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SUMMARY

In this study, structural health monitoring is pursued by collecting multi-channel measurements and by
computing, directly from them, the Lyapunov exponents. The latter quantities are invariants of the
dynamic system, so that their different values, associated with different time histories obtained from the
same structure, denote damage. First, the problem is framed in the general theory. The structural health
monitoring strategy is then formulated, with special care being devoted to its capability of localizing
damage. The procedure is finally validated by using the time histories which were collected during the
experimental tests on the model of a monumental arch. Copyright # 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The evolution in time of a dynamic system is defined in a state-space, and it is uniquely
characterized when h independent variables are simultaneously specified. In other words, one
could say that the dynamics lives in an h-dimensional manifold, which is likely to be curved. The
embedding of such a curved manifold into a Cartesian space, Rl, with l denoting the state-space
dimension, is ruled by the Whitney theorem and by its extension to fractal environments [1],
which ensures that l ¼ 2hþ 1; where time is one of the variables. The other components of a
dynamic problem are the initial conditions, to which the chaotic systems are sensitive [2], and
the presence of stochastic components. As stated in Reference [1], ‘successful approaches either
assume the non-linearity to be a small perturbation of an essentially linear stochastic process,
or they regard the stochastic element as a small contamination of an essentially deterministic,
non-linear process’.
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Structural health monitoring (SHM) is usually pursued by a comparison of the models
inferred from the time histories of some measured quantities, which are collected during
subsequent time intervals of the system lifetime. Actually, the knowledge of the entire dynamic
system is not required, since the different damage detection algorithms usually rely on different
model invariants, such as eigenvalues or wavelet spectra [3–5].

The comparison of models built directly from the monitored time histories, rather than of the
previously defined dynamic system models, was recently investigated by the second author in
References [6, 7]. Such an approach is based on the following assumptions [1]:

(1) The measurements are reproducible. Reproducibility is closely connected to stationarity,
in both its two following aspects: the parameters of the studied systems are constant
during the measurement period, and an asymptotic stationarity results from infinitely
long observation times (despite the signals non-stationarity in a single time window, as it
usually occurs in the presence of intermittency).

(2) The resulting time histories must provide enough information to fully characterize the
searched quantity of interest; for this purpose, their length, their precision, and their
sampling rate need to meet some minimal requirements.

When the source of the signals is linear, one pursues the identification of the spectral peaks
in the Fourier transformation of the signals. The Fourier spectrum is an invariant of the
system motion. Only the power associated with the peaks depends on the intensity of the
external forcing. When the non-linear features are instead predominant, the two major tools of
signals analysis are the fractal dimension and the Lyapunov exponents. They both are invariant
during the system evolution, and, hence, they are independent of the changes in the initial
conditions and of the co-ordinate system of observation [8]. The fractal dimension and the
Lyapunov exponents are linked the one with the others, and hence reference to both of them is
done.

This paper discusses the potential of using these quantities to compare multivariate, non-
linear time series for the purpose of damage detection and localization, as suggested in
References [7, 9]. In particular, the next section provides the governing relations, the subsequent
one shows the SHM strategy, and, at last, the proposed methodology is validated by applying it
to an experimental case of study whose conditions mirror the reality. The considered structure is
the model of the entrance of an ancient noble palace, which is actually located in Palermo, Italy.
The specimen was constructed and tested at the ELSA laboratory of the European Union Joint
Research Center in Ispra [10].

2. GOVERNING RELATIONS

The Lyapunov exponents were first introduced by Khasminkii [11] when dealing
with the stability of stochastic linear systems. Their multiplicative ergodicity was successi-
vely proven by the Osedelec theorem [12]. Ergodicity either means that they assume the same
values for almost any choice of the initial conditions, in a deterministic context; or that their
expected values across the population coincide with their time averages, in a probabilistic
context.

The multiplicative ergodicity theorem ensures that the limit by which the Lyapunov
exponents are defined (see Equation (4)) exists and is unique. Despite the Lyapunov exponent
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concept holds in both a deterministic (chaotic) and stochastic environment [13], their definition
is generally introduced in different ways for the two cases. A unifying approach was found
in Reference [14].

2.1. Definition of the Lyapunov exponents

Let x be the vector of the state-variables, of size n ¼ l21 ¼ 2h: The dynamics of the system can
be represented by the mapping

xjþ1 ¼ FðxjÞ ð1Þ

where F is the system operator evolving along the sequence of time steps represented by index j.
Introducing, in the n-dimensional space, a nearby trajectory yj, the evolution in time of the
distance between the two trajectories is

yjþ1 � xjþ1 ¼ FðyjÞ � FðxjÞ ¼ JjðxjÞðyj � xjÞ þ oðjjyj � xj jj
2Þ ð2Þ

In Equation (2), Jj (xj) is the n by n Jacobian matrix of F at xj, being F(yj) expanded in a Taylor
series around xj. Let us now consider a sequence of N time steps, and build the matrix of the
products of the subsequent Jacobian matrices. The ith eigenvalue, Li

(N), of this matrix can be
found from the relationship

YN

j¼1

Jju
ðNÞ
i ¼ LðNÞi u

ðNÞ
i ð3Þ

with ui
(N) a suitable vector of ortho-normal bases.

The corresponding Lyapunov exponent, li, is then defined as the normalized logarithm of the
modulus of the ith eigenvalue, Li

(N), in the limit of an infinitely long trajectory

li ¼ lim
N!1

1

N
ln jLðNÞi j ð4Þ

The total set of n different exponents is called the Lyapunov spectrum. Their existence and
uniqueness is enforced by the Osedelec theorem. They are an invariant measure and remain
invariant also for smooth transformation of the state-space.

It is worth noting that, despite the Lyapunov exponents are usually associated with chaotic or
stochastic dynamic systems, neither the former nor the latter feature is actually required to
compute such an invariant spectrum: the availability of a time series is the only pre-requisite. If
the amount of available information is less than the number n of the desired unknown quantities
(for instance it is organized in a vector of length N or in a matrix N by r, with r5n), then an
embedding dimension m51 (equal to the upper integer of the ratio n/r) must be introduced to
describe a reduced state-space.

Working with a multi-channel data collector, one can assume ‘a priori’ and check ‘a posteriori’
that the acquired information is overwhelming, and therefore m ¼ 1:

2.2. Computation of the Lyapunov exponents

The numerical evaluation of the Lyapunov exponents was first pioneered in Reference [15].
However, it is only with the contribution illustrated in Reference [16] that a standard
computation procedure was assessed, leading to the development of the general purpose
software of non-linear time series analysis described in Reference [17]. In synthesis, an essential
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feature is the estimate of the local Jacobians J, i.e. of the linearized dynamics which governs the
growth of infinitesimal perturbations. This can be achieved by either of the two following
methods:

(i) The first method uses the direct fits of local linear models. Let sj the co-ordinates of a
point in the working space at the jth time and sj+1 the evolution of one of these co-
ordinates at next time step. A local linear model is of the type: sjþ1 ¼ ajsj þ bj : The vector
aj and the scalar bj are given by the least squares minimization of the set of vectors {ss}j
which form the neighbourhood of sj [17] and which can be found in the available data.
The average of their distance from the starting point will be referred as ‘average
neighbour size’. The Jacobian matrix collects aj as a row vector. When the em-
bedding dimension m is greater than 1, this row is followed by blocks of entries di�1,j
for i ¼ 2; . . . ;m; with d denoting the Kroneker index. Of course, the process fails
when the minimum number of neighbours cannot be found within the available
data.

(ii) As an alternative, one can construct a global non-linear model and compute its local
Jacobians by taking the derivatives.

In both cases, the obtained local Jacobians are multiplied one by one, following the trajectory,
by as many different vectors ui in the tangent space (Equation (3)), as the number of Lyapunov
exponents that needs to be computed. Every few steps, a Gram–Schmidt ortho-normalization
procedure is applied to the set of ui, and the logarithms of their rescaling factors are cumulated.
Their average, in the order of the Gram–Schmidt procedure, gives the Lyapunov exponents in
descending order.

The routine ‘lyap spec’, available in the software package TISEAN 2.1 [17], applies the
method of local linear fits. The user must provide as inputs the number of columns, n, of the
multivariate time series to be read, and the embedding dimension, m. Then, the routine
determines the m by n Lyapunov exponents. In the applications within this paper, it is always
m ¼ 1:

2.3. Related invariant measures

The knowledge of the Lyapunov exponent spectrum allows one to also compute the following
other invariant terms:

(1) According to Pesin’s inequality, an upper-bound for the Kolmogorov entropy is given by
the sum of all the positive Lyapunov exponents.

(2) The Lyapunov, or Kaplan-Yorke, dimension is defined by the expression

DL ¼ k�
Pk

i¼1 li
lkþ1

ð5Þ

where k is the order number of the last Lyapunov exponent (in decreasing order)
for which the numerator sum is positive. Roughly speaking, it is the minimal
fractal dimension of the space where the dynamics is preserved. Therefore, the
assumption m ¼ 1 is satisfied when the number of available time histories is greater than
DL. The values of the Lyapunov dimension are directly computed by the routine ‘lyap spec’.
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3. STRATEGY FOR DAMAGE DETECTION AND LOCALIZATION

As a first practical example, the invariant quantities introduced in the previous section are
computed from the time series which were recorded during an experiment carried out at the
ELSA laboratory of the Joint Research Centre in Ispra. The tested specimen, referred to as a
‘baby-frame’, is detailed in Reference [7], and the same data were already used for damage
detection and localization via a different technique [18, 19]. The structure is excited by repeated
shaker pulses and its response is monitored by 18 sensors; the first of them measures the
excitation. The collected data form a multi-channel response time histories matrix of 50 000
rows (the sampled points) and 17 columns (the response sensors). Figure 1 shows the first 7500
points of the last column, in the two cases of undamaged and damaged structure; the latter one
corresponds to the signal showing higher peaks.

3.1. Damage detection

The direct computation of the Lyapunov exponents and Lyapunov dimension provides the
results in the first two rows of Table I. From a visual inspection of Figure 1, the following
observations can be argued

(1) The stationarity assumption is not satisfied. Indeed, one could pursue the asymptotic
stationarity emphasized in the introduction, but this would require a significant number
of shaker pulses and a huge amount of points to be considered in the time series.

(2) Between each couple of successive shaker pulses there is a sequence of 2000 points that
corresponds to the period of time during which the external excitation is not active.

(3) Several stationary sequences of the type in (2) could be assembled to form a longer time
history.
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Figure 1. Sensor 18. Measurements of the damaged (signal with higher peaks) and
undamaged configurations of the ‘baby-frame’ specimen described in Reference [7].

Only the first 7500 points are drawn.
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Therefore, the same analysis is repeated for each of the six time series obtained by extracting
the stationary sequence between each couple of successive shaker pulses; and for the time series
of gradually increasing length formed by assembling different combinations of the previous
2000-points sequences. The results are again in Table I.

Table I. Positive Lyapunov exponents and Lyapunov dimension from the time series recorded during the
‘baby-frame’ test.

Iterations Positive Lyapunov exponents
Average
neighbour

Lyapunov
dimension Case

First 7500 rows (Figure 1)
7499 0.528 0.434 0.336 0.253 0.158 0.084 0.13 0.112 13.062 Undam.
7499 0.434 0.356 0.283 0.208 0.132 0.059 0.104 12.186 Damaged

Six sequences of 2000 points (rows) between successive shaker pulses
1999 0.372 0.303 0.225 0.162 0.097 0.024 0.020 11.498 Undam.
1999 0.330 0.274 0.210 0.154 0.076 0.017 10.796 Damaged

1999 0.384 0.316 0.236 0.165 0.099 0.039 0.022 11.612 Undam.
1999 0.340 0.270 0.206 0.150 0.083 0.007 0.020 10.825 Damaged

1999 0.365 0.289 0.229 0.156 0.086 0.013 0.026 11.211 Undam.
1999 0.339 0.269 0.209 0.138 0.074 0.021 10.892 Damaged

1999 0.379 0.297 0.234 0.161 0.100 0.026 0.024 11.471 Undam.
1999 0.340 0.275 0.202 0.136 0.072 0.022 10.717 Damaged

1999 0.374 0.309 0.234 0.169 0.105 0.030 0.028 11.479 Undam.
1999 0.333 0.269 0.196 0.138 0.075 0.020 10.745 Damaged

1999 0.368 0.304 0.233 0.165 0.092 0.030 0.022 11.340 Undam.
1999 0.333 0.278 0.205 0.143 0.079 0.022 10.871 Damaged

Two of the six sequences of 2000 points (rows) between successive shaker pulses all together
3999 0.400 0.336 0.262 0.199 0.134 0.062 0.019 12.209 Undam.
3999 0.383 0.315 0.245 0.175 0.107 0.044 0.018 11.658 Damaged

Three of the six sequences of 2000 points (rows) between successive shaker pulses all together
5949 0.421 0.353 0.281 0.207 0.139 0.073 0.005 0.021 12.495 Undam.
5949 0.406 0.334 0.255 0.192 0.127 0.061 0.017 12.080 Damaged

Four of the six sequences of 2000 points (rows) between successive shaker pulses all together
First four sequences
7999 0.439 0.366 0.296 0.223 0.155 0.090 0.019 0.020 12.843 Undam.
7999 0.414 0.348 0.275 0.211 0.140 0.068 0.017 12.345 Damaged

Last four sequences
7999 0.448 0.369 0.301 0.232 0.157 0.088 0.016 0.022 12.886 Undam.
7999 0.412 0.339 0.268 0.206 0.139 0.068 0.017 12.271 Damaged

Five of the six sequences of 2000 points (rows) between successive shaker pulses all together
9949 0.450 0.372 0.303 0.235 0.164 0.100 0.023 0.021 13.033 Undam.
9949 0.423 0.356 0.286 0.217 0.148 0.077 0.005 0.017 12.504 Damaged

All the six sequences of 2000 points (rows) between successive shaker pulses together
11 949 0.455 0.383 0.309 0.238 0.168 0.104 0.031 0.020 13.134 Undam.
11 949 0.439 0.363 0.298 0.230 0.161 0.087 0.018 0.016 12.745 Damaged
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One realizes that the numerical values obtained from the six different time series of 2000
points only present small fluctuations (arising from the Lyapunov exponent randomness)
among each others, that the average neighbour size (which is here assumed as a measure of
accuracy) is nearly the same in all these calculations, and that, in any comparison between
damaged and undamaged cases, the numerical values highlight a model modification by
discrepancies larger than the intrinsic fluctuations. This is well perceived by the Lyapunov
dimension, which is a scalar measure of the higher Lyapunov exponents. Therefore, attention is
only focused on the values of the positive Lyapunov exponents, which determine the Lyapunov
dimension. Their values are those provided in the tables.

As the length N of the assembled time series increases, there is a sort of (slow) convergence of
the limit in Equation (4) to the computed value of the corresponding Lyapunov exponent, and
the Lyapunov dimension can be adopted again as the scalar on which the convergence is
checked.

The values obtained from these computations are instead quite different from those reported
at the end of the first two analyses which included the excitation effects (note that in that case,
the average neighbour size is much higher). However, in all the cases, the model difference is
always detected by the comparison of the results from the damaged and undamaged situations.

The further computations which led to the results reported in Table II were conducted with
the goal of investigating some further properties.

* Scaling the time series by a multiplicative constant (two, in the example) does not change
the Lyapunov invariants; one only detects that the average neighbour size results
multiplied by the same constant. The numerical example is carried out on the first sequence
of 2000 points.

Table II. Further analyses of the ‘baby-frame’ time series.

Iterations Positive Lyapunov exponents
Average
neighbour

Lyapunov
dimension Case

First sequences of 2000 points between successive shaker pulses: original data (from Table I)
1999 0.372 0.303 0.225 0.162 0.097 0.024 0.020 11.498 Undam.
1999 0.330 0.274 0.210 0.154 0.076 0.017 10.796 Damaged

First sequences of 2000 points: original data multiplied by 2
1999 0.372 0.303 0.225 0.162 0.097 0.024 0.040 11.498 Undam.
1999 0.330 0.274 0.210 0.154 0.076 0.034 10.796 Damaged

First sequences of 2000 points: only the first of each sequential couple of points is retained
999 0.328 0.249 0.187 0.129 0.073 0.010 0.023 10.730 Undam.
999 0.327 0.273 0.202 0.131 0.062 0.019 10.548 Damaged

Time series obtained as the assemblage of three sequences of 2000 points each: original data (from Table I)
5949 0.421 0.353 0.281 0.207 0.139 0.073 0.005 0.021 12.495 Undam.
5949 0.406 0.334 0.255 0.192 0.127 0.061 0.017 12.080 Damaged

Sequence of 12 000 points: only the first of each sequential couple of points is retained
(time step multiplied by 2)
5949 0.436 0.355 0.293 0.219 0.149 0.082 0.010 0.022 12.649 Undam.
5949 0.446 0.372 0.304 0.237 0.158 0.085 0.008 0.017 12.659 Damaged
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* Using time histories acquired with different sampling rates could result misleading. Let us
consider again the sequence of 2000 points and let us retain only the first of each sequential
couple of rows. It means that the time step is multiplied by 2.

* Furthermore, one also investigates the sequence assembled to have 12 000 rows, but
retaining only the first of each sequential couple of rows. Since the values are strongly
dependent on the iteration number, one compares the results with the ones achieved with a
sequence of 6000 rows. The dependence of the results on the time step is evident from the
values shown in the last four rows of Table II.

The features observed in this sections allow to formulate the strategy by which the Lyapunov
exponents can be used for damage detection.

(a) Several multi-channel time series are directly measured or assembled in such a way that
the measurement noise and the external noise can be regarded as stationary.

(b) Among the available time series, the records collected in the undamaged situation must be
available and marked as reference case.

(c) The same sampling rate is required.
(d) Subsets of the time series of different lengths are analysed to check the convergence of the

procedure.
(e) At each step, the Lyapunov exponents and dimension of the time series which need to be

classified as damaged or undamaged, are compared with the results achieved from the
time series of the undamaged state.

(f) Damage is detected by identifying a modification in the model invariants.

It must be emphasized that the modification could be masked by special structural features
combined with the specific (unsuitable) distribution of sensors.

3.2. Damage localization

Always with reference to the ‘baby-frame’ test, Table III shows the results obtained by
considering a reduced set of channels. In particular, two clusters of four sensors each are
separately removed. In one case four sensors faraway from the damage are deleted, so that a
model change between the damaged and undamaged situations can still be detected. The second
cluster collects, instead, the four sensors which were located all around the damaged region, so
that its removal takes away also the damage information and makes the two models not

Table III. Positive Lyapunov exponents and Lyapunov dimension obtained by removing a set of channels
from the time series recorded during the ‘baby-frame’ test.

Iterations Positive Lyapunov exponents
Average
neighbour

Lyapunov
dimension Case

Four sequences of 2000 points (rows) & four sensors (columns) faraway from the damaged area are removed
11949 0.310 0.239 0.162 0.078 0.019 8.417 Undamaged
11949 0.280 0.207 0.135 0.051 0.014 7.896 Damaged

Four sequences of 2000 points (rows) & four sensors (columns) all around the damaged area are removed
11949 0.278 0.204 0.134 0.055 0.017 8.005 Undamaged
11949 0.267 0.197 0.121 0.042 0.014 7.732 Damaged
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anymore distinguishable one from the other. In both cases, the Lyapunov dimension decreases,
because information is lost. However, the following remarks allow one to detect when the
removed sensors are associated to damage locations:

* When the columns of sensors faraway from the damage are removed from the time series
matrices, the models difference stays evident, in the sense that the Lyapunov exponents and
dimension computed from the damaged and undamaged cases are still significantly different.

* Removing from the time series the columns of sensors close to the damage also removes the
models difference, in the sense that the Lyapunov exponents and dimension on the
damaged and undamaged case are close to each other.

The resulting strategy for damage localization is therefore summarized in the following steps:

(a) One starts by removing, one by one, the columns of the two multi-channel time series
matrices to be compared (with one of them belonging to the set of the a priori identified
undamaged signals collection).

(b) If the model difference is still detectable in every situation, one proceeds by removing each
couple of columns and by repeating the analysis for these reduced time series.

(c) The process continues until a situation of no model difference is identified. The columns
which were removed as last are the signals recorded by the sensors which are located in
the proximity of the damaged area(s).

It is worth noting that such a strategy is based on a comparison of relative responses: when
locally unchanged, they outline the absence of damage. Special structural configurations,
however, could oblige to localize the damage from the separate identification of different areas
with no damage. A global study on all these areas could still results in relative modifications
when the damaged area is filtering the mutual interaction.

4. VALIDATION OF THE METHOD ON THE ‘PALAZZO GERACI FACADE’ MODEL

To perform a seismic retrofit study, the façade of an ancient noble palace in Palermo, Sicily, was
reproduced by constructing a 1:2 scale masonry specimen. The cracks caused by a series of
pseudo-dynamic tests were filled by mortar injections. Measurements of the dynamic response
of the structure were taken before and after the repair, by using different excitation methods.

The current state of the structure (after the repair) is shown in Figure 2, and we will refer to it
as undamaged. The wall is 8m wide, 4.6m high, and 0.7m thick, and it includes five openings:
the central arch and the four lateral ones. Two columns support a frame in front of the arch.
Each column is expected to vibrate independently under dynamic loading, and therefore it
should be analysed separately. However, this is beyond the scope of the present study, which
will neglect the frame motion.

Figure 2 gives evidence of the repaired damage, which mainly affected the right side of the
structure. In particular, the feet of the specimen presented the main cracks after the first series of
pseudo-dynamic tests. They were therefore strengthened by adding steel brackets at different
levels. The confinement effects moved the damage induced by the successive tests to the upper
part of the structure, in correspondence to the openings.

The available sensors (Figure 2) monitor the accelerations in the direction parallel to the plane
of the façade. Odd numbers are used to identify the sensors located on the right side of the
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specimen. Note that sensor 2 is the only sensor close to a repaired crack in the left side of the
structure. Unfortunately, sensor 10 was not working during the tests on the undamaged
structure, and it is therefore useless for the purpose of a comparison. Hence, the total number of
sensors considered in the analyses is equal to nine.

4.1. Environmental vibration tests

The specimen is currently located outside of the ELSA laboratory of the EU Joint Research
Centre in Ispra, Varese. Therefore, it undergoes environmental excitations, such as wind loading
and traffic. Its response was measured before and after the cracks repair by performing several
environmental vibration tests. The response time histories recorded during two of these tests are
selected to compare the damaged (before the repair) and the undamaged (after the repair) states
of the structure by the computation of the Lyapunov exponents. Each signal collects a total of
60 000 points (Figure 3). Eight windows of 7500 points each are extracted from every signal and
analysed in terms of the previously introduced global measures.

Figure 3 shows, as an example, the accelerations values measured by sensor 5 during the two
tests on the damaged and undamaged structure, respectively. The higher peaks recorded during
the test on the cracked specimen, suggest that a stronger wind was blowing in that day. To
obtain reliable results, one should consider the most homogeneous signal window, i.e. the one
which presents the least number of peaks. However, also the windows containing peaks were
analysed, and they showed an agreement with the other results, once that the main peaks were
removed, thus restoring the stationarity hypothesis.

An attempt to compute the Lyapunov exponents and dimension from the same data was
already made in References [7, 9], and the obtained results are reported in the first two rows of
Table IV for comparison. It may be noticed that these values refer to the sixth signal window,

Figure 2. Undamaged state of the Geraci façade specimen, after the retrofit by mortar injections.
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and that all the 10 sensors were considered in the analyses. Indeed, although sensor 10 was
recognized as not working properly, its measurements were kept anyway as the last column of
the global time series matrices. In this case, the positive values of the Lyapunov exponents in the
two damaged and undamaged situations are only slightly different between each others, with
this difference being evident only for the smallest values. Therefore, damage was detected but
the results were not sufficiently clear to proceed in its localization.

The analyses are repeated in this study by excluding sensor 10. The resulting global time series
matrices have 7500 rows and nine columns instead of 10, being the last one removed. At first,
window 6 was analysed to be able to compare the results with the previously obtained ones.
The difference between the positive Lyapunov exponents in the damaged and undamaged
cases, respectively, becomes significant also for the highest values. However, the average

Table IV. Positive Lyapunov exponents and Lyapunov dimensions computed from the time series
recorded during the ‘Geraci facade’ tests with ambient excitation.

Iterations Positive Lyapunov exponents Average neighbour Lyapunov dimension Case

Data window 6 of 7500 points (rows) and 10 columns of sensors
7499 0.223 0.133 0.033 0.003 5.378 Undamaged
7499 0.222 0.112 0.007 0.007 4.987 Damaged

Data window 6 of 7500 points (rows) and nine columns of sensors
7499 0.158 0.063 0.003 4.052 Undamaged
7499 0.193 0.077 0.007 4.168 Damaged

Data window 4 of 7500 points (rows) and nine columns of sensors
7499 0.153 0.060 0.003 4.039 Undamaged
7499 0.181 0.072 0.005 4.052 Damaged

The column corresponding to sensor 10 is removed in all cases except for the first two rows, which provide a comparison

with the previously obtained results.
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Figure 3. Sensor 5 measurements of: (a) the damaged, i.e. before retrofit; and (b) the
undamaged, i.e. after retrofit, configurations of the Geraci specimen described in

Reference [7]. 60 000 points were collected during each test.
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neighbourhood size also differs between the two cases, thus denoting a relevant non-stationarity.
In particular, the highest value is found in the damaged case, which presents the greatest peak
intensities. This aspect was checked also for the other signal windows, and it was found that the
values of the average neighbourhood size are greatly influenced by the presence of peaks. For
example, very high values were obtained from the seventh window of the signals recorded on the
damaged structure. However, the value in the undamaged case becomes higher than the other
one when the window 5, where the undamaged signals show peaks, is considered.

Therefore, the attention is now shifted on the data window 4, which appears to be the most
homogeneous, i.e. with the least number of peaks. The corresponding values of the average
neighbourhood size are still different for the damaged and undamaged case, but they are now
fairly similar to each other.

The results in Table IV confirm that the positive Lyapunov exponents computed from the
time series of the damaged structure, are greater than the ones obtained for the undamaged case.
Hence, the damage is successfully detected and we can proceed to its localization.

As suggested by the observations made in the previous section, damage can be localized by
removing an increasing number of columns from the global time series matrices associated with
the damaged and undamaged cases, until the difference between the two models is not anymore
detectable. This situation is reached when the columns corresponding to sensors 2; 3; 5; 7; and 9
are removed, while a model change is still detectable for any other combination of the removed
sensors. We recall that sensor 2 is the only accelerometer close to a repaired crack in the left side
of the structure. The remaining, identified odd sensors are located close to the main
concentrations of damage (cracks), in the right side of the structure. Therefore, it can be
concluded that the proposed methodology is also efficient in localizing damage from
environmental measurements of non-linear cracked structures, as long as the peak non-
stationarities are extracted from the signals (Table V).

4.2. Tests with the hammer

Other series of tests were carried out by inferring hammer strokes to the structure at its two
edges, i.e. in proximity of sensor 3, which is located at the middle edge of its right-hand side, and
near sensor 4 at the middle edge of the left-hand side, respectively. As already emphasized in

Table V. Positive Lyapunov exponents and Lyapunov dimensions computed from the time series recorded
during the ‘Geraci facade’ tests, with ambient excitation.

Iterations
Positive Lyapunov

exponents
Average
neighbour

Lyapunov
dimension Case

Data window 4 of 7500 points (rows) and five columns of sensors not sensitive to the damage (1; 4; 6; 7; 8)
are removed
7499 0.256 0.036 0.0014 2.972 Undamaged
7499 0.241 0.004 0.0023 2.668 Damaged

Data window 4 of 7500 points (rows) and five columns of sensors sensitive to the damage (2; 3; 5; 7; 9)
are removed
7499 0.223 0.005 0.0013 2.746 Undamaged
7499 0.222 �0.005 0.0012 2.601 Damaged

The multi-channel time series matrices were modified by removing columns of sensors.
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Reference [7], the distance of the sensors from the excitation source becomes relevant when
perturbing the structural model with a hammer. Indeed, the sensors close to the impact location
provide not reliable measurements, because of the much higher intensities with respect to the
other sensors time series. In Reference [7], a successful damage analysis was achieved by
excluding from the analyses the sensors situated next to the hammer position. Since the records
from sensor 10 are meaningless for the undamaged specimen, only the tests with the hammer
acting on the left edge of the structure (sensor 4) are considered in the present study. The total
number of sensors available for these analyses decreases to seven, and the retained sensors are
1; 2; 3; 5; 7; 8 and 9. Hence, a spectrum of seven Lyapunov exponents is computed.

The hammer strokes occur at random times and their non-stationary effect needs to be
removed from the time histories. After extracting the peaks from both the undamaged and
damaged data, several signal windows of 7500 points each were isolated. Table VI provides the
positive values of the Lyapunov exponents obtained from the data windows 2 and 5, for both
the undamaged and the damaged cases. The structural modification is clearly detected, and the
highest values are found from the data collected on the damaged structure.

Table VII synthesizes the outcome of the damage localization procedure. The results
achievable from the retained sensors still depend on their distance from the excitation source.

Table VI. Positive Lyapunov exponents and Lyapunov dimensions computed from the time series
recorded during the ‘Geraci Palace’ tests, with hammer excitation near the location of sensor 4.

Iterations
Positive Lyapunov

exponents
Average
neighbour

Lyapunov
dimension Case

Data window 2 of 7500 points (rows) and seven columns of sensors
7499 0.119 0.007 0.0033 2.921 Undamaged
7499 0.189 0.038 0.0029 3.371 Damaged

Data window 5 of 7500 points (rows) and seven columns of sensors
7499 0.107 0.0023 2.644 Undamaged
7499 0.203 0.052 0.0024 3.471 Damaged

The multi-channel time series matrices do not include the columns corresponding to the sensors situated next to the

hammer position. Furthermore, sensor 10 is not considered.

Table VII. Positive Lyapunov exponents and Lyapunov dimensions computed from the time series
recorded during the ‘Geraci Palace’ test, with hammer excitation near sensor 4.

Iterations
Positive Lyapunov

exponents
Average
neighbour

Lyapunov
dimension Case

Data window 2 of 7500 points (rows) and three columns of sensors not sensitive to the damage (1; 5; 8) are
removed
7499 0.302 0.052 0.017 3.048 Undamaged
7499 0.223 0.012 0.016 2.741 Damaged

Data window 2 of 7500 points (rows) and three columns of sensors sensitive to the damage (2; 7; 9) are removed
7499 0.263 0.026 0.0016 2.860 Undamaged
7499 0.273 0.035 0.0017 2.925 Damaged

The multi-channel time series matrices were modified by removing columns.
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Therefore, the measurements from sensors 3 and 5 are in this case not sensitive to the damage,
because they are located at the opposite edge with respect to the hammer impact. Sensors 7
and 9, centrally located in the right side of the structure, are instead sensitive to the nearby
damage. Sensor 2 is again correctly identified as the only sensor on the left side of the structure
to be positioned close to a repaired crack. In conclusion, the localization of cracks from the
measurements taken with a hammer is still possible, within the limitations imposed by this
excitation technique.

4.3. Final remarks

Although it was computed for all the considered cases, the Lyapunov dimension revealed itself
not to be as useful as the positive Lyapunov exponents in detecting and localizing the damage.
Its slight modifications between the damaged and undamaged situations do not allow to draw
clear conclusions about the state of the structure. However, this dimension is needed to check if
the amount of information is sufficient for the problem under consideration.

It may also be noticed that, in this section, damage is detected by an increase of the positive
values of the Lyapunov exponents, while the previous results from the ‘baby-frame’ structure
showed a decrease of these values in presence of damage. Once that the undamaged data are
available as reference case, the damage identification is however possible by observing a positive
or negative model modification. This suggests to introduce, as damage index, the absolute value
of the difference between the positive Lyapunov exponents associated with the damaged and
undamaged situations, respectively. The relationship of this index with the damage intensity
needs to be further investigated.

The authors wanted to first explain the reason of the opposite behaviour of the positive
Lyapunov exponents values in the two considered cases of study. One observes that also the
computed average neighbourhood sizes show the same discrepancy: they decrease in presence of
damage for the ‘baby-frame’ case, while they increase for the cracked ‘Geraci façade’ specimen.
Therefore, the different behaviour depends on the relative intensities of the sampled signals,
intensities which of course are altered by the presence of damage.

5. CONCLUSIONS

This paper approaches time series analysis in the framework of non-linearity, where the
invariant measures are the Lyapunov exponents and dimension. The assumption is that the
stochastic components are a small contamination of an essentially deterministic non-linear
process.

The Whitney’s embedding theorem ensures that a set of different variables obtained at the
same time can form an embedding space. Thus, multi-channel measurements are recorded, i.e. a
set of different variables are measured simultaneously for a single time period. The
measurements are then repeated along the system lifetime. Of course, such a set of variables
must be sufficient for a complete reconstruction of the system state-space.

The Lyapunov exponents are computed over the resulting multivariate time series. They show
to be invariant until a damage is detected. The analysis of reduced subsets of the time series can
then be performed to localize the damage itself.
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