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Excitation Mechanisms of Whispering Gallery Modes with
Direct Light Scattering

Xavier Zambrana-Puyalto,* Davide D’Ambrosio, and Gianluca Gagliardi

In optics, whispering gallery modes (WGMs) are modes of light that arise in
cylindrically symmetric structures. Their intensity profile is strongly confined
around the interface of the structure, and their Q-factors are some of the
highest ever measured with light. Here, the physical mechanisms governing
the coupling of a tangential beam into a WGM of a microsphere are
analytically demonstrated. For that, Mie theory and the symmetries of light are
made use of. It is demonstrated that the coupling mechanism is not related to
any evanescent tunnelling effect. Rather, it is shown that it has to do with the
angular momentum matching between the available inner WGMs of the
sphere and the angular momentum content of the incident beam. The model
is valid for any homogeneous sphere, for any wavelength, and for any incident
cylindrically symmetric beam, focused or not. It quantitatively predicts the
optical coupling efficiency to the resonator for any tangential position of the
incident beam. And it sketches four different regimes of interaction depending
on the beam position with respect to the sphere, properly matching
experimental resonance spectra observed with free-space laser scattering.

1. Introduction

The study of optical resonances in microresonators is a well-
established field with a great number of applications in lasers,
quantum optomechanics, and sensing. These optical resonances
are generally known as whispering gallery modes (WGMs)[1] or
morphology-dependent resonances (MDR).[2] It is well accepted
that a WGMmode is the first root q = 1 of a resonant multipolar
mode with a large multipolar order j, and an azimuthal number
m = j.[1] Although WGMs have a huge number of applica-
tions, a rigorous analytical description of the coupling mech-
anism between these resonant modes and the excitation field
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(either in the form of off-axis Gaussian
beam, or evanescent coupling) has never
been given. In this article we study the
excitation ofWGMs with direct light, that
is, the WGMs are excited with a focused
off-axis Gaussian beam impinging on a
dielectric sphere (e.g., a solid particle, a
droplet). The state-of-the-art theoretical
description of the coupling mechanism
between a microsphere and a tangen-
tially focused Gaussian beam is given in
refs. [3–6]. In this particular description,
it is intuitively understood that a portion
of the incoming beam is evanescently
transmitted to the interior of the particle.
This light stays trapped inside of the par-
ticle and keeps reflecting back and forth.
At resonance, the reflections are in phase
with each other. Thus, the amplitude
of the field increases very prominently
inside the surface, and just outside of it.
Part of this huge field amplitude escapes

the sphere and can be detected in the far field. Note that the
description above is based on scalar wave optics. However, in
the state-of-the-art formal description, the vectorial Mie theory is
used to compute the light–matter interaction. In this approach,
the beam-shape coefficients for the tangential focused Gaussian
beam are computed with the so-called localized approximation.
The theory has been able to describe different experimental
works, even those where the optical excitation was done by an
evanescent field.[7,8] Yet, a fully rigorous analytical interpretation
that reconciles the physical intuition with the vectorial analytical
description still needs to be provided.
In this work, we set out to give an analytical explanation of the

WGM coupling mechanism for the tangential free-space excita-
tion scheme. To do that, we use Mie theory. We consider a Gaus-
sian beam propagating along the z direction and focused with a
lens with a certain numerical aperture (NA) (see Figure 1). The
beam is focused onto the center of the particle. We compute the
beam-shape coefficients of the focused Gaussian beam thanks
to the semi-analytical formulas put forward in refs. [9–11]. The
semi-analytical formalism is valid for any cylindrically symmetric
beam. Then, we translate the beam a certain distance d along a
certain direction u. We compute the new beam-shape coefficients
with respect to the new position. For a tangential excitation, we
make u = ŷ. Because the initial beam has a linear momentum
along the z axis and the displacement is along the y axis, then
the beam acquires a non-negligible transverse AM content along
the x axis.[12,13] In fact, we observe that the fundamental reason
why an off-axis Gaussian can excite a WGM is the angular
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Figure 1. Schematics of the problem. A cylindrically symmetric beam
propagating along the z axis is displaced in the y direction. The beam,
which is focused by a lens, tangentially hits the surface of a spherical mi-
croresonator and excites a WGM which revolves around the x axis.

momentum (AM) matching between the beam and the WGM
of the sphere. Intuitively, the WGMs of a sphere of radius R and
relative index of refraction nr happen for multipolar modes of the
order j ⪆ 2𝜋R∕𝜆.[14] And thanks to the displacement d = dŷ, the
beam gets an AM along the x axis ⟨Jx⟩ ≈ 2𝜋d∕𝜆. That means that
the beam can couple to the WGMs with mx = j ⪆ 2𝜋R∕𝜆 when
d ≈ R. Our semi-analytical calculations allow us to calculate
the exact coupling efficiency of the beam-WGM interaction for
any 𝜆, R, nr , d,NA. We differentiate between four interaction
regimes, depending on their R∕d value. Using an off-axis Gaus-
sian beam focused with an NA = 0.4 and displaced by d = 82 μm,
we numerically sort them out as (see Figure 2):

1. R < 0.93d. In this regime, the interaction is null. The beam
has been displaced too far apart from the sphere, and as a re-
sult there is no scattering.

2. 0.93d ≤ R < 0.98d. The axis of symmetry of the beam is out-
side of the surface of the sphere, yet the beam interacts with
the particle through the tail of its transverse intensity distri-
bution. The scattering is almost null except for a set of very
sharp resonant conditions, which yield almost pure WGMs.
The incident direction of the beam is not modified.

3. 0.98d ≤ R < 1.01d. The axis of symmetry of the beam is tan-
gential or slightly inside/outside of the sphere. As a result,
most of the beam (but not all), is blocked by the sphere. In
this regime, the scattering is as large as it can get. The incident
beam is heavily distorted by the sphere. The incident direction
of the beam is modified, and some new relevant scattering di-
rections pop up. SomeWGMs are excited, but they are hidden
under the superposition of lots of modes, thus making it dif-
ficult to observe them.

4. R ≥ 1.01d. The whole beam is blocked by the sphere. The in-
cident direction of the beam is completely modified by the
sphere and steered toward another direction.

In Figure 2, we have plotted the scattering cross section 𝜎sca as
a function of R∕d to stress the fact that the four different regimes
can always be found regardless of the wavelength of the laser,
the size/material of the particle and the NA of the focusing lens.
That is, 𝜆, R, nr ,NA affect the numeric R∕d definition of the four
regimes, but it does not affect their fundamental nature. After
all, the nature of these four regimes is purely geometrical, and
the geometry of the problem is defined by these four parameters.

Our semi-analytical calculations not only allow us to fully un-
derstand the mechanism behind WGM excitation with off-axis
beams, but also they can be used to match the experimental
data measured by some of the authors in previous works on
liquid droplet microresonators.[15–19] Our results have huge
implications in the field of microresonators, as they allow us
to predict and characterize the exact WGMs that can be excited
depending on the properties of the beam and its alignment.
Note, though, that scope of this work is to develop a theoretical
formalism. A separate work to demonstrate the match between
our model and the experimental data is underway, and it will be
presented elsewhere.

2. Theory

2.1. Generalized Lorenz–Mie Theory

We set out to theoretically describe the interaction problem be-
tween an off-axis focusedGaussian beamand amicroresonator. A
sketch of the problem that we are describing is shown in Figure 1.
Unless explicitly mentioned otherwise, the wavelength is set to
𝜆 = 640 nm. We describe this interaction within the framework
of Mie theory (also known as Generalized Lorenz–Mie Theory,
GLMT[2]), which is one of the few analytical solutions of Maxwell
equations. In Mie theory, the electromagnetic (EM) field (Etot) is
divided into three: The incident field Ei, the scattered field Esca,
and the internal field Eint. As a result, Etot = Ei + Esca + Eint. All
three fields are expressed with respect to a reference frame that is
placed in the center of the sphere. The key variable of the problem
is Ei. Experimentally, it is the easiest variable to manipulate. And
theoretically, once the mathematical expression of Ei has been
found, it is straightforward to find the expressions for Esca and
Eint. Here, we are interested in finding the mathematical descrip-
tion of an off-axis focused Gaussian beam, yet the analytical de-
scription that will follow is valid for any cylindrically symmetric
beam. To do that, first we obtain the multipolar decomposition
of an on-axis focused cylindrically symmetric beam. And then,
we apply a translation to the beam, and find the multipolar de-
composition with respect to the initial (nondisplaced) reference
frame. That is, we express all our results with respect to a multi-
polar basis[20–22] centred at center of the sphere. We express the
multipolar basis as {A(y)

jmz
}, with (y) = (e) being the electric multi-

poles and (y) = (m) the magnetic ones. A(y)
jmz

are eigenstates of the

operators: AM squared (J2), the projection of the AM momen-
tum operator along the z axis (Jz), and parity Π. Their eigenval-
ues are J2A(y)

jmz
= j(j + 1)A(y)

jmz
, JzA

(y)
jmz

= mzA
(y)
jmz
, ΠA(e)

jmz
= (−1)jA(e)

jmz
,

and ΠA(m)
jmz

= (−1)j+1A(m)
jmz
. Then, a general incident beam can

be decomposed into multipoles as Ei =
∑∞

j=1
∑j

mz=−j
𝛼
(e)
j,mz

A(e)
jmz

+
𝛼
(m)
j,mz

A(m)
jmz
, where 𝛼(y)j,mz

are the so-called beam-shape coefficients.[2]

As mentioned before, once the expression of the incident beam
is known, it is straightforward to find the expression of the scat-
tered and internal field. The solution of the problem is expressed
in the next equations

Ei =
∞∑
j=1

j∑
mz=−j

𝛼
(e)
j,mz

A(e)
jmz

+ 𝛼
(m)
j,mz

A(m)
jmz

(1)
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Figure 2. Regimes of interaction depending on the R∕d ratio, where R is the radius of the particle and d is the beam displacement from the center of
sphere. The cross section 𝜎sca plots are done for an incident left circularly polarized Gaussian beam displaced at d = 82 μm. The insets are |Etot|2 plots
in the x = 0 plane (see Figure 1) for a window of 3R × 3R centred on the sphere. For all the plots, 𝜆 = 640 nm and NA = 0.4.

Esca =
∞∑
j=1

j∑
mz=−j

𝛼
(e)
j,mz

ajA
(e)
jmz

+ 𝛼
(m)
j,mz

bjA
(m)
jmz

(2)

Eint =
∞∑
j=1

j∑
mz=−j

𝛼
(e)
j,mz

djA
(e)
jmz

+ 𝛼
(m)
j,mz

cjA
(m)
jmz

(3)

where {aj, bj, cj, dj} are the so-called Mie coefficients.[11,23] For the
rest of this work, we only consider incident beams which are
eigenstates of the helicity operator Λ.[11,24–27] The case is as gen-
eral as any other, as any beam can be expressed as a superposi-
tion of the two different helicity components of light. Notice that
a left (right) circularly polarized collimated beam is an eigenstate
of Λ = +1(−1). Then, as explained in refs. [9, 11, 28], the apla-
natic model of a lens conserves the helicity of the incident colli-
mated beam. As a result, a collimated beam which is an eigen-
state of Λ (it is circularly polarized) remains an eigenstate of Λ
after being focused by a lens or a microscope objective (MO).
Note that focusing preserves helicity, but it does not preserve
polarization: It is well known that tightly focused beams can-
not be circularly polarized at the focal plane.[28,29] Then, we can

express a general focused beam with a well-defined helicity as
Ei =

∑∞
j=1

∑j
mz=−j

Con
j,mz,p

(A(e)
jmz

+ pA(m)
jmz
), where p = ±1 is the helic-

ity of the beam and Con
j,mz,p

is the beam-shape function. We say
that a state has a well-defined helicity when it is an eigenstate of
the helicity operator Λ. The expression of Con

j,mz,p
can be found in

refs. [9, 11]. When the beam is cylindrically symmetric, that is, it
is an eigenstate of Jz with value m

∗
z , then the previous equation

is reduced to

Ei =
∞∑

j=|m∗
z |
Con
j,m∗

z ,p

(
A(e)
jm∗

z
+ pA(m)

jm∗
z

)
(4)

As is explained in refs. [9, 11], Con
j,m∗

z ,p
can be tailored with m∗

z

and with the NA of the lens. In short, for a given beam with
(m∗

z, p), an increase in the NA results in a compression of the
multipolar decomposition into a few modes. This is observed
in Figure 3. The multipolar decompositions in the top row are
obtained with an NA = 0.9, and compared to ones at the bottom,
which are obtained with an NA = 0.4, they yield many less mul-
tipolar orders. Then, given a beam with helicity p and focused
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Figure 3. Beam shape function |Con
j,m∗

z ,p
|2 for NA = 0.9, 0.4 and m∗

z = 1, 5. The insets are |Ei|2 plots (in arbitrary units) of 6 × 6 μm2 at the focal plane

z = 0. The axis and the scalebar of the insets are referred to the values of the plot for NA = 0.9 andm∗
z = 1. To make them comparable, the values of the

other plots are multiplied by 5, 8, and 40, respectively. The |Ei|2 plots are normalized to 1.

with a certain NA, an increase in the AM content of the beam
(m∗

z) widens the multipolar composition and displaces it toward
greater js. This can also be observed in Figure 3, if one compares
the left column decompositions (m∗

z = 1) with the right ones
(m∗

z = 5). As a result of these two facts, a tightly focused Gaus-
sian beam with helicity p = m∗

z = 1 can be described with just a
handful of multipoles (see top left decomposition in Figure 3).
Now, once we have obtained the expression of Con

j,m∗
z ,p

for our
cylindrically symmetric beam, we displace it by a vectorial dis-
tance d = dd̂. This displacement affects the beam-shape function
Con
j,m∗

z ,p
. As a result, we obtain a new beam-shape function Coff ,d

j,mz,p
=

Coff ,d
j,mz,p

(Con
j,m∗

z ,p
, d), and then we can rewrite Equation (4) as

Ei(d) =
∞∑
j=1

j∑
mz=−j

Coff ,d
j,mz,p

(
A(e)
jmz

+ pA(m)
jmz

)
(5)

where Coff ,d
j,mz,p

is computed as [21]

Coff ,d
j,mz,p

=
min (j,j′)∑

n=−min (j,j′)

∞∑
L=0

(2L + 1)(−i)LjL(kd)

×⟨j, n; L, 0|j′, n⟩⟨j, p; L, 0|j′, p⟩
∞∑

j′=m∗
z

Dj(d̂)mz
n Dj′ (d̂)

m∗
z

n Con
j′m∗

zp
(6)

with jL(kd) being the spherical Bessel function;⟨j1, m1; j2, m2|J,M⟩ a Clebsch–Gordan coefficient; and Dj(r̂)mn
being the Wigner matrix. Equations (5) and (6) show us that:
i) Even if the initial beam was cylindrically symmetric, that is,
it was an eigenstate of Jz with value m∗

z , the displaced beam
generally is not. ii) The helicity of the beam p is maintained.
The underlying reason is that the helicity operator Λ and the
translation operator Td commute. A significant particular case
of Equations (5) and (6) is a translation along the symmetry axis
z. In this case, due to the fact that Jz and Tz commute, the AM
content is also conserved and Equations (5) and (6) become

Ei(dẑ) =
∞∑

j=m∗
z

Coff ,dẑ
jm∗

zp

(
A(e)
jmz

+ pA(m)
jmz

)

Coff ,dẑ
jm∗

zp
=

∞∑
j′=m∗

z

Con
j′m∗

zp

∞∑
L=0

(2L + 1)(−i)LjL(kd)

× ⟨j, n; L, 0|j′, n⟩⟨j, p; L, 0|j′, p⟩ (7)

2.2. Particular Case: Gaussian Beam Displaced along the y Axis

Up until this point, the theoretical treatment has been valid for
any cylindrically symmetric beam. In the rest of the article, we
study the case of a left circularly polarized Gaussian beam which
is focused with a MO with a given NA at a distance d = dŷ from
the center of the sphere. As explained before, the on-axis focused
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Figure 4. In blue, for both top and bottom subfigures, |Con
j,m∗

z ,p
|2 for NA = 0.9, 0.4. In many stacked colors, also for top and bottom subfigures, displaced

beam-shape function |Coff ,dŷ
j,mz,p

|2 for NA = 0.9, 0.4 and d = 4, 8, 16 μm. The |Coff ,dŷ
j,mz,p

|2 distributions are multiplied by a number to make them comparable

to the values of |Con
j,m∗

z ,p
|2. The incident nondisplaced beam (blue distribution) is obtained for a left circularly polarized Gaussian beam at 𝜆 = 640 nm.

beam is an eigenstate of Λ and Jz with eigenvalues p = 1, and
m∗

z = 1, respectively.[25–27] We focus our attention in this case,
as this is the typical experimental configuration that some of
the authors have used in the past to excite WGMs in similar
systems.[15–19] To be more precise, the polarization is not circu-
lar in the works in refs. [15–19]. Yet, the polarization state of the
beam does not affect our analysis because we are dealing with
displacements which are much larger than the wavelength. First
of all, let us see how the multipolar decomposition of an on-axis
Gaussian beam is modified due to d. This is depicted in Figure 4
for two different NA values, NA = 0.9 (top row) and NA = 0.4
(bottom row). In both cases, we observe the on-axis decomposi-
tions Con

j,m∗
z ,p

depicted in Figure 3 on the left side of the plot. To
their right, at higher multipolar orders j, we find some similar
distributions corresponding to Coff ,dŷ

j,mz,p
for different displacements

d. We see that the off-axis distribution is built as an addition of
lots of tiny contributions (represented by different colors). This
is because, as shown by Equations (5) and (6), unlike the on-axis
beamwhich hasm∗

z = p = 1, the off-axis beam is obtained as a su-
perposition of multipoles with differentmz values. Furthermore,
we see that the off-axis multipolar decompositions Coff ,dŷ

j,mz,p
, if com-

pared with Con
j,m∗

z ,p
, are displaced toward greater js. In fact, one

can see that the displacement is approximately linearly propor-
tional to d. That is, let us define jmax as the multipolar order j
at which a certain beam-shape function has its maximum value

|Coff ,d
j,mz,p

|. Then we see that Δjmax = joff ,d
‚y

max − jonmax ≈ 2𝜋d∕𝜆. Now, re-
member that as it has been mentioned before, a WGM is a res-
onant mode with q = 1, and a large j, and m = j. As is seen both
in Figures 3 and 4, an on-axis Gaussian beam cannot excite a
WGM because its beam-shape function Con

j,m∗
z ,p

only has contri-
butions from the lowest multipolar orders. Thanks to Figure 4,
we realize that a displacement such as d = dŷ tailors the beam-
shape function Con

j,m∗
z ,p

and allows for the creation of arbitrarily
large multipolar components. That is, to excite a WGM of order
j with a Gaussian beam, we just need to displace it a distance
of the order d ≈ j𝜆∕2𝜋. Yet, this displacement by itself, does not
guarantee that q = 1 and that m = j. In fact, Figure 4 shows that
lots of different azimuthal modes (around the z axis) would be ex-
cited by these off-axis Gaussian beams. This is the case because
the off-axis beam-shape function Coff ,d

j,mz,p
is composed of many mz

contributions for each j-multipolar subspace. Hence, the off-axis
beam will excite a WGM with a large j and mz = j, but it will also
excite many other modes with the same j but with mz ≠ j. Note
that the resonances of a sphere are degenerated in mz, that is,
all the modes with equal j but with different mz share the same
resonance. As a result, the pattern of the WGM (j, mz = j) will
be hidden by the effect of all the rest of modes with (j, mz ≠ j).
Here, it is important to note that our theoretical multipolar de-
scription uses the z axis as the quantization axis. This choice is
motivated by the fact that a circularly polarized Gaussian beam
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propagating along the z axis is an eigenstate of Jz with value|m∗
z| = 1. However, it is clear that the dŷ displacement breaks the

cylindrical symmetry along the z axis. In fact, because the dis-
placement is done in the y direction, and the Gaussian beam also
carries a certain linear momentum along the z axis Pz, it is intu-
itive to see that the off-axis Gaussian beam will necessarily carry
some AM along the x axis of the initial frame of reference located
at the center of the sphere. Thus, it might be useful to rewrite the
off-axis beam-shape functionCoff ,d

j,mz,p
as a function ofmx, instead of

mz. In fact, given our excitation scheme (see Figure 1), we observe
that the off-axis configuration excites WGMs that revolve around
the x axis, that is, m = mx. This is also the case for the experi-
mental works seen in the literature.[15–19] A WGM that revolves
around the z axis would be perpendicular to the propagation di-
rection of the incident beam (see Figure 1 to see the geometry
of the problem). Mathematically, the Wigner matrix allows us to
change from Coff ,dŷ

j,mz,p
to Coff ,dŷ

j,mx,p
[21]

Coff ,dŷ
j,mx,p

=
j∑

mz=−j
dj(−𝜋∕2)mx

mz
Coff ,dŷ
j,mz,p

(8)

where dj(𝛽)mm′ is the reduced Wigner matrix.[30] See the Support-
ing Information for the derivation of Equation (8). As a result of
the change of basis done via Equation (8), we can rewrite the off-
axis focused Gaussian beam as

Ei
(
dŷ
)
=

∞∑
j=1

j∑
mx=−j

Coff ,dŷ
j,mx,p

(
A(e)
jmx

+ pA(m)
jmx

)
(9)

Coff ,dŷ
j,mx,p

=
min (j,j′)∑

n=−min (j,j′)

∞∑
L=0

(2L + 1)(−i)LjL(kd)

×⟨j, n; L, 0|j′, n⟩⟨j, p; L, 0|j′, p⟩ (10)

∞∑
j′=m∗

z

j∑
mz=−j

dj(−𝜋∕2)mx
mz
Dj(d̂)mz

n Dj′ (d̂)
m∗
z

n Con
j′m∗

zp

Now, let us plot Coff ,dŷ
j,mx,p

for NA = 0.4 and d = 0, 4, 8, 16 μm as in
Figure 4. Unlike Figure 4, where many colors indicate that the
beam-shape function has many mz components, Figure 5 shows
very few colors, meaning that each j-multipolar subspace is com-
posed of very few mx modes. Moreover, not only there are very
few modes, but also the few modes that contribute to the decom-
position are those with large mx: the blue color indicates mx = j,
the yellow color meansmx = j − 1, etc. That is, the appearance of
theWGMwith (j, mx = j) will not be hidden under the the appear-
ance of any othermodeswith (j, mx ≠ j). Thus, thanks to the semi-
analytical calculation of the beam-shape function, we have proven
that a Gaussian beam propagating in the z direction which is dis-
placed in the y axis by a distance d can efficiently excite WGMs
of an order j ≈ 2𝜋d∕𝜆 which revolve around the x axis with
mx = j.
The next step is proving that such an off-axis Gaussian beam

can efficiently excite WGMs with q = 1. For doing this, we will
have to deal with the beam-sphere interaction, as the efficiency

Figure 5. Displaced beam-shape function |Coff ,dŷ
j,mx ,p

|2 for the rotated multi-

poles A(y)jmx
. The plots are done for NA = 0.4 and d = 0, 4, 8, 16 μm. The

blue color displays the weight of the multipolar modes with mx = j, the
yellow color shows the weights of mx = j − 1, etc. The plot with d = 0 μm
corresponds to the on-axis beam-shape function with m∗

z = 1. In all plots
the wavelength is 𝜆 = 640 nm.

and the radial (or root) number q are parameters that stems from
that interaction. Within Mie theory, q = 1,… ,∞ is known as the
radial (or root) number.[1,31–35] It is a number that enumerates
the resonances of a certain Mie coefficient from low to high
energy. That is, take the Mie coefficient aj(x), where x is the
size parameter of the problem x = 2𝜋R∕𝜆, with R being the
size of the particle, and 𝜆 the excitation wavelength. Note that
the size parameter is proportional to the energy or frequency of
the beam. There is a numerable infinite amount of frequencies
{𝜔(e)

j,q} that make |aj(𝜔(e)
j,q)| = 1. The set of frequencies {𝜔(e)

j,q , },
which are the real part of the complex poles of aj(x), are such

that 𝜔(e)
j,q=1 < 𝜔

(e)
j,q=2 < …𝜔

(e)
j,q=n.

[35,36] The reason why WGMs are
typically defined as modes with q = 1 is because the Q-factor of
the set {𝜔(y)

j,q } decreases with q. That is, 𝜔
(y)
j,q=1 is the frequency that

has the largest Q-factor among the whole {𝜔(y)
j,q } set. These fre-

quency sets have twomore interesting properties. If j > j′, then i)
Q-factor(𝜔(y)

j,q=1) >Q-factor(𝜔(y)
j′ ,q=1), and ii)𝜔

(y)
j,q=1 > 𝜔

(y)
j′ ,q=1. All these

properties also hold for the sets of size parameters {x(e)j,q , x
(m)
j,q }.

Now, let us assume that we excite at a certain 𝜆 a homogeneous
sphere defined by (R, nr), that is, its radius is R, and its relative
index of refraction with respect to the embedding medium is nr .
Given these parameters, it will not be possible to excite WGMs
of an order which is higher than j∗ ⪆ 2𝜋R∕𝜆.[11,14] That is a
consequence of the fact that the size parameter of the problem,
xp = 2𝜋R∕𝜆 will be such that x(y)j∗−1,q=1 < xp < x(y)j∗ ,q=1 < x(y)j∗+1,q=1.
Depending on the laser, we might be able to tune the wavelength
for a broader or a narrower interval. As a result, we might be
able to have xp = x(y)j∗ ,q=1, but it is clear that there will always be

a x(y)j∗+1,q=1 that will be greater than the greatest possible exper-
imental xp. In conclusion, given a laser with 𝜆 and a particle
with (R, nr), the WGMs that can be excited will always have a
j ≤ j∗ ⪆ 2𝜋R∕𝜆. Of course, due to the fact that if j > j′, then Q-
factor(x(y)j,q=1) > Q-factor(x(y)j′ ,q=1), we will be especially interested in
exciting the WGMs whose j ⪅ j∗ ⪆ 2𝜋R∕𝜆. Now the question is
how to efficiently do it. For example, let us assume that R = 8 μm,
and that nr = 1.45. The wavelength is 𝜆 = 640 nm. As mentioned
before, the greatest orders of WGMs that can be excited for this
particle are of the order of j∗ ⪆ 2𝜋R∕𝜆 ≈ 79. Therefore, let us
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Figure 6. Displaced beam-shape function |Coff ,dŷ
j,mx ,p

|2 in the rotatedmultipo-

lar basis A(y)jmx
for d = 7.3, 10.3 μm. In all plots NA = 0.4, and 𝜆 = 640 nm.

The incident beam is a left circularly polarized Gaussian beam.

take j∗ = 87. We have seen that the condition to excite a j∗-order
WGM at its q = 1 resonance is only a matter of size parameter
matching, that is, xp = x(y)j∗ ,q=1. But it is well known that a plane
wave (or an on-axis Gaussian beam) with a wavelength such that
the size parameter is xp = x(y)j∗ ,q=1 will not excite this j

∗ = 87-order
WGM. As shown in Figures 4 and 5, the underlying reason is
that the beam-shape function of the incoming beam Coff ,d

j,mz,p
must

have some non-negligible components in the j∗ multipolar order.
In Figure 4, we have shown that this is achievable by displacing a
Gaussian beam a distance d ≈ j∗𝜆∕2𝜋 ≈ 8 μm from the center of
the sphere. Figures 4 and 5 show that the beam-shape function
of a Gaussian beam focused with an NA = 0.4 and displaced
8 μm from the center of the sphere has non-negligible contri-
butions in the j=65–90 multipolar orders, and the maximum
is at j = 77. This is in agreement with the approximation that d
needs to be d ≈ j∗𝜆∕2𝜋 ≈ 8 μm. The question arises: Given the
experimental parameters (R, nr, 𝜆,NA), which displacement d
maximizes the coupling efficiency to a WGM of order j∗ = 87
(with m = j∗ and q = 1)? In Figure 6, we show that the displace-
ment will need to be within the range d = [7.3–10.3] μm. This
can be inferred from the fact that Coff ,dŷ

j,mx,p
for d = 7.3 μm and d

= 10.3 μm are non-negligible for j ∈ [57, 87] and j ∈ [87, 117]
respectively.
These d-limits approximately correspond to two limit physical

situations: d = 7.3 μm corresponds to the case where the beam
is approximately tangential to the surface of the sphere from the
inside, whereas d= 10.3 μm is the case where the beam is approx-
imately tangential to the surface from the outside (see Figure 7).
The case of d = 8 μm is the case where the center of the off-axis
beam is tangential to the surface of the sphere. Next, we math-
ematically show that the most efficient off-axis configuration to
excite a WGM is the outer tangential case. Yet, the displacement
found is not d = 10.3 μm, but rather d = 9.7 μm. The reason has
to do with the behaviour of Mie coefficients. Given a certain size
parameter x, it exists a certain j∗ ⪆ x such that both theMie coeffi-
cients aj(x), bj(x) = 0 for j ≥ j∗. At the same time, and for the same

size parameter x, the rest of Mie coefficients aj(x), bj(x) ≠ 0 when
j < j∗. We would like to excite the WGM associated to j∗ = 87,
which needs to be done at x(y)j∗=87,q=1. As a result, all Mie coeffi-

cients with j < 87 will be greater than zero at x(y)j∗=87,q=1. Now, ide-
ally, we would like to excite a pure WGM of j∗ = 87. Exciting a
pure mode means that this is the only mode that is excited. If we
look at Figures 6 and 7, we observe that the multipolar distribu-
tions associated to d = 7.3, 8 μm yield modes with j < 87. Thus,
because theMie coefficients aj<87(x

(y)
j=87,q=1), bj<87(x

(y)
j=87,q=1) ≠ 0, the

scattering will be inevitably composed of all themultipolar orders
with j < 87 and such that Coff ,dŷ

j,mx,p
is non-negligible. Thus, there is

only one way to get rid of all these lower order modes that will
introduce some noise into the response of the system and hide
the behavior of the pure WGM: The off-axis beam-shape func-
tion Coff ,dŷ

j,mx,p
must be negligible for j < 87. In our example, this is

achievedwith d= 10.3 μm, that is, with a beamwhose incidence is
tangential from the outside of the surface of the sphere. The case
were d = 10.3 μm could be an acceptable efficient coupling from
an experimental point of view, yet it may not be the most efficient
possible coupling. Our theory allow us to compute the distance
d that maximizes the efficiency of the coupling. Maximizing the
coupling efficiency (CE)meansmaximizing the amount of power
that goes into the desired WGM mode, given by a certain j and
parity (e) or (m). It can be computed as

CE(e)j∗ (d) =
|aj∗ Coff ,dŷ

j∗ ,mx=j∗ ,p
|2

∞∑
j=1

j∑
mx=−j

|Coff ,dŷ
j,mx,p

|2(|aj|2 + |bj|2)
(11)

CE(m)j∗
(d) =

|bj∗ Coff ,dŷ
j∗ ,mx=j∗ ,p

|2
∞∑
j=1

j∑
mx=−j

|Coff ,dŷ
j,mx,p

|2(|aj|2 + |bj|2)
(12)

In Figure 8a we plot both CE(y)j∗=87 for (y) = (e), (m). The plot is

done at two different wavelengths. That is, CE(e)j∗ (d) is computed

at 𝜆(e)j∗=87 = 649.490 nm, whereas CE(m)j∗ (d) is computed at 𝜆(m)j∗=87 =
652.690 nm. That is because, as mentioned above, each WGM
has its own root number. And in this example, we have kept R
= 8 μm. Figure 8a shows that CE(e)j∗ and CE(m)j∗ have their absolute
maxima at d = 9.7 μm and d = 9.6 μm, respectively. For these d’s,
both CE(y)j∗ are greater than 90%. That is, almost all the energy
that is coupled to particle is coupled to the targeted WGM: the
efficiency of the coupling is almost perfect. Of course, CE(y)j∗ does
not say anything about the absolute power coupled toWGM. That
could be computed as

P(e)j∗ (d) ∝ |aj∗ Coff ,dŷ
j∗ ,mx=j∗ ,p

|2 (13)

P(m)j∗
(d) ∝ |bj∗ Coff ,dŷ

j∗ ,mx=j∗ ,p
|2 (14)

We have plotted P(e)j∗ in Figure 8b. We observe that the maxi-
mum power coupled to the targeted WGM (j∗ = 87) happens for
d = 9 μm, which is not the d corresponding to the most efficient
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Figure 7. In the top row, plots of |Ei|2 (in arbitrary units) for d = 7.3,8, 10.3 μm in the x = 0 plane. The purple circumference shows the surface of a

sphere of R = 8 μm. In the bottom row, plots of the displaced beam-shape function |Coff ,dŷ
j,mx ,p

|2 in the rotated multipolar basis A(y)jmx
for the corresponding

top row Ei fields with d = 7.3, 8, 10.3 μm. In all plots, NA = 0.4, and 𝜆 = 640 nm. The |Ei|2 plots are normalized to 1.

coupling scenario. That is, for d = 9 μm, the power coupled into
the WGMs of j∗ = 87 is maximum, yet the purity of the targeted
WGM is clearly lower with respect to the case with d = 9.7 μm.
Note that in Figure 8b we have only plotted P(e)j∗ , as P

(m)
j∗ yields the

exact same values. This is because |a87(x(e)87)| = |b87(x(m)87 )| = 1.
For completeness, in Figure 9a we plot the scattering cross sec-

tion 𝜎sca for a sphere with R = 8 μm and nr = 1.45 as a function

Figure 8. a) Coupling efficiency as a function of displacement of the in-
cident beam d for the electric and magnetic resonances of j∗ = 87. The
blue line is computed for x(e)j∗=87 = 77.39, whereas the red line is computed

for x(m)
j∗=87 = 77.01. b) P(y)j∗=87 for both electric and magnetic modes. The

two curves superimpose, as both |aj∗=87| = |bj∗=87| = 1 for their respec-

tive resonances x(e)87 and x(m)
87 . For both (a) and (b), the sphere is defined by

R = 8 μm and nr = 1.45, while the left circularly polarized Gaussian beam
has NA = 0.4 and 𝜆 = 640 nm.

of 𝜆 = [635, 655] nm for a left circularly polarized Gaussian beam
displaced by d = 9.7 μm. Then, in Figure 9b we plot the total field
Etot = Ei + Eint + Esca at the x(e)87 resonant condition. Note that the
coupling is so efficient that the intensity of the internal field is
greater than that of the incident beam.

3. Conclusions

To wrap up, our analytical treatment has allowed us to describe
the problem and predict the efficient excitation of WGMs with
large j∗, m = j∗ and q = 1 with off-axis focused Gaussian beams.
In particular, we have observed that:

• The off-axis displacement d allows for the excitation of WGMs
whose order j∗ is proportional to d.

• The condition m = j∗ is immediately fulfilled for an m around
the axis orthogonal to the plane defined by the directions of
the beam propagation and the displacement. For instance, if
the beam propagates along the z axis, and the displacement is
in the y axis, then the relation m = mx = j∗ is fulfilled.

• Experimentally, given a particle with (R, nr), a tunable laser is
needed in order to excite the j∗-WGM at its root number q =
1. A smart choice for the j∗-order of the WGM is j∗ ⪆ 2𝜋R∕𝜆,
where 𝜆 is the central wavelength of the tunable laser. In this
case, a narrowband tuning laser will do the job, since x(y)j∗ ,q=1 ≈
2𝜋R∕𝜆, and as a result the resonant wavelength 𝜆

(y)
j∗ ,q=1 will be

approximately equal to the central wavelength of the laser 𝜆.
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Figure 9. a) Scattering cross section 𝜎sca for 635 nm ≤ 𝜆 ≤ 655 nm. The resonances used in Figure 8 are explicitly shown. b) Excitation of a WGM of
the (e) kind with j = 87 and mx = j. The plot shows |Etot|2 (in arbitrary units) for an area of 48 × 48 μm2 in the x = 0 plane. In all the plots, R = 8 μm,
nr = 1.45, and the displaced left circularly polarized Gaussian beam has NA = 0.4 and d = 9.7 μm. The incident field |Ei|2 is normalized to 1.

• The efficiency of the coupling can be computed and maxi-
mized as a function of the displacement parameter d. Themost
efficient coupling always happens for beams whose intensity
distribution is mainly located outside (yet almost tangentially)
of the surface of the sphere.

We have also seen that four interactions regimes can be
sketched as a function of the position of the incident beam with
respect to the surface of the sphere. The nature of these four
interaction regimes is purely geometrical, and as a result their nu-
merical definition depends on 𝜆, d, R, nr , NA. Last but not least,
contrary to the current state-of-the-art description of the prob-
lem, we have observed that the coupling of a propagating beam
onto a WGM is not a product of any evanescent tunnelling. The
coupling is produced via scattering due to an AM matching of
the targeted WGM and the content of the off-axis incident beam.
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