceed the budget M. The bounding procedure per-
tains to eliminating unfavorable search space relative to the
budgetary limit M and the property �.

As in the first-stage BnB scheme, the second-stage algo-
rithm moves between levels of the (second-stage) BnB tree
by exploring branching vertices from candidate sets that indi-
vidually satisfy the property � with respect to the partial
solution Sk . It begins by selecting a branching vertex q from
the candidate set Ck

� , which is initially Ck
0 := V .

Due to the fact that discrepancies between S0 and Sk

impose a budgetary penalty, the natural tendency is to main-
tain as similar a structure as possible in the second stage.
Noting that vertices common to Ck

� and the solution S0 do
not utilize the budget M, a branching vertex q ∈ {

S0 ∩ Ck
�

}
is always selected first if

{
S0 ∩ Ck

�

} �= ∅. Once q is added to
the second-stage partial solution Sk , the candidate set at the
next level Ck

�+1 is constructed by removing all the vertices
from Ck

� whose inclusion in Sk would violate property �.

3.2.1. Budgetary Bounding. Given the first-stage and
second-stage partial solutions S0 and Sk , respectively, the
cost of Sk according to constraint (5c) can easily be com-
puted so that δ = |S0 \ Sk| + |Sk \ S0|. Observe that the
number of branching vertices in Ck

�+1 that could reduce the
value of δ at consecutive levels of the BnB tree is given by
|S0 ∩ Ck

�+1|. Therefore, due to the fact that the largest sub-
graph in Gk[S0∩Ck

�+1] that satisfies the property� is bounded
by v�(Gk[S0 ∩Ck

�+1]), the maximum number of vertices that

8 NETWORKS—2016—DOI 10.1002/net

FIG. 1. An example with three scenarios demonstrating the reparability of subgraph S0 with a repair budget
M = 2 and property � representing completeness. Black vertices represent those belonging to a complete subgraph.
Observe that solution S0 is feasible (reparable) with respect to scenarios ω1 and ω2, but is infeasible (not reparable)
with respect to scenario ω3. Scenario ω2 also illustrates that the subgraphs in the first or second stages need not
be maximal.

could potentially be used to reduce the cost δ is likewise given
by γ = v�(Gk[S0∩Ck

�+1]). Several budgetary considerations
emerge as a result.

The following conditions are possible when δ − γ ≤ M:

C1. If δ ≤ M, then (5c) is satisfied via vertices in Sk , and Sk

replaces S∗
k if |Sk | > |S∗

k |. In cases when δ = M and γ >

0, a branching vertex q ∈ {
S0 ∩ Ck

�+1

}
is selected and

the algorithm branches to level � := �+1. Conversely, if
γ = 0, adding more vertices to Sk will violate (5c); thus,
the algorithm backtracks by removing the most recent
branching vertex q from Sk . If δ < M and Ck

�+1 �= ∅, the
algorithm always branches.

C2. If δ > M, the partial solution Sk is infeasible with
respect to (5c). However, the set

{
S0 ∩ Ck

�+1

}
necessarily

contains a sufficient number of vertices to (potentially)
satisfy M at deeper levels of the BnB tree, that is,
γ ≥ δ − M. The algorithm branches accordingly.

In cases when δ − γ > M, restriction (5c) cannot be
satisfied by exploring the vertices in Ck

�+1, and, therefore, the
algorithm backtracks as before.

If the above budgetary condition is indeed satisfied relative
to the partial solution and candidate set (i.e., if δ − γ ≤ M),

an additional upper bound on the size of the partial solution is
applied. Notice that if γ vertices can potentially be added to
the partial solution from the set

{
S0 ∩ Ck

�+1

}
at deeper levels

of the BnB tree, then at most M − (δ − γ) vertices can be
added from the set

{
Ck

�+1 \ S0
}

without violating the budget
M. Therefore, we check the following condition at the current
node of the BnB tree:

|Sk| + min
{
γ + M − (δ − γ), v�(Gk[Ck

�+1])
}

> |S∗
k |.

The function “min” selects whichever term provides the
lowest upper bounds on the candidate set, where the first
term restricts the bounds via the budget limit, while the sec-
ond considers the largest possible subgraph of property �

contained in the candidate set.
Algorithm 2 outlines the described solution technique for

the second-stage problem Qk(S0), k ∈ N .

3.3. Optimality and Further Complexity Discussion.
The fact that the described above two-stage combinatorial
BnB algorithm terminates with an optimal solution can be
seen from the nested formulation (6a), where the TSMS

NETWORKS—2016—DOI 10.1002/net 9

Algorithm 1 First-stage combinatorial BnB method

problem has the form of a deterministic maximum � prob-
lem with a complex nonlinear objective. First, note that the
TSMS problem (5)–(6) is always feasible if the property �

is nontrivial, that is, it is satisfied by a single-vertex graph
(see Definition 2). Then, observe that once the processing of
the first-stage solution space is complete, the obtained partial
solution S0 �= ∅will represent a�-subgraph that has the high-
est objective value in the sense of (6a) among all processed

Algorithm 2 Second-stage combinatorial BnB method for
computing Qk(S0)

partial solutions (i.e., nodes of the first-stage BnB tree). The
nodes of the BnB tree that have not been processed (i.e., were
fathomed) correspond to partial solutions that either failed the
reparability check, or whose objective upper bound did not
exceed the current lower bound.

Finally, we would like to comment on the complexity of
candidate set generation when the sought property � is hered-
itary. As it could be readily seen, the operation of constructing
candidate set C�+1 from the preceding candidate set C� con-
stitutes one of the basic steps of the first- and second-stage
BnB algorithms. Consequently, the computational cost of this
step can significantly affect the computational performance
of the solution method. In this regard, a major question is
whether one can efficiently verify property � for any given
subgraph. The associated decision problem is as follows:
given a subgraph S, determine whether S satisfies property
�, or whether some fraction of the representation of S can

10 NETWORKS—2016—DOI 10.1002/net

be modified in order for S to satisfy property �. In the lat-
ter case, it is said that S is ε- far from satisfying property
�, where ε corresponds to the fraction of modifications that
need to be made. With respect to hereditary properties, a
substantial body of literature has accumulated in recent years
to address this question. For example, Alon and Shapira [2]
showed that every hereditary property is testable with one-
sided error. Further, several characterizations of hereditary
properties have been proposed in [14]. As described above, a
property � is said to be node-hereditary if it is closed under
taking induced subgraphs of G, and is subgraph-hereditary
if it is closed under taking subgraphs of G. A property is
minor-hereditary if any graph minor1 S of graph G satis-
fies �. In a series of seminal studies [24, 25], Robertson
and Seymour established the graph minor theorem which,
among others, predicated polynomial time identification of
hereditary properties closed under graph minors.

4. COMPUTATIONAL STUDY: A TWO-STAGE
STOCHASTIC MAXIMUM CLIQUE PROBLEM

As an illustrative example of the general TSMS problem
and the proposed solution approaches, in this section we con-
sider the two-stage stochastic maximum clique problem, a
special case of the TSMS problem (5) when the property
� represents completeness. The corresponding mathematical
programming formulation that we use in this work employs
the well-known edge formulation [22] of the structural con-
straints that guarantee completeness of the selected subgraph,
namely{

z ∈ {0, 1}|V | : �G(z) ≤ 0
}

= {
z ∈ {0, 1}|V | : zi + zj ≤ 1 for all (i, j) ∈ Ē

}
,

where Ē represents the set of edges of the complement of
graph G, that is, (i, j) ∈ E ⇔ (i, j) /∈ Ē for any i, j ∈ V . Then,
the two-stage stochastic maximum clique problem admits the
following 0-1 integer programming form:

max
∑
i∈V

xi +
∑
k∈N

pk(
∑
i∈V

yik) (16a)

s.t. xi+xj ≤ 1, ∀(i, j) ∈ Ē (16b)

yik + yjk ≤ 1, ∀(i, j) ∈ Ēk , k ∈ N (16c)∑
i∈V

|xi − yik| ≤ M, ∀k ∈ N (16d)

xi, yik ∈ {0, 1} , ∀i ∈ V , k ∈ N , (16e)

where the first-stage binary decision variables are defined as
xi = 1 if the vertex i ∈ V belongs to S0, and xi = 0 otherwise.
Similarly, for scenario k ∈ N , the second-stage decision vari-
ables are defined as yik = 1 if i ∈ V belongs to Sk , and yik = 0

1 A graph S is a minor of G if edge contractions can be performed on a
subgraph of G to obtain S.

otherwise. Formulation (16) can be solved with appropriate
integer programming solvers.

The property-specific techniques for finding cliques in
all types of graphs via the BnB procedure in section 3 and
Algorithms 1–2 are described next.

4.1. Candidate Set Generation, Branching, and Bounding
Techniques

When property � defines a clique, a number of effi-
cient techniques have been developed in the literature that
can be utilized for candidate set generation, branching, and
bounding. For example, the candidate sets can efficiently be
generated and updated via an intersection of neighboring ver-
tices common to the clique elements. Constructing candidate
set (10) is performed by pairwise testing any vertex j ∈ S0

against a vertex i ∈ C�, and removing the vertices from C�

that are not adjacent to subgraph S0, that is,

C�+1 := {i ∈ C� : (i, j) ∈ E0, ∀j ∈ S0} .

A refinement criterion with respect to the second-stage graph
scenarios as described by Corollary 4 is furnished by the next
proposition.

Proposition 7. Given a scenario k ∈ N and a vertex i ∈
C�+1, let �k(i) := {j ∈ S0 : (i, j) ∈ Ek} represent the (sub)set
of vertices such that any two vertices i, j are adjacent in
Gk[S0 ∪ i]. If the following inequality holds,

|S0| − |�k(i)| > M, (17)

then vertex i can be removed from C�+1

Proof. If i is added to S0 in the first stage, then it is
easy to see that the vertices S0 \�k(i) must be removed from
S0 in order for Gk[�k(i) ∪ i] to (possibly) form a complete
graph in scenario k ∈ N . Note that if subgraph Gk[�k(i)]
is not a clique in k ∈ N , then at least one vertex from the
set S0 \ �k(i) must be further removed from S0 in the first
stage. Thus, |�k(i)∪ i| provides an upper bound on the size of
the maximum clique contained in Gk[S0 ∪ i]. Consequently,
expression (17) approximates the minimum number of ver-
tices that must be removed from S0 in the second stage if
vertex i is included, which cannot exceed the budget M. ■

In this study, we consider two techniques for computing
the upper bound υ�(·) on the size of a maximum clique
and for selecting a branching vertex q ∈ C� when property
� represents a clique. We emphasize that proper selec-
tion of branching and bounding mechanisms according to
a graph’s structural characteristics and the sought property �

does heavily influence the computational performance of the
solution method described in Algorithm 1.

4.1.1. An Approximate Coloring Algorithm. The first
technique utilizes principles introduced by Tomita and Seki
[27] to estimate the size of a maximum clique contained in

NETWORKS—2016—DOI 10.1002/net 11

G[S], S ⊆ V , by partitioning S into independent sets, also
know as numbering or coloring classes. The vertices in S
are first sorted in degree descending order, and a minimum
positive integer ni is assigned to each vertex i ∈ S such that
ni �= nj if the pair i, j ∈ S are connected by an edge (i, j) ∈
E(G). Consequently, vertices associated with a number class
nk (i.e., vertices with the same assigned integer value) form
an independent set.

Since that the size of any clique embodied in G[S] cannot
exceed the number of coloring classes generated from S, one
immediately obtains a bound on the maximum clique size as

υ�(G[S]) = max {ni : i ∈ S} .

We use this expression in Algorithm 1 to obtain the bounds
υ�(Gk[S0]) and υ�(Gk[S0 ∪C�+1]), k ∈ {0}∪N . Condition
(15) then takes the form:

|S0| + max {ni : i ∈ C�+1}
+

∑
k∈N

pk min
{
max {ni : i ∈ S0 ∪ C�+1}k + Mk , |V |} ≤ Z∗.

(18)

The branching rule used in connection with the described
approximate coloring scheme is as follows: select a vertex
q ∈ C� with the maximum number nq := max {ni : i ∈ C�}.
Note that an initial coloring of set C0 := V is performed prior
to Step 2.

4.1.2. Directed Acyclic Path Decomposition. Yam-
aguchi and Masuda [33] proposed a clever technique for
finding maximum weighted cliques in graphs by transform-
ing G[S], S ⊆ V , into a directed acyclic graph

−→
G [S] such that

the lengths of the resulting acyclic paths represent bounds on
the size of the maximum clique in G[S]. The method pro-
ceeds as follows. Without loss of generality, let each vertex
i ∈ S be associated with a unit weight wi = 1, and define
set U(S) := {ui : i ∈ S}, where each element ui is initially
equivalent to wi. Then, the set U(S) is updated by sequen-
tially “ propagating” the elements ui, ∀i ∈ S, onto adjacent
members in S. Particularly, during each iteration a vertex i
that corresponds to the minimum argument ui in the set U(S)
is selected, and ui is propagated by adding it to the weights of
vertices j ∈ S adjacent to vertex i in graph G[S]. The elements
adjacent to uj are updated as

uj =
{

ui + wj, if uj < ui + wj,
uj, otherwise,

for all j ∈ {j : (i, j) ∈ E, i, j ∈ S} . (19)

Once a vertex i ∈ S has been processed, ui is fixed and
cannot be increased in subsequent propagations from other
(unprocessed) adjacent vertices in S. The updating process
terminates once all the elements in U(S) have been fixed.

Observe that sequentially fixing elements ui produces a
directed acyclic graph

−→
G [S], where, once all the elements in

U(S) are fixed, any ui ∈ U(S) represents the longest acyclic

path in
−→
G [S] whose endpoint is the vertex i ∈ S (see [33]

for details). Utilizing the fact that the length2 of a longest
path in

−→
G [S] is an upper bound on the maximum clique size

in G[S], one obtains the bounding condition υ�(G[S]) =
max {ui ∈ U(S)}. Expression (15) then takes the form:

|S0| + max {ui ∈ U(C�+1)}
+

∑
k∈N

pk min
{
max {ui ∈ U(S0 ∪ C�+1)}k + Mk , |V |} ≤ Z∗.

(20)

In this case, it is assumed that a vertex with the largest prop-
agated weight from adjacent vertices has a high probability
of being a part of the maximum clique. As a result, the algo-
rithm branches by selecting a vertex q ∈ C� that corresponds
to the maximum element in U(C�).

4.2. Numerical Experiments and Results

Numerical experiments demonstrating the performance of
the proposed BnB algorithms for solving the TSMS problem
when property � represents a clique were conducted. Prob-
lem (16) was solved for randomly generated Erdös-Rényi
graphs of orders |V | = 25, 50, 75, 100 with average densities
of d = 0.2, 0.5, 0.8. Similar experiments were also con-
ducted on various DIMACS graph instances. For any given
graph configuration, the number of vertices |V | and densities
d remained fixed during both decision stages. The value of
the constant M in the budget constraints was determined by
M = �ε · E[ω(G)]�, where the term E[ω(G)] represents the
expected size of the maximum clique in a uniform random
graph G with edge probability d [12]:

E[ω(G)] = 2

ln(1/d)
ln |V(G)| + o(ln |V(G)|).

Unless specified otherwise, the constant ε was fixed at 0.5.
The number of second-stage graph scenarios was selected as
N = 25, 50, 75. In order to preserve the (expected) density,
the modified graph scenarios were generated by allowing the
existing edges in E0 to fail with a probability of 0.5 and
allowing |E0| randomly selected complement edges to form
with the same probability.

The combinatorial first- and second-stage BnB algorithms
described in section 3 were coded using C++, and CPLEX
12.5 integer programming (IP) solver was used for solv-
ing the mathematical programming formulation (16) of the
two-stage stochastic maximum clique problem. The compu-
tations were run on an Intel Xeon 3.30GHz PC with 128GB
of RAM, and version 12.5 of CPLEX solver in Windows 7
64-bit environment was used.

The combinatorial BnB method defined by Algorithms
1 and 2 was implemented in two versions, which use the
branching and bounding techniques described in sections

2 The path length is given by the aggregate weight of vertices that it coincides
with.

12 NETWORKS—2016—DOI 10.1002/net

TABLE 1. Average solution times (in seconds) and objective values for problem (16) on random graphs with an edge density of 0.2. Entries representing
the best average running times are highlighted in bold

d = 0.2 CPLEX BnB 4.1.1 BnB 4.1.2

|V | N # Time (s) Objective # Time (s) Objective (%) # Time (s) Objective (%)

25 25 5 6.80 5.06 5 0.02 0 5 0.00 0
50 5 22.91 4.95 5 0.04 0 5 0.01 0
75 5 52.95 4.98 5 0.04 0 5 0.01 0

50 25 5 180.50 6.77 5 0.20 0 5 0.04 0
50 5 951.08 6.56 5 0.37 0 5 0.08 0
75 4 2218.67 6.57 5 0.60 0 5 0.13 0

75 25 4 2383.23 6.84 5 0.99 0 5 0.20 0
50 0 — 6.51 5 2.53 3.4 5 0.47 3.4
75 0 — 2.47 5 3.20 170.5 5 0.74 170.5

100 25 0 — 6.68 5 5.29 5.5 5 0.71 5.5
50 0 — 1.94 5 12.05 251.9 5 1.88 251.9
75 0 — 0.00 5 16.13 ∞ 5 2.77 ∞

TABLE 2. Average solution times (in seconds) and objective values for problem (16) on random graphs with an edge density of 0.5. Entries representing
the best average running times are highlighted in bold

d = 0.5 CPLEX BnB 4.1.1 BnB 4.1.2

|V | N # Time (s) Objective # Time (s) Objective (%) # Time (s) Objective (%)

25 25 5 13.49 10.58 5 0.73 0 5 0.06 0
50 5 822.26 10.55 5 1.14 0 5 0.11 0
75 2 804.32 10.29 5 2.41 0 5 0.17 0

50 25 4 1975.50 12.40 5 27.21 0 5 2.89 0
50 3 3268.51 12.72 5 43.20 0.3 5 5.08 0.3
75 0 — 12.21 5 50.96 3.0 5 6.54 3.0

75 25 0 — 13.26 5 312.48 6.0 5 38.32 6.0
50 0 — 13.11 5 635.89 6.6 5 87.22 6.6
75 0 — 13.08 5 835.85 6.9 5 98.21 6.9

100 25 0 — 13.55 5 1499.11 8.6 5 205.96 8.6
50 0 — 13.25 3 2840.66 10.5 5 369.51 10.5
75 0 — 6.70 0 — 118.5 0 673.56 118.6

4.1.1 and 4.1.2, and which are henceforth referred to as “BnB
4.1.1” and “BnB 4.1.2,” respectively. The computational per-
formance of both variants of Algorithm 1–2 was compared
with that of the mathematical programming formulation (16)
as solved by the CPLEX solver. The results are reported in
Tables 1–5, where columns with headings “CPLEX,” “BnB
4.1.1,” and “BnB 4.1.2” contain the results obtained using the
respective methods. Five instances of each problem/graph
configuration were generated and the corresponding solu-
tion times (in seconds) and objective values were averaged
accordingly. The entries representing the best average run-
ning times are highlighted in bold. For experiments involving
Erdös-Rényi graphs, the average objective values are only
given for CPLEX, whereas the percentage change in the aver-
age objective values with respect to CPLEX are reported for
the BnB algorithms. A maximum solution time limit of 3,600
seconds was imposed and the symbol “—” is used to indi-
cate that the time limit was exceeded for all ten instances for

the given graph configuration. Columns corresponding to the
symbol “#” provide the number of instances solved within
the time limit. If only a portion of the instances were solved
within the time limit, the number of instances that achieved
a solution and their corresponding average solution times are
presented.

Table 1 summarizes the computational times for graphs
with average edge densities of d = 0.2. Observe that both BnB
algorithms provide improvement in running time of at least
two to three orders of magnitude on all problem configura-
tions in comparison to the CPLEX IP solver, and the BnB
variant based on acyclic path decomposition produces the
best results. It must be noted, however, that sparse graphs put
the mathematical programming formulation (16) of the two-
stage stochastic maximum clique problem at a disadvantage,
since the employed “edge formulation” of clique constraints
is based on the complement of the graph, which results in a
large number of constraints (16b)–(16c) when the underlying

NETWORKS—2016—DOI 10.1002/net 13

TABLE 3. Average solution times (in seconds) and objective values for problem (16) on random graphs with an edge density of 0.8. Entries representing
the best average running times are highlighted in bold

d = 0.8 CPLEX BnB 4.1.1 BnB 4.1.2

|V | N # Time (s) Objective # Time (s) Objective (%) # Time (s) Objective (%)

25 25 5 1.29 20.74 5 246.72 0 5 22.28 0
50 5 2.18 21.24 5 650.78 0 5 56.08 0
75 5 4.23 20.43 5 1197.33 0 5 61.70 0

50 25 0 — 28.94 0 — −5.3 0 — −1.3
50 0 — 29.06 0 — −7.7 0 — −1.9
75 0 — 28.66 0 — −8.2 0 — −2.8

75 25 0 — 33.80 0 — −8.5 0 — −3.3
50 0 — 33.59 0 — −6.6 0 — −2.3
75 0 — 32.18 0 — −6.2 0 — 0.1

100 25 0 — 34.88 0 — −3.8 0 — −2.5
50 0 — 33.53 0 — 0.9 0 — 4.1
75 0 — 33.55 0 — −0.2 0 — 5.1

TABLE 4. Average solution times (in seconds) and objective values for problem (16) on random graphs with 50 vertices, 25 scenarios, edge density of 0.2,
and ε in the range [0.1, 0.9]. Entries representing the best average running times are highlighted in bold

d = 0.2 CPLEX BnB 4.1.1 BnB 4.1.2

|V | N ε # Time (s) Objective # Time (s) Objective (%) # Time (s) Objective (%)

50 25 0.1 5 261.33 7.49 5 22.58 0 5 0.70 0
0.3 5 272.74 10.76 5 68.44 0 5 1.54 0
0.5 4 1975.50 12.40 5 27.21 0 5 2.89 0
0.7 0 — 13.50 5 105.76 0.18 5 7.68 0.18
0.9 0 — 14.30 5 371.30 0.34 5 22.77 0.34

TABLE 5. Solution times (in seconds) and objective values for problem (16) on DIMACS graphs. Entries representing the best average running times are
highlighted in bold

DIMACS CPLEX BnB 4.1.1 BnB 4.1.2

File (.clq) |V | d Time Objective Time Objective Time (s) Objective

Adjnoun 112 0.068 3474.13 6.52 42.18 6.52 0.16 6.52
Celegans Metabolic 453 0.020 — ∞ 426.76 7.02 17.96 7.02
Celegans Neural 297 0.049 — ∞ — 7.08 63.20 7.14
Chesapeake 39 0.229 13.78 7.88 1.53 7.88 0.03 7.88
Dolphins 62 0.084 112.56 6.42 9.06 6.42 0.03 6.42
Football 115 0.094 — 7.68 171.80 8.28 0.95 8.28
Jazz 198 0.141 — ∞ — 9.5 223.98 9.54
Karate 34 0.139 10.87 6.48 2.82 6.48 0.02 6.48
Lesmis 77 0.087 1217.95 7.08 173.92 7.08 0.61 7.08
Polbooks 105 0.081 — 6.54 46.54 6.82 0.25 6.82

graph is sparse. At the same time, the proposed combinato-
rial BnB algorithm performs better when the “depth,” or the
number of levels of the BnB tree is smaller, which is observed
on sparse graphs.

Thus, a more fair comparison of the combinatorial and
mathematical programming-based schemes can be accom-
plished when one considers graphs with densities close to
d = 0.5; see Table 2. It still can be observed, though, that
the combinatorial BnB methods drastically outperform the
mathematical programming formulation, and the branching

and bounding rules based on acyclic path decomposition
are again superior compared to vertex coloring. Neverthe-
less, graphs of density d = 0.5 present a greater challenge to
the proposed BnB method, as the coloring-based branching
and bounding variant was unable to solve all instances of
the two largest graph configurations within the allowed time
limit, even though the obtained average objective values were
relatively close to the optimal solution values.

Computational results for the two-stage stochastic max-
imum clique problem on graphs with average densities of

14 NETWORKS—2016—DOI 10.1002/net

d = 0.8 are presented in Table 3. At these densities, the
combinatorial BnB methods are generally inferior to the
mathematical programming formulation (16), which can be
explained by the fact that the number of clique constraints
(16b)–(16c) is relatively small for dense graphs, making prob-
lem (16) easier to solve. In contrast, the depth of the BnB
tree increases with the density of the graph, which leads
to deteriorated BnB solution times. However, the acyclic
decomposition BnB algorithm generated noticeably better
average objective values in comparison to CPLEX when
|V | = 100, N = 50, 75, an obvious deviation from the trend
of results associated with other graph configurations of the
same density.

Table 4 furnishes computational results demonstrating the
effects of changes in the budget M = �ε|V |� for values of
ε in the range [0.1, 0.9] when |V | = 50, N = 25 and d = 0.2.
Irrespective of the solution technique, it is evident that the
computation time generally increases as ε increases. This
trend is consistent with the fact that the bounding condition
(15) becomes weaker for larger budgets M due to the fact
that a larger number of first-stage solutions may be repaired
in the second stage. Consequently, a larger number of feasible
second-stage solutions must be explored, thus increasing the
size of the corresponding search space.

Finally, Table 5 presents the objective values and compu-
tation times obtained from solving several DIMACS graph
instances. Observe that the densities in these graph tend to
be smaller than d = 0.2, a common trait of real-life graphs.
Consistent with previous results for sparse graphs, the com-
binatorial BnB algorithms outperform CPLEX by one to four
orders of magnitude, and the difference between the two
BnB algorithm variants was more pronounced in these cases.
Indeed, the BnB algorithm employing acyclic path decom-
position was between one to two orders of magnitude faster
than the one employing approximate coloring.

5. CONCLUSIONS

We have introduced a new class of two-stage stochas-
tic maximum subgraph problems for finding the maximum
expected size of a graph that satisfies a defined structural
property �. Emphasis was put on identifying subgraphs
whose properties can be restored within a limited repair bud-
get in the presence of structural uncertainties that manifest
in the form of random connection (edge) changes/failures.
A combinatorial BnB algorithm exploiting the structure
of two-stage stochastic maximum � subgraph problems
was developed. Our technique utilizes two combinatorial
BnB algorithms for finding optimal first- and second-stage
subgraph solutions.

The proposed framework applies to a broad range of graph
properties, and in this work, we illustrated the proposed
approach on an example where the property of interest �

defines a clique. Numerical simulations on randomly gen-
erated graphs and DIMACS graphs indicate that solution
times can be reduced by several orders of magnitude via
the proposed BnB algorithm in comparison to an equivalent

mathematical programming solver. Namely, for all the tested
graph configurations other than ones with the high edge den-
sity of d = 0.8, between one or more orders of magnitude in
performance improvements were observed.

Subsequent extensions of the proposed model and solu-
tion methods will consider nonhereditary graph properties,
particularly in a broader context of identifying cohesive clus-
ters in stochastic networks. It is also of interest to examine
extensions that involve variations in structural properties �

between decision stages, reparability cost structures, and
budgetary restriction.

ACKNOWLEDGMENTS

This research was performed while the first and second
authors held National Research Council Research Associ-
ateship Awards at the Air Force Research Laboratory. In
addition, support by the AFRL Mathematical Modeling and
Optimization Institute is gratefully acknowledged.

REFERENCES

[1] V.E. Alekseev and D. Korobitsyn, Complexity of some prob-
lems on hereditary classes of graphs, Diskretnaya Matem-
atika 4 (1992), 34–40.

[2] N. Alon and A. Shapira, A characterization of the (natu-
ral) graph properties testable with one-sided error, SIAM J
Comput 37 (2008), 1703–1727.

[3] A. Atamtürk and M. Zhang, Two-stage robust network flow
and design under demand uncertainty, Oper Res 55 (2007),
662–673.

[4] H.J. Bandelt and H.M. Mulder, Distance-hereditary graphs,
J Comb Theory Ser B 41 (1986), 182–208.

[5] J.R. Birge and F. Louveaux, Introduction to stochastic pro-
gramming, Springer, New York, 1997.

[6] V.L. Boginski, C.W. Commander, and T. Turko, Polynomial-
time identification of robust network flows under uncertain
arc failures, Optim Lett 3 (2009), 461–473.

[7] I. Bomze, M. Chimani, M. Jünger, I. Ljubić, P. Mutzel, and
B. Zey, “Solving two-stage stochastic Steiner tree problems
by two-stage branch-and-cut,” Algorithms and computa-
tion, Vol. 6506 of Lecture Notes in Computer Science, O.
Cheong, K.Y. Chwa, and K. Park (Editors), Springer Berlin
Heidelberg, Germany, 2010, pp. 427–439.

[8] S.V. Buldyrev, R. Parshani, G. Paul, H.E. Stanley, and S.
Havlin, Catastrophic cascade of failures in interdependent
networks, Nature 464 (2010), 1025–1028.

[9] A.M. Campbell and B.W. Thomas, Probabilistic traveling
salesman problem with deadlines, Transp Sci 42 (2008),
1–21.

[10] R. Carraghan and P.M. Pardalos, An exact algorithm for the
maximum clique problem, Oper Res Lett 9 (1990), 375–382.

[11] R.K. Cheung and C.Y. Chen, A two-stage stochastic network
model and solution methods for the dynamic empty container
allocation problem, Transp Sci 32 (1998), 142–162.

[12] P. Erdös and A. Rényi, On the evolution of random graphs,
Publication Math Inst Hungarian Acad Sci 5 (1960), 17–61.

[13] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak
Math J 23 (1973), 298–305.

NETWORKS—2016—DOI 10.1002/net 15

[14] E. Fox-Epstein and D. Krizanc, “The complexity of minor-
ancestral graph properties with forbidden pairs,” Computer
science—Theory and applications, Vol. 7353 of Lecture
Notes in Computer Science, E. Hirsch, J. Karhumäki, A. Lep-
istö, and M. Prilutskii (Editors), Springer Berlin Heidelberg,
2012, pp. 138–147.

[15] A. Ghosh and S. Boyd, Growing well-connected graphs, 45th
IEEE Conference Dec Control, San Diego, California, USA,
Dec 2006, pp. 6605–6611.

[16] G.D. Glockner and G.L. Nemhauser, A dynamic network
flow problem with uncertain arc capacities: Formulation and
problem structure, Oper Res 48 (2000), 233–242.

[17] J. Konc and D. Janezic, An improved branch and bound algo-
rithm for the maximum clique problem, MATCH Commun
Math Comput Chem 58 (2007), 569–590.

[18] G. Laporte, F.V. Louveaux, and L. van Hamme, An integer L-
shaped algorithm for the capacitated vehicle routing problem
with stochastic demands, Oper Res 50 (2002), 415–423.

[19] I. Ljubić, P. Mutzel, and B. Zey, Stochastic survivable net-
work design problems, Electron Notes Discr Math 41 (2013),
245–252.

[20] Z. Miao, B. Balasundaram, and E.L. Pasiliao, An exact algo-
rithm for the maximum probabilistic clique problem, J Comb
Optim 28 (2014), 105–120.

[21] P.R.J. Östergård, A fast algorithm for the maximum clique
problem, Discr Appl Math 120 (2002), 197–207, Special
Issue devoted to the 6th Twente Workshop on Graphs and
Combinatorial Optimization.

[22] P.M. Pardalos and J. Xue, The maximum clique problem, J
Global Optim 4 (1994), 301–328.

[23] A. Prékopa, Stochastic programming, Kluwer Academic
Publishers, Dordrecht, 1995.

[24] N. Robertson and P. Seymour, Graph minors. I. Excluding a
forest, J Comb Theory Ser B 35 (1983), 39–61.

[25] N. Robertson and P. Seymour, Graph minors. XIX. Well-
quasi-ordering on a surface, J Comb Theory Ser B 90 (2004),
325–385.

[26] M. Rysz, M. Mirghorbani, P. Krokhmal, and E.L. Pasiliao, On
risk-averse maximum weighted subgraph problems, J Comb
Optim 28 (2014), 167–185.

[27] E. Tomita and T. Seki, “An efficient branch-and-bound algo-
rithm for finding a maximum clique,” Discrete mathematics
and theoretical computer science, Vol. 2731 of Lecture
Notes in Computer Science, C. Calude, M. Dinneen, and V.
Vajnovszki (Editors), Springer Berlin Heidelberg, 2003, pp.
278–289.

[28] P. Tsiakis, N. Shah, and C.C. Pantelides, Design of multi-
echelon supply chain networks under demand uncertainty,
Indust Eng Chem Res 40 (2001), 3585–3604.

[29] A. Veremyev and V. Boginski, Identifying large robust
network clusters via new compact formulations of maxi-
mum k-club problems, Eur J Oper Res 218 (2012), 316–
326.

[30] B. Verweij, S. Ahmed, A.J. Kleywegt, G. Nemhauser, and
A. Shapiro, The sample average approximation method
applied to stochastic routing problems: A computational
study, Comput Optim Appl 24 (2003), 289–333.

[31] S. Voccia, A. Campbell, and B. Thomas, The probabilis-
tic traveling salesman problem with time windows, EURO
J Transp Logist 2 (2013), 89–107.

[32] J.W. Wang and L.L. Rong, Robustness of the western
United States power grid under edge attack strategies due
to cascading failures, Saf Sci 49 (2011), 807–812.

[33] K. Yamaguchi and S. Masuda, A new exact algorithm for
the maximum weight clique problem, 23rd Int Confer-
ence Circuits/Systems, Comput Commun (ITC-CSCC’08),
Shimonoseki City, Yamaguchi, Japan, 2008, pp. 317–
320.

[34] M. Yannakakis, Node-and edge-deletion NP-complete prob-
lems, STOC’78: Proc 10th Ann ACM Symp Theory Comput,
ACM Press, New York, 1978, pp. 253–264.

[35] O. Yezerska, S. Butenko, and V. Boginski, Detecting robust
cliques in graphs subject to uncertain edge failures, Ann Oper
Res (2016), in press. doi: 10.1007/s10479-016-2161-0.

16 NETWORKS—2016—DOI 10.1002/net

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

