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Abstract

Proteins often exert their function by binding to other cellular partners. The hot spots are

key residues for protein-protein binding. Their identificationmay shed light on the impact

of disease associated mutations on protein complexes and help design protein-protein

interaction inhibitors for therapy. Unfortunately, current machine learning methods to

predict hot spots, suffer from limitations caused by gross errors in the data matrices.

Here, we present a novel data pre-processing pipeline that overcomes this problem by

recovering a low rankmatrix with reduced noise using Robust Principal Component Anal-

ysis. Application to existing databases shows the predictive power of themethod.

K E YWORD S

F1-score, feature selection, hot spot residues, imbalanced datasets, machine learning,
noiseless data matrices, protein-protein interactions, robust PCA (principal component
analysis)

1 | INTRODUCTION

Proteins rarely act alone.1,2 Most often, they interact with other proteins

and ligands to carry out biological processes, from metabolism to signal

transduction, to cellular motion and to synaptic transmission.3,4 Protein-

protein interactions (PPIs) occur in specific areas of the protein surface

known as protein-protein interfaces. Although PPIs usually involve many

residues on two opposite interfaces,5,6 often only a few residues (the

so-called hot spots) contribute significantly to the overall free energy of

binding (ΔGbinding).
7 Mutations of these hot spots impact PPIs and entire

biological pathways, leading to severe diseases including cancer and var-

ious neurological disorders.8 Drug molecules that interact with these hot
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spots may interfere with PPIs and with the downstream pathways they

mediate.9,10 Thus, predicting hot spots is crucial to understand the effect

of disease associated mutations on PPIs and drug discovery.11

Experimental Alanine Scanning Mutagenesis (ASM) identifies hot

spots experimentally by systematically mutating each interface residue

to alanine and measuring the change in ΔGbinding (ΔΔGbinding).
7,12 If

ΔΔGbinding ≥ 2.0 kcal/mol, the residue is defined as a hot spot, other-

wise as a “null spot”.7,13 Hot spots tend to be highly enriched in disease

causing mutations as compared to null spots.14,15 These mutations sig-

nificantly affect the protein structure, function and protein-protein

complex thermodynamics when occurring in hot spots.14 Experimental

ASM is rather expensive and time consuming. Alternatively, computa-

tional approaches may also be used.16,17 Some of them rely on different

scoring functions (either based on energy or statistical functions)18,19 or

on molecular dynamic simulations.20-23 These approaches have so far

turned out to be partially successful, identifying accurately some, but

not all hot spots in a variety of protein–protein complexes.24,25 In the

past years, approaches based on machine learning algorithms including

Random Forests,26 Support Vector Machines,27 Neural Networks,28

Ensemble Learning,29 Bayesian networks,30,31 have become quite pop-

ular to predict hot spots.32-39 These methods use a data matrix that

contains protein sequence- and structure-based features. Often such

data matrices contain entries that can be corrupted by errors associated

with experimental issues, computational issues and/or human over-

sight.40,41 Of course, this adversely affects the predictive power of the

current hot spot prediction algorithms. Therefore, it would be highly

desirable to use an approach devoid of this problem. Here, we address

this issue by pre-processing the data matrix using robust principal com-

ponent analysis (RPCA). RPCA is a variant of the traditional PCA

method and it is particularly useful for data matrices that may contain

corrupted entries, such as the ones considered here. In reference [41],

the authors showed that a noisy matrix D can be decomposed exactly

into a low rank noiseless matrix A and a sparse matrix S, regardless of

the number of corrupted or missing entries (ie, robustly). The thus-

obtained low rank matrix is then the new data matrix for the identifica-

tion of hot spots. We apply this method, that we call RBHS, or RPCA

Based approach for PPI Hot Spot prediction, to the curated benchmark

datasets HB-34 and BID-18.24 RBHS turns out to outperform several

state-of-the-art approaches for hot spot prediction.

2 | MATERIALS AND METHODS

We first describe the preparation of the dataset in section 2.1 and

then the steps of our approach are explained in section 2.2. The final

output of the workflow is a set of metrics that describes the predic-

tive power of the approach used (see section 3).

2.1 | Preparation of the data for the workflow:
Datasets and Features

We reproduced the data matrix for our workflow similar to ref. [24].

We used the HB-34 dataset24 to construct the training data matrix,

whereas the BID-18 dataset was used to construct the test data

matrix.24 HB-34 consists of 34 protein complexes with 313 character-

ized interface residues, out of which 133 are hot spots. BID-18

includes 18 protein complexes and 126 interface residues, out of

which 39 are hot spots. The authors of the benchmark HB-34

dataset24 extracted the alanine-mutation data from four databases:

Alanine scanning energetics (ASEdb),42 SKEMPI database,43 Ab+

data,44 and Alexov_sDB.45 Then, they excluded the complexes pre-

sent in the BID dataset46 and removed the redundant proteins,

obtaining a benchmark of 34 protein complexes (HB-34). Afterwards,

the authors generated an independent test dataset, BID-18, by

selecting complexes from the BID database that are non-homologous

to those in the training dataset (HB-34). Therefore, the authors of ref-

erence [24] stated that the HB-34 and BID-18 datasets are

completely independent. However, we have further analyzed the two

datasets using the CD-HIT-2D webserver,47 which searches for pro-

tein sequences that are similar within the following, stringent criteria:

the sequence identity should be larger than 40% and the coverage

larger than 20% of the whole sequence. No protein with these charac-

teristics was identified, with the exception of the coagulation factor

VIIA. However, this protein forms a complex with the soluble tissue

factor (PDB code 1DAN) in the BID-18 dataset, and with the peptide

exosite inhibitor E-76 (PDB code 1DVA) in the HB-34 dataset. The

two protein partners are not evolutionarily related (sequence identity

lower than 20% and sequence coverage below 20%). Therefore, we

do not expect our results to be affected by the presence of the coagu-

lation factor VIIA protein in common between the two datasets.

Next, we constructed the data matrix D for the HB-34 and BID-

18 datasets by computing 58 features for all the residues in HB-34

and BID-18. These include several structural features and sequence-

based features, as it is common in most machine learning-based

methods for hot spot prediction. The structural features are: (i) six

physicochemical features obtained from the AAindex database48;

(ii) five solvent accessible area features,49 computed using Dictionary

of Protein Secondary Structure50; and (iii) seven solvent exposure fea-

tures, computed using hsexpo.51 The sequence features include:

(a) twenty position-specific score matrix (PSSM) profiles, calculated

using PSI-BLAST52; and (b) twenty block substitution matrix based

features, computed using Blosum62.53 Consequently, there is a total

of 58 features. Hence, the training data matrix obtained is of size

58 features × 313 interface residues and the testing data matrix is of

size 58 × 126.

2.2 | Workflow

After calculating the features and obtaining the training and test data

matrices, the workflow (Figure 1) involves data pre-processing (Step

1 of the workflow), training and validating suitable machine learning

models (Step 2 of the workflow), and applying the models on test data

and predicting the output labels (Step 3 of the workflow). The steps

of the workflow are described below:

1. RBHS: This is our novel pre-processing pipeline for recovering

a data matrix with reduced noise from a noisy data matrix and then
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performing feature selection on the reduced noise matrix. The RBHS

pipeline for data pre-processing consists of the following steps:

a. We normalize the data matrices D built from the training dataset

(HB-34) and from the testing dataset (BID-18), respectively. Nor-

malization is commonly done when the values of different features

in the data matrix have different scales; this is the case here. We

tested various normalization techniques, as in reference [54]. We

used mean variance normalization on our data matrices because it

gave the best results among the different techniques tested. The

final results using this approach are reported in Table 2.

b. We apply RPCA to both the normalized data matrices D and obtain

the corresponding matrices A that contain reduced noise. In partic-

ular, RPCA splits D, which may have corrupted entries, into a low

rank matrix A and a sparse matrix S (D = A + S).41 Considering a

matrix of size m × n (where m is the number of rows and n is the

number of columns) with m < n, then the matrix is full rank when

all m rows are linearly independent* and its rank is m. Instead, if

m > n, the matrix is full rank when all n columns are linearly inde-

pendent and its rank is n. The matrix that does not have full rank is

a low rank matrix,55 whereas the sparse matrix is a matrix in which

most elements are zero,56 except for those that correspond to the

putative corrupted entries.

Among several approaches available to solve RPCA,57 we use the

Principal Component Pursuit method described in.41 We calculate

A and S by solving the following optimization problem:(1)

minA,S Aj jj j� + λ Sj jj j1,
subject toD=A+ S

ð1Þ

Here, k.k* is the nuclear norm (i.e., the sum of the singular values

of a matrix) of matrix A, k.k1 is the L1-norm (i.e., the sum of the

absolute values of the entries) of matrix S and λ is a regularization

parameter. The value of λ was experimentally determined to obtain

the best performance values (metrics are specified in Step 3 of the

workflow). The details to solve Equation 1 can be found in.58 As

can be seen in Figure 2, the original matrix D is corrupted by noise

(shown as random, spike-like elements in D). This noise is inherent

to the sequence- and structure-based data of the complexes

included in the matrix. The matrix A recovered from D using RPCA

exhibits reduced noise. Moreover, the matrix S is sparse. There-

fore, S can be discarded and A can be used as the new data matrix

for both training and test sets.

c. Perform feature selection on matrices A, to obtain reduced matri-

ces A
0
. The importance of each of the features in the training and

test matrices A was calculated using the SciKit module in refer-

ence [59] and the Extreme Gradient Boosting (XGB) algorithm.60

Then, we select those features in both A matrices, whose feature

importance is above an empirically determined threshold. To

determine this threshold, we observe whether the performance

of the XGB classifier (in terms of accuracy) increases or decreases

with the number of selected features. Then, the value of feature

importance at which we observe maximum value of accuracy is

set as the threshold for feature selection. The plot of accuracy

values versus the threshold values can be seen in Figure 3. Based

on the plot, we conclude that the optimal value of the threshold

is 0.008. Nonetheless, the accuracy-threshold curve is rather

rough and thus other threshold values may also lead to accurate

results. As shown in the Supplementary Information (Table S1),

modifying the threshold by a small extent does not impact dra-

matically the results. Indeed, when using as threshold 0.009

instead of 0.008, the F1-score decreases by only 0.02 with RBHS

+XGB and by 0.05 or less with RBHS combined with other classi-

fiers (see Table S1). This is also the case when using cutoffs

F IGURE 1 Workflow illustrating the steps of the RBHS approach
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below 0.016, which have the next best-ranked accuracies

(see Fig. 3). The F1-score of RBHS+XGB turns out to decrease by

0.08 or less (Table S2). Thus, choosing thresholds with similar

accuracies does not affect largely the results. Instead, choosing

cutoff values larger than 0.016, which have lower accuracies (see

Fig. 3), decreases significantly the performance of the RBHS

+XGB method (Table S2). Altogether, our results suggest that,

although several thresholds might be chosen, feature selection is

an important step in our workflow to improve hot spot predic-

tion. Feature selection identifies the effective feature subspace

for building our prediction models, obtaining two new data matri-

ces A
0
. The reduced matrix A

0
consists of 51 features, instead of

the original 58.

2. Training and validation of classification algorithms on the

training data set matrix A
0
. We train popular classifiers like Support

Vector Machines (SVM),27 Gradient Boosting Machines (GBM),61

Extreme Gradient Boosting (XGB)60 and Random Forests62 on the

training data matrix A
0
. Next, we use 5-fold cross validation for

hyper-parameter tuning of the trained classifiers, using

SciKitlearn.63,64 In such validation, the training data is divided into

five subsets. One of the five subsets is used as the validation set and

the other four are put together to form a training set; this method is

repeated five times. Hence, every data point is in the validation set

exactly once, and in the training set four times. During the 5-fold

cross validation the F1-score is used as the scoring parameter to

assess the total effectiveness of our model. The F1-score calculated

each time is then averaged over all five iterations. Besides hyper-

parameter tuning, cross validation helps to reduce overfitting on the

training set, because the dataset is split into multiple folds/subsets

and the algorithm is trained on different folds each time. In this way,

the model becomes more generalizable.

3. Applying the validated classifiers to the test dataset matrix A
0
.

We apply the validated models on A
0
(Figure 1) to calculate labels for

the residues in the test set. If the label = 1, the residue is classified as

hot spot, if label = 0, it is a null spot. The computationally predicted

hot and null spot labels are compared with the experimentally known

labels and the following performance metrics are calculated:

Recall =
TP

TP+FN
, ð2Þ

Specificity =
TN

TN+FP
, ð3Þ

Accuracy =
TP+TN

TP+FP+FN+TN
, ð4Þ

Precision=
TP

TP+FP
, ð5Þ

F1−Score =
2TP

2TP+ FP+FN
, ð6Þ

Matthew0sCorrelation Coefficient MCCð Þ
=

TP×TN−FP×FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP+FPð Þ TP+FNð Þ TN+FNð Þp ,

ð7Þ

Here, TP, FP, TN, and FN represent the number of true positives

(predicted hot spot residues are indeed known experimentally to be

F IGURE 3 Accuracy vs threshold values plot for feature selection
using Extreme Gradient Boosting (XGB). The highest value of accuracy
of the XGB classifier is at the threshold value 0.008. All features with
feature importance less than 0.008 are thus discarded from the data
matrix [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 2 Robust principal component analysis (RPCA) applied to the data matrix D of the training set HB-34. D contains entries corrupted
by noise that appear as random, spike-like elements in the matrix, A is the matrix with reduced noise obtained from D and S is the sparse matrix
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so), false positives (predicted hot spot residues are experimentally null

spots), true negatives (predicted null spots are indeed so) and false

negatives (predicted null spots are actual hot spots).

3 | RESULTS

We compare the performance of the classification algorithms

specified in the workflow† to all the three training data matri-

ces: the original data matrix D, the matrix obtained after apply-

ing Principal Component Analysis (PCA)‡65 on D and the

reduced matrix A
0
(calculated in Section 2.2) obtained after per-

forming RBHS on D.

Next, we analyze the performance of the classifiers in terms of

the metrics§ described in step 3 of the workflow in section 2.2. To

identify the best metric for this analysis, we notice that the two

datasets have imbalanced classes (in that they are biased towards null

spots): indeed, as mentioned in the Methods Section, HB-34 has

133 hotspots and 180 null spots and BID-18 has 39 hot spots and

87 null spots. For learning from imbalanced datasets, one needs to

improve recall (Equation (2)), which provides information about a clas-

sifier's performance with respect to false negatives, without hurting

the precision metric (Equation (5)), which deals with false positives.

Unfortunately, trying to reach this goal can often be challenging, since

when increasing the true positives for the minority class (in our case

the class of hot spots), the number of false positives can also increase,

reducing precision.66 The problem is greatly alleviated by using a met-

ric that combines the trade-offs of both precision and recall.66 This is

their harmonic mean, i.e., the F1-score. It reaches its highest value at

1 (perfect precision and recall) and the lowest at 0. Thus, the F1-score

was used as the scoring parameter for tuning the hyperparameters

and also to assess the performance of our approach.

Table 1 shows the performance of the classifiers (specified in sec-

tion 2.2) upon implementing 5-fold cross validation on the training

dataset HB-34. Using RBHS with SVM and GBM classifiers and Original

Data with GBM, yields the highest F1-score (0.66) while PCA+SVM

and PCA+RF exhibit the lowest value (0.48 and 0.52, respectively).

Next, the trained models were applied on the testing data BID-18

to predict class labels for test data (Table 2). The best F1-score value

on the test set is obtained by RBHS+XGB (0.66) and RBHS+SVM

TABLE 1 Performance comparison of
various methods on the training dataset
HB-34. These values are computed in
Step 2 of our workflow in Figure 1

Method Recall Specificity Accuracy Precision F1-Score MCC

Original Data+ SVM 0.59 0.80 0.71 0.69 0.63 0.40

PCA + SVM 0.36 0.89 0.67 0.72 0.48 0.30

RBHS+SVM 0.67 0.74 0.71 0.66 0.66 0.41

Original Data+GBM 0.65 0.78 0.72 0.69 0.66 0.43

PCA + GBM 0.58 0.71 0.65 0.60 0.59 0.29

RBHS+GBM 0.67 0.73 0.71 0.65 0.66 0.40

Original Data+XGB 0.57 0.74 0.67 0.62 0.59 0.32

PCA + XGB 0.61 0.71 0.67 0.61 0.60 0.31

RBHS+XGB 0.56 0.76 0.68 0.64 0.59 0.33

Original Data+RF 0.51 0.79 0.67 0.65 0.57 0.31

PCA + RF 0.53 0.74 0.67 0.57 0.52 0.24

RBHS+RF 0.56 0.78 0.68 0.65 0.60 0.34

TABLE 2 Performance of different
methods on the testing dataset BID-18.
These values are computed in Step 3 of
our workflow in Figure 1

Method Recall Specificity Accuracy Precision F1-Score MCC

Original Data+ SVM 0.79 0.66 0.70 0.51 0.62 0.42

PCA + SVM 0.59 0.67 0.71 0.44 0.51 0.24

RBHS+SVM 0.80 0.69 0.72 0.53 0.64 0.45

Original Data+GBM 0.54 0.66 0.62 0.41 0.47 0.18

PCA + GBM 0.54 0.64 0.61 0.40 0.46 0.17

RBHS+GBM 0.69 0.76 0.74 0.56 0.62 0.43

Original Data+XGB 0.54 0.78 0.71 0.53 0.53 0.32

PCA + XGB 0.59 0.67 0.64 0.44 0.51 0.24

RBHS+XGB 0.72 0.79 0.77 0.61 0.66 0.49

Original Data+RF 0.54 0.80 0.72 0.55 0.54 0.34

PCA + RF 0.56 0.76 0.70 0.51 0.54 0.31

RBHS+RF 0.67 0.78 0.75 0.58 0.62 0.43
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(0.64), while the lowest value by Original Data+GBM (0.47) and PCA

+GBM (0.46). Thus, RBHS performs better than PCA and Original

data, regardless of the classifier being used. We now compare the

results of training with those of testing. There is a significant increase

in F1 scores for RBHS+XGB and RBHS+RF during testing. Instead, for

RBHS+SVM, the F1 score does not change and it slightly decreases

for RBHS+GBM, as shown in Table 2. Based on these observations,

we conclude that there is no overfitting on the training data when

using RBHS. In contrast, the F1-scores of classifiers applied to the

original data during testing (Table 2) are overall lower than those of

the training set (Table 1). Most likely, this is caused by the overfitting

of the classifiers on the original training data. The same is observed in

case of PCA, except in case of PCA+SVM, where there is a slight

increase of 0.03 during testing.

As shown in Figure 2, matrix D contains a significant amount of

noise, and thus the PCA algorithm generates a noisy representation of

D. Classifiers utilizing representations based on PCA and on the original

matrix D tend to overfit on the noisy training data matrix and perform

poorly on the test data, as also observed in reference [41]. In contrast,

our approach uses the reduced noise matrix A
0
, that has been obtained

from the noisy matrix D using RBHS (Section 2.2). Hence, the model

does not overfit on the training data and works well during testing.

F IGURE 4 ROC (Receiver Operating Characteristic) Curves to
compare the performance of all the methods on the independent test
set along with the AUC (Area under the curve) values for each
method [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 Precision-Recall
Curves of different methods
applied on the independent test
set. The F1-Score values for each
method are also reported [Color
figure can be viewed at
wileyonlinelibrary.com]
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Next, we calculate the receiver operating characteristic (ROC)

curve along with the Area Under the ROC curve (AUROC) (Figure 4) in

order to measure discrimination (i.e., the ability of the algorithm to cor-

rectly identify those residues which are hot spots from those which are

not). We use also the Precision-Recall curves, as they are more informa-

tive in case of imbalanced datasets67 (Figure 5 and Table 2).

Table 2 along with the ROC curves (Figure 4) and the Precision-

Recall curves (Figure 5) allow us to identify the best classifier to be

used with RBHS. We can see from Table 2 and the precision-recall

curves that RBHS+SVM (0.8) performs best for recall and RBHS+XGB

(0.61) performs best for precision. The latter method, when applied to

the test set BID-18, is also the best for F1-score (0.66), prediction

accuracy (0.77) and MCC (0.49). It performs second best for specific-

ity (0.79), after Original Data+RF (0.80). Hence, RBHS, along with

XGB classifier, shows a reliable performance in identifying hot spots.

Although the results presented here are based on the training

matrix constructed by computing 58 features from the state-of-the-

art HB-34 dataset, we performed additional tests using other training

matrices, generated by artificially introducing Gaussian noise (with

zero mean and either 1 or 10 standard deviation). This noise is ran-

domly added to an increasing number of locations in the data matrix,

resulting in a percentage of corrupted entries ranging between 1 and

50% (see Supplementary Information, Table S3). These tests showed

that RBHS+XGB is still capable to predict hotspots for up to 20%

corrupted entries when using a standard deviation of the added

Gaussian noise of 10 (see Supplementary Information, Table S3).

Finally, we compare the performance of RBHS+XGB on the inde-

pendent test set BID-18 with other popular hot spot prediction algo-

rithms, including HEP,68 PredHS-SVM,36 KFC2a and KFC2b,35

PCRPi,44 MINERVA,69 APIS,34 KFC,70 Robetta,19 and FOLDEF18

(Table 3). The performance metric values on the BID-18 dataset for

the aforementioned methods is taken from.24 Our methodology turns

out to be in the top three after HEP68 and PredHS-SVM,36 when con-

sidering the F1-score. Moreover, it also performs second best in case

of Recall values and third best in terms of Accuracy and MCC values.

As mentioned before, F1-Score is the best indicator for the pre-

dictive power of the methods with imbalance datasets,66 like in our

case. Hence, the results in Table 3 establish unambiguously the pre-

dictive power of the RBHS method presented here.

4 | DISCUSSION

Protein-protein interactions (PPI) databases, as other biological data

repositories, often contain noise caused by gross errors associated

with computational issues and/or human oversight. This affects signif-

icantly the quality of predictions made based on these data. There-

fore, it is very important to identify methodologies which drastically

reduce the level of noise. So far, the existing machine learning-based

hot spot predictors have not addressed this important issue: their pre-

dictions are based on data matrices that are inherently noisy. Here,

we present a novel, machine learning-based pre-processing technique

for hot spot prediction, called Robust Principal Component Analysis-

based Prediction of PPI Hot spots (RBHS). This recovers a matrix with

reduced noise from a corrupted data matrix by using RPCA.41 RBHS is

then used with different classifiers, including Support Vector

Machines (SVM), Gradient Boosting Machines (GBM), Extreme Gradi-

ent Boosting (XGB) and Random Forests (RF) (Table 1 and Table 2).

We were able to show that RBHS, when combined with the Extreme

Gradient Boosting (XGB) classifier, is a rather reliable approach:

indeed, the data matrices obtained from the HB-3424 and BID-1824

PPI databases contained reduced noise. The approach applied on the

independent test set BID-18 identified as many as 77% of the known

hot spots of the complexes investigated,46 as shown in Table 2. Argu-

ably, our approach emerges as the method of choice for hot spot pre-

diction in the frequent cases where there is a highly noisy data matrix,

because our preprocessing pipeline includes RPCA. The authors of

reference [41] have demonstrated mathematically that RPCA is a

method of choice for recovering a low rank matrix from a highly noisy

data matrix, regardless of the number of corrupt or missing entries.

5 | CONCLUSION

Machine learning is a powerful tool for the analysis of hot-spots in

protein-protein complexes.32-39 This analysis is very important from a

medical and pharmacological perspective, because hot spot residues

may undergo mutations in a variety of diseases and can be used to

design PPI inhibitors. Here, we have presented a machine learning

method that increases the reliability of the predictions, by reducing

TABLE 3 Comparison of our
approach (RBHS) when used with XGB
classifier, with other state of the art
methods for hot spot prediction. For
each metric, the top scoring method is
highlighted in blue, the second one in
green and the third one in yellow

Method Recall Specificity Accuracy Precision F1-Score MCC

PredHS-SVM 0.79 0.93 0.83 0.59 0.68 0.57

HEP 0.60 0.76 0.79 0.84 0.70 0.56

RBHS+XGB 0.72 0.79 0.77 0.61 0.66 0.49

KFC2a 0.55 0.73 0.73 0.74 0.63 0.44

KFC2b 0.64 0.87 0.77 0.55 0.60 0.44

MINERVA 0.65 0.90 0.76 0.44 0.52 0.38

APIS 0.57 0.76 0.75 0.72 0.64 0.45

Robetta 0.52 0.88 0.72 0.33 0.41 0.25

FOLDEF 0.48 0.88 0.69 0.26 0.34 0.17

PCRPi 0.51 0.75 0.69 0.39 0.44 0.25

KFC 0.48 0.85 0.69 0.31 0.38 0.19
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the noise that is frequently present in the data matrices. Further

improvements of the predictive power of the approach may include

the application of semi-supervised learning based approaches to

leverage the large amount of unlabeled data available.
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ENDNOTES

* A set of vectors is called linearly independent if no vector in the set can

be expressed as a linear combination of the other vectors in the set.
† These include Support Vector Machines (SVM), Gradient Boosting

Machines (GBM), Extreme Gradient Boosting (XGB) and Random For-

ests (RF).
‡ For PCA representation, the principal components explaining 95% vari-

ance were chosen, after analyzing the results.
§ These include: Recall, Specificity, accuracy, precision, Mathew's Correla-

tion Constant (MCC) and the F1-score.
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