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Abstract

Climate trends estimated using historical radiosounding time series may be sig-

nificantly affected by the choice of the regression method to use, as well as by a

subsampling of the dataset often adopted in specific applications. These are con-

tributions to the uncertainty of trend estimations, which have been quantified in

literature, although on specific pairs of regression methods, and in the not very

recent past characterized by smaller trends in temperature than those observed

over the last two decades. This paper investigates the sensitivity of trend estima-

tions to four linear regression methods (parametric and nonparametric) and to

the artificial subsampling of the same dataset using historical radiosounding

time series from 1978 onwards, available in the version 2 of the Integrated

Global Radiosonde Archive (IGRA). Results show that long-term decadal trends

may have not negligible uncertainties related to the choice of the regression

method, the percentage of data available, the amount of missing data and the

number of stations selected in the dataset. The choice of the regression methods

increases uncertainties in the decadal trends ranging from −0.10 to −0.01 K�da–1
for temperature in the lower stratosphere at 100 hPa and from 0.2 to 0.8% da–1

for relative humidity (RH) in the middle troposphere at 300 hPa. Differences

can also increase up to 0.4 K�da–1 at 300 hPa when the amount of missing data

exceeds 50% of the original dataset for temperature, while for RH, significant dif-

ferences are observed in the lower troposphere at 925 hPa for almost all datasets.

Finally, subsampling effects on trend estimation are quantified by artificially

reducing the size of the IGRA dataset: Results show that subsampling effects on

trend estimations when at least 60 stations, up to 76% of data available, are con-

sidered for temperature and at least 40 stations for RH.
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1 | INTRODUCTION

Historical radiosounding observations have proven to be
extremely successful for climate monitoring and for trend
detection by providing high vertical resolution profiles of
Essential Climate Variables (ECVs). Radiosounding pro-
files of temperature, humidity and wind have been used
both to characterize the structure of weather systems and
to detect changes in climate evolution. Radio soundings
are not the only source of upper air data but offer a few
potential advantages compared to satellite observing plat-
forms. The satellite microwave sounding units (MSUs)
have provided global data since 1979 with spatial cover-
age far exceeding that of radiosounding networks, espe-
cially in the Tropics, Southern Hemisphere (SH) and
oceanic regions but with a coarse vertical resolution,
especially in the upper troposphere (UT) and lower
stratosphere (LT) regions (Christy and Goodridge, 1995;
Gaffen, 1998; Christy et al., 2003; Ladstädter et al., 2011).
In addition, MSU datasets are relatively short in sampling
time and potentially influenced by several issues such as
changes in cloud amount and tropospheric humidity
(Simmons et al., 2014).

At the global scale, more than 1,000 radiosoundings
are approximately launched at day and night time each
day to characterize the state of the atmosphere
(Ladstädter et al., 2011), although with large sparse cover-
age in the SH and occasional launches performed on
ships to fill the gap over the oceans. The use of radio-
sounding datasets for climate change studies implies the
handling of inhomogeneities caused by frequent changes
in instruments, sensor types, observation practices or
change in data processing systems (Thorne et al., 2005;
Karl et al., 2006; Miloshevich et al., 2006; Simmons
et al., 2014; Madonna et al., 2020a, 2020b). Radiosondes
from different manufacturers are affected by systematic
errors, which differ from one type to another
(e.g., Dirksen et al., 2014; Ingleby, 2017).

Even though random errors in the trend estimations
can be reduced by increasing the number of measure-
ments (Weatherhead et al., 1998; Whiteman et al., 2011),
the systematic errors persist regardless of the number of
observations introducing biases in climate applications
(Ingleby, 2017). In addition, changes in the utilized sen-
sor type at different locations over time were almost not
documented before 2000 and not always adequately after,
leading to artificial trends or jumps in the radiosounding
data records (Dai et al., 2010). Finally, radiosounding
observation data routinely deal with data continuity
problems. In this respect, a recent study of Ferreira et al.,
(2019) provides a detailed analysis of the completeness of
radiosounding humidity observations available in IGRA
version 2 (Durre et al., 2018), with several statistics which

reveal that the length and completeness of humidity data
vary widely among stations, and the vertical resolution,
vertical extent and completeness of soundings have
improved considerably over time since 1947 to the
present.

Regular temporal sampling and continuity in histori-
cal radiosounding data profiles are an important aspect
of trend estimation and interpretation (Schlegel and
Smit, 2016). Gaffen et al. (2000) quantified the impact of
geographical distribution and data quality on upper-air
temperature trends that were estimated using National
Oceanic and Atmospheric Administration (NOAA) radio-
sounding data for the period 1959–1995. Trend estima-
tions were based on a comparison between the robust
and nonparametric median of the pairwise slopes method
and the classic parametric least-squares regression
method: Results show similar trend estimations, with dif-
ferences generally less than ±0.03 K�decade–1 for the
period 1959–1995, although differences in stratospheric
trends may rarely exceed 0.10 K�decade–1 for the period
1970–1995.

Referring to different datasets obtained from MSU,
radiosonde measurements and reanalysis from European
Centre for Medium-Range Weather Forecasts (ECMWF)
and National Centers for Environmental Prediction
(NCEP), Santer et al. (2000) compared two linear trend
estimation methods, one based on minimization of abso-
lute deviations (LA) and another based on minimization
of squared deviations (LS). Results indicate that trend
estimates with LA are less sensitive to the noise than
trend estimates of the LS method. They also found that
differences between the two linear methods are generally
less than 0.05 K�decade–1 over 1959–1996 and exceed
0.10 K�decade–1 for lower troposphere and 0.15 K�decade–
1 for the lower stratosphere over 1973–1993.

The sensitivity of estimated trends to regression
methods is an uncertainty contribution, which adds to
the sampling uncertainty in time, due to gaps
(e.g., missing data) in the data records, and in space, due
to the need to select the most reliable subset of stations
(Rosen et al., 2003; Agudelo and Curry, 2004; Free and
Seidel, 2005; McCarthy, 2008; Ladstädter et al., 2011). It
is worth pointing out that uncertainties due to temporal
and spatial gaps in historical radiosounding data records
have been often neglected in literature or reduced by
using temporal averaging, on monthly or yearly scales, or
data gridding using the interpolation or extrapolation
method, which can reduce sampling bias but not remove
it completely (McCarthy, 2008).

From NCEP reanalysis and MSU satellite data and
from seven radiosonde networks available for the period
1960–1997, Free and Seidel (2005) found that sampling
errors affecting trend estimation depend upon the
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atmospheric pressure level and variability, the network
size and the climate region. Results found that sampling
errors range from less than 0.001 K�decade–1 to more
than 0.10 K�decade–1 and differ noticeably from one
dataset to another. Comparing datasets from GPS radio
occultation and radiosounding observations, Ladstädter
et al. (2011) also found that sampling errors from radio-
sounding datasets are generally small (less than 0.3 K)
between 50�S and 50�N but are larger at higher latitudes
due to greater variability of the atmosphere and to the
small number of stations in the SH.

Most of above-mentioned papers used radiosounding
data until 2000 and, therefore, are characterized by trend
rates slower than those observed over the last two
decades. Moreover, beyond the paper cited above, many
of the previous studies have estimated trends in tempera-
ture or humidity from historical radiosounding by using
the parametric linear regression method, which is not a
robust method and may be adversely affected by outliers,
by non-Gaussian behaviour of the underlying data distri-
bution and non-stationarity (Lanzante, 1996; Zaman
et al., 2001; Mudelsee, 2019).

The outlined scenario shows that further studies and
reviews are needed to properly quantify trend estimation
uncertainties. Using historical radiosounding time series
available from the IGRA (version 2) for the period
1978–2018, this paper provides a quantitative analysis of the
uncertainties in the estimation of decadal trends of tempera-
ture and humidity due to the use of linear regression
methods. It also provides a quantitative estimation of the
uncertainty introduced by the spatial and temporal
subsampling effects on decadal trends using a novel
approach, whichmay be considered useful for the design of a
measurements network, as well as for climate applications.

The paper is structured as follows: Section 2 discusses
the radiosounding datasets and the related available
metadata provided by IGRA. Section 3 outlines data anal-
ysis, subsampling strategies and the linear regression
methods applied to estimate trends. Section 4 discusses
the uncertainty contributions that may derive from the
use of different linear estimation methods by comparing
parametric simple linear regression method and nonpara-
metric regression methods. Section 5 investigates the sen-
sitivity of trends due to missing data. Section 6 describes
the effect of spatial subsampling on trend estimations.
Finally, a discussion and recommendations for future
works are provided in Section 7.

2 | RADIOSONDE DATASETS

The radiosounding time series used for the analysis pres-
ented in this paper is a part of IGRA (version 2) (Durre

et al., 2018). To date, IGRA is the largest and most com-
prehensive dataset of quality-assured radiosonde observa-
tions freely available. It consists of a collection of
historical and near real-time radiosounding and pilot-bal-
loon observations taken from 2,700 globally distributed
stations (including ships, buoys and remote islands over
the oceans) with varying periods of record, aiming to
enhance spatial and temporal coverage, particularly
prior to the 1970s (see also https://www.ncdc.noaa.gov/
data-access/weather-balloon/integrated-global-radiosonde-
archive). Approximately 1,000 of the IGRA stations are
currently reporting data. Compared to the former release
(Durre et al., 2006), IGRA version 2 increased its data vol-
ume by 30%, extending the data back in time to as early
as 1905 and improving the spatial coverage, for example,
in South America and Africa. Among the list of stations
available from the IGRA data repository, a substantial
subset of globally distributed radiosounding stations (656
stations) was used in this paper (Figure 1), namely, those
with metadata available since 2000 to present.

Ferreira et al. (2019) found that the total number, spa-
tial distribution and temporal completeness of IGRA sta-
tions vary considerably over the years due to several
factors, and the number of vertical levels and the vertical
extent in radiosonde reports depend on the standard and
mandatory pressure levels provided according to the
World Meteorological Organization (WMO) recommen-
dations (WMO, 1996) to the Met services, as well as on
the number of reported significant levels. Finally, due to
various reasons, missing data are frequently found. In
this work, monthly radiosounding time series from 1978
onwards on 16 mandatory pressure levels (1,000, 925,
850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20
and 10 hPa) are selected for temperature, while for RH,
only data at pressures higher than 300 hPa were consid-
ered as RH sensors below 300 hPa are prone to system-
atic uncertainties.

The data availability of measurements in different
zonal regions at each pressure level from 1,000 to 10 hPa
was investigated to quantify the amount of missing data
and to identify the periods where they are more frequent.
Missing data are naturally present in the selected dataset
due to a lack of continuity in the operations that contin-
gently occurs at each station. This implies that, to provide
a reliable assessment of the uncertainties affecting the
estimation of trends using radiosounding data, the
dataset selected must be investigated without restrictions
on where the missing data are located, although it is
known that these may affect trend estimates.

Figure 1 shows the spatial distribution of radiosonde
stations with an amount of missing monthly data equiva-
lent to 0, 5, 10, 20 and 30 years, reported as the percent-
age of available data with respect to the expected full
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sampling (i.e., 100, 90, 76, 51 and 25%). Hereinafter, the
percentage of available data at each pressure level will be
indicated as Px, that is, if we are referring to the number
of stations with at least 90% of the data available at a
certain pressure level for a specific test, this will be
reported as P90. In the following, “da–1,” instead of
“decade–1,” is used to ease the reading of the text and
results provided.

In Figure 1, the total number of stations recording
large amounts of data (e.g., at least 90%) becomes
extremely limited at the top of the atmosphere. At
925 hPa (Figure 1, top-left panel and Figure 2), no station
among the total number of stations at the global scale
reaches the full expected sampling (i.e., have full time

series without gaps). This is particularly because the
925 hPa pressure level was only adopted at the global
scale by the end of 1991, although it has been planned
since 1977 (WMO, 1977; Oakley, 1993).

No stations among the total number of stations
(n = 144) at the Tropics have at least P63 of monthly data
for all levels from 150 to 10 hPa owing to the paucity or
complete lack of observations and to sensor limitations to
produce suitable records (Figure 2, middle panel). In the
SH (n = 85), the number of stations with P63 decrease
substantially from 30 stations to less than 10 stations
between 200 and 150 hPa (Figure 2, right panel). In both
regions, there is a small number of stations with a sub-
stantive data record in the UT and LS, likely insufficient

25% (446) 51% (358) 76% (177) 90% (28) 100% (0)

925 hPa

25% (481) 51% (401) 76% (321) 90% (270) 100% (177)

850 hPa

25% (497) 51% (415) 76% (327) 90% (275) 100% (172)

500 hPa

25% (495) 51% (405) 76% (274) 90% (173) 100% (55)

300 hPa

25% (326) 51% (230) 76% (57) 90% (14) 100% (2)

100 hPa

25% (316) 51% (233) 76% (19) 90% (6) 100% (1)

30 hPa

FIGURE 1 Spatial distribution of radiosounding stations with 0, 5, 10, 20 and 30 years of missing data. Missing data are reported as the

percentage of months where data are available to the total number of months, that is, X = 100, 90, 76, 51 or 25%. Each dot indicates a

station, and each colour indicates the percentage Px of data available at the station. Map are shown for pressure levels at 925, 850, 500, 300,

100 and 30 hPa. In brackets, the total number of stations with a certain percentage of data is reported [Colour figure can be viewed at

wileyonlinelibrary.com]
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to allow a reliable climate trend detection (Weatherhead
et al., 1998; Schlegel and Smit, 2016). Over the Northern
Hemisphere (NH) (n = 427), where most of the radio-
sonde stations operate (70% of radiosonde launches are
located between 30 and 60� N), the number of available
observations for all Px are more abundant (with a mini-
mum of 10 stations reporting data at all pressure levels)
(Figure 2). To evaluate the sensitivity of decadal trends to
regression methods and to the effects of subsampling, the
samples P100, P90, P76 and P51 are considered. Note that
observations corresponding to P51 were considered to
quantify the uncertainties for those applications based on
a subsample of the IGRA dataset, including stations with
a significant missing data. This extends several previous
studies investigating trend differences solely considering
one single percentage of data availability (Gaffen
et al., 2000).

3 | METHODOLOGY

3.1 | Statistical methods

Regression is a statistical method used to estimate the trend
component of a climate data record (Mudelsee, 2019). A
multitude of methods has been provided in the literature to
estimate trends. Regression model building is broadly used

in literature to study the relationship between a dependent
variable and a set of independent variables. Outliers from
observation measurements in linear regression models are
often encountered, and this is also true for radiosounding
observations. Outliers can affect the variability associated
with the heavy-tailed and skewed nature of data distribu-
tions but lead to a dramatic change of the magnitude of lin-
ear regression coefficients estimated and even the direction
of coefficient signs (Choi, 2009; Wilks, 2011). At present, a
reference dataset (Thorne et al., 2017), other than GRUAN
(The Global Climate Observing System [GCOS]-Reference
Upper-Air Network; https://www.gruan.org), which com-
prises a small number of high-quality stations (15–20) with
considerable data records since 2010, does not exist. There-
fore, the analysis of trend estimations has been typically car-
ried out on different datasets, selecting different station
networks and periods of record using different regression
methods. However, it appears still challenging to provide a
“best” trend estimation for the different ECVs from radio-
sounding measurements due to the several reasons dis-
cussed earlier.

The calculation of trends takes into account time
series autocorrelation (Weatherhead et al., 1998;
Weatherhead et al., 2002), which is often present in cli-
mate data records (e.g., temperature). In this paper, the
autocorrelation was taken into account by considering
the first-order autoregressive model (Weatherhead
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FIGURE 2 Number of radiosonde stations recording a given percentage Px of temperature and relative humidity data at each pressure

level since 1978–2018 for different latitudinal belts: that is, in the Northern Hemisphere (NH, 20�N < latitude < 90�N), in the Tropics

(jlatitudej < 20�) and in the Southern Hemisphere (SH, 90�S < latitude<20�S). In brackets, the amount of missing data in number of years is

reported [Colour figure can be viewed at wileyonlinelibrary.com]

SY ET AL. 5

https://www.gruan.org
http://wileyonlinelibrary.com


et al., 1998; Weatherhead et al., 2002; Mudelsee, 2019) by
assuming a simple linear regression model of the form:

yt=α+βxt+μt, t=1,…,T ð1Þ

where yt are the monthly anomaly time series, t the time
variable assigned to yt, α a constant term, xt the linear
trend function, β the linear trend and ut the residual term
that is assumed to be autoregressive of the order of 1 [AR
(1)] when monthly data are considered (Weatherhead
et al., 2002; Hartmann et al., 2013) and may be related as
follow:

ut=ρut−1+εt, t=2,…,T ð2Þ

where ρ determines the sign of this autocorrelation effect
and is thus designated as the coefficient of autocorrela-
tion. εt (the white noise series) are the independent ran-
dom variables with mean zero and common variance σ2ε :

εt �N 0,σ2ε
� �

, t=1,…,T ð3Þ

This approach is similar to that one used in Intergov-
ernmental Panel on Climate Change (IPCC) (Hartmann
et al., 2013). We also assumed that −1 < ρ < 1, so the
noise process ut is stationary. This model allows the noise
to be autocorrelated among successive observations, such
that ρ = Corr(ut, ut − 1) (Weatherhead et al., 1998;
Mudelsee, 2019).

3.2 | Methods of estimating trends

Trend estimation methods applied to estimate linear
trends are broad and fall generally into two main catego-
ries: parametric and nonparametric. The aim of this
section is to extend several previous studies investigating
trend estimation uncertainties, focusing on the difference
between pairs of regression methods (most often a para-
metric vs. a nonparametric, e.g., Finger et al., 1995;
Gaffen, 1994; Gaffen et al., 2000; Parker, 1985; Santer
et al., 2000). The sensitivities of regression methods are
then assessed at each mandatory level for each Px for the
following methods:

1. Simple linear regression (hereinafter LIN) is probably
the most commonly considered analysis method when
examining the relationship between a quantitative
outcome and a single quantitative explanatory vari-
able. The term « simple » is used to clarify that only a
single explanatory variable is considered. As discussed
above, LIN is based on statistical significance via a

Student's t test and consists of a parametric technique
not resistant to outliers (Lanzante, 1996) and has been
demonstrated in many investigations to be less accu-
rate and non-robust for skewed and heteroskedastic
datasets (Lanzante, 1996; Wilks, 2011; Dervilis
et al., 2015).

2. LANZANTE (hereinafter LAN) is a resistant and non-
parametric regression based on the median of pairwise
slopes regression (Hoaglin et al., 1986, 1893;
Lanzante, 1996). It involves the computation of the
slopes between every possible pair of points in the
time series, taking the median value as the trend esti-
mate. It was first used in the assessment of hydro-
climatic trends (Lettenmaier et al., 1994). It is called
the Theil-Sen estimator and can be significantly more
accurate than simple linear regression for skewed and
heteroskedastic data and shows performances similar
to non-robust least squares even for normally distrib-
uted data in terms of statistical power (Theil, 1950;
Siegel and Benson, 1982; Helsel and Hirsch, 1992).
The breakdown bound was estimated at about 29% by
Theil (1950) and was extended to 50% by Siegel and
Benson (1982), making the regression method very
robust. In addition, if the errors are normally distrib-
uted, and no outliers are present, the estimators were
found very similar to classic least squares
(Lanzante, 1996).

3. Least absolute deviation (hereinafter LAD) is a resis-
tant and nonparametric regression method fitting the
paired data to the linear model using a robust and
resistant LAD method (Rice and White, 1964;
Barrodale, 1968; Wong and Schneider Jr, 1989; Calitz
and Rüther, 1996; Santer et al., 2000). The technique
is based on an algorithm by Barrodale and Rob-
erts (1974). Comparisons with the classical least-
squares regression have been made to demonstrate
that the proposed algorithm is more resistant to the
existence of outliers and gives more intuitive results
with less sensitivity to outliers (Wong and Schneider
Jr, 1989). In addition, Calitz and Rüther (1996) found
that the algorithm gives similar results to the classical
least-squares regression in the absence of outliers.
Wong and Schneider Jr (1989) reached similar conclu-
sions and showed that the algorithm has no distribu-
tional or independence assumptions.

4. LMROB (hereinafter LMR) is a robust and nonpara-
metric regression method based on an estimator for
linear regression models (Finger, 2010; Koller and
Stahel, 2011; Susanti et al., 2014). The procedure pro-
posed in the algorithm has been implemented in the
R-package “robustbase”. It provides different robust
regression techniques, as well as robust univariate
and multivariate methods (Rousseeuw and

6 SY ET AL.



Hubert, 2011). Apart from robust regression tech-
niques for linear regression analysis, it includes robust
methods for nonlinear and generalized linear models.
It uses a bi-square redescending score function and
returns a highly robust and efficient estimator with
50% breakdown point and 95% asymptotic efficiency
for normal errors. The breakdown point is a measure
of resistance to misbehaviour of the datasets, while
efficiency measures the performance relative to some
standard, such as a parametric estimator or a test
assuming a Gaussian distribution. This method is
strongly recommended for the robust estimation of
linear regression due to its high efficiency when the
errors have normal distribution (Finger, 2010).

The trend estimation methods used to estimate linear
trends were selected from among the most frequently
considered in climate studies using in-situ observations.
Decadal trends are estimated from monthly anomaly
time series at all selected stations and at all pressure
levels. Resistant procedures are generally less efficient
when the underlying distribution is Gaussian but provide
much better results when data contain outliers or when
the distribution is non-Gaussian.

3.3 | Subsampling strategies

Estimated subsampling effects may differ considerably
among investigations and can be dependent on the
approach adopted to subsample a global dataset
(e.g., Rosen et al., 2003; Free and Seidel, 2005;
McCarthy, 2008). Referring to the Geophysical Fluid
Dynamics Laboratory model output, Oort (1978) was
among the first to quantify the sampling errors from
global tropospheric upper-air temperatures due to spatial
gaps. Results found that differences range from 0.50 to
1.0 K at individual pressure levels for an 855-station net-
work and conclude that the network was generally suffi-
cient for quantifying the statistics and trends of large-
scale circulation in the NH but not in the SH. According
to the Angell 63-station network (Angell and
Korshover, 1975), Trenberth and Olson (1991) estimated
subsampling errors using ECMWF operational analyses
and found differences between the sampling effects esti-
mated at the global scale in the NH and the SH. From
global analyses of MSU and reanalysis datasets, Agudelo
and Curry (2004) found that the difference between tro-
pospheric trends in the global dataset and sampling
dataset, according to (Lanzante et al., 2003) the 87-station
network, is up to 0.08 K�da–1. They concluded that the
network overestimated temperature decadal trends due
to the shortage of observations over the oceans.

Several studies have been focused on determining sam-
pling effects estimated from different particular network con-
figurations and sizes (e.g., Trenberth and Olson, 1991; Santer
et al., 2000; Agudelo and Curry, 2004; Free and Seidel, 2005;
McCarthy, 2008). In addition, varying sampling density was
tested to determine the theoretical size requirements for a
network to provide sampling errors below a predefined
threshold. McCarthy (2008) found that, to keep subsampling
effects below 0.05 K�da–1 in the troposphere and 0.10 K�da–1
in the stratosphere, a radiosonde station at approximately
every 30� longitude and 15� latitude north of 30�N is
required. Results concluded that radiosonde network
requirements are inadequate for monitoring humidity in the
Tropics and SH due to the large inhomogeneous station dis-
tribution. In addition, the geographical coverage of radio-
sonde stations changed over time, and the periods of records
vary among the stations and are characterized by several
gaps. The effects of missing data in trend estimations have
been investigated by Schlegel and Smit (2016). Results found
that the percentage of missing data (% NA) in the time series
of datasets and measurement accuracy are the variables that
mainly affect accurate trend estimations.

The strategy adopted in this work to quantify spatial
subsampling effects is to calculate the differences between
decadal trends estimated for different subsets of radio-
sounding stations artificially selected versus the complete
dataset. The different subsets of the stations are randomly
selected for each Px and each latitude to reduce the effects
of the irregular spatial distribution of the stations (Figure 1)
and their different time coverage at different pressure levels
(Figure 2). Temporal subsampling effects or effects due to
missing data are also quantified using the differences
between decadal trends estimated for two different values
of Px (i.e., Px1 – Px2). To analyse the statistical significance of
the sensitivity of trend estimation to regression methods
and to data subsampling, the rank-based nonparametric
Wilcoxon-Mann–Whitney (WMW) test (Siegel and
Benson, 1982) is used. The WMW test is used to test
whether differences of estimated trends from two regression
methods (or from two samples of datasets) are significantly
different from zero with a 95% confidence interval. The
main reason for using the nonparametric WMW statistical
test is that it tends to be more powerful and better suited
for non-normally distributed data compared to parametric
tests such as Student's t test (Sy and Quesada, 2020).

4 | SENSITIVITY OF TRENDS TO
THE CHOICE OF LINEAR
REGRESSION METHODS

Figure 3 shows the comparison of the temperature
decadal trend differences due to the use of different linear

SY ET AL. 7



regression methods with respect to the LIN method, that
is, (LAD − LIN; black curve), (LMR − LIN; red curve)
and (LAN − LIN; blue curve) for the datasets
corresponding to P100, P90, P76 and P51, respectively. Due
to the observation availability, P100 and P90 datasets are

only considered in the NH (Figures 1 and 2). Figure 4
shows the same as Figure 3 but for RH.

For both temperature and RH, the variability of the
difference along the vertical profile for all the regression
methods increases substantively from P100 to P51.
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FIGURE 3 Temperature decadal trend differences (K decade–1) estimated between pairs of nonparametric linear regression methods

with respect to the simple parametric linear method (LIN), that is, (LAD − LIN; black curve), (LMR − LIN; red curve) and (LAN − LIN;

blue curve) for each of the different pressure levels. Due to the limited observation available, differences calculated based on observations of

P100 and P90 (top panels) are only shown for the Northern Hemisphere (NH, 20�N < latitude < 90�N), while trend differences for P76 (middle

panels) and for P51 (bottom panels) datasets are considered in all latitudes: that is, at global scale, in the Tropics (jlatitudej < 20�), in the

Northern Hemisphere (NH, 20�N < latitude < 90�N) and in the Southern Hemisphere (SH, 90�S < latitude < 20�S) [Colour figure can be

viewed at wileyonlinelibrary.com]
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However, the comparison between the regression
methods for temperature shows that decadal trends esti-
mated with LIN significantly differ from the trends esti-
mated with the three nonparametric methods, particularly
between 400 and 200 hPa and at pressure levels below
100 hPa. Beyond the spatial and temporal sampling, the
spread in the trends estimates obtained with different
regression methods is influenced by several factors, such
as: (a) sensitivity of the regression methods due to the spe-
cific nature and features of each dataset, that is,

variability, outliers and measurements uncertainty
(e.g., Lanzante, 1996; Weatherhead et al., 1998;
Weatherhead et al., 2002); (b) existence and timing of the
largest change points, that is, structural breaks in the time
series due to various reasons, such as instrumental effects
or station re-locations (e.g., Gaffen et al., 2000; Santer
et al., 2000); and (c) length, stability and number of miss-
ing data in the data records (e.g., Gaffen, 1994;
Weatherhead et al., 1998; Gaffen et al., 2000; Santer
et al., 2000; Schlegel and Smit, 2016).
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FIGURE 4 Same as Figure 3 but for relative humidity decadal trend differences (%�decade–1) [Colour figure can be viewed at

wileyonlinelibrary.com]
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The P100 dataset shows that trend differences among
regression methods vary from −0.10 K�da–1 (LAN/LIN) to
−0.01 K�da–1 (at LAD/LIN and at LMR/LIN trend differ-
ences) below 100 hPa. The spread, compared to P90, is
larger and can be due to several aspects, such as selecting
fewer stations, while with more complete data records,
the non-normality and skewness of the distribution may
increase the uncertainty for LMR and LAD methods
(e.g., Wong and Schneider Jr, 1989; Finger, 2010). Con-
versely, if the datasets are normally distributed and
homoscedastic, the LAN method may be affected by a
large type I error (arriving at a false positive) and thus
may be penalized with respect to other methods. Finally,
if outliers and/or large change points are present in the
datasets, both LMR and LAD regression methods may be
more sensitive (i.e., less resistant) than LAN and thus
exhibit small differences with respect to the LIN method.
Nevertheless, the values of the trends for the P100 dataset
give a clear idea of the uncertainty outcome from the
trend estimation due to the use of one regression method
or another for the considered dataset.

Similar results are obtained in the NH for both P90
and P76 datasets, with maximum differences around
0.15 K�da–1 at 300 hPa. Considering P76, at the global
scale, differences among regression methods may also
exceed 0.15 K�da–1 at 300 hPa, despite the large number
of observations available. At the Tropics, regression
methods give similar results at all pressure levels with a
maximum difference of around 0.05 K�da–1 at 250 hPa. In
SH, the differences between regression methods are
around 0.10 K�da–1 at 925 and 250 hPa, with large dis-
crepancies ranging from −0.20 K�da–1 (LAD/LIN) to
0.08 K�da–1 (LAN/LIN) at 70 hPa, mainly due to limited
amount of observations and the consequent limited spa-
tial representativeness of the dataset.

Similar results for P51 are shown in the bottom panel
of Figure 3: Differences among the regression methods
become significant at all latitudes compared to P100, P90
and P76, with trend differences exceeding 0.40 K�da–1 at
250 hPa in the NH. In the Tropics, at pressure levels
smaller than 300 hPa, where observations become lim-
ited, the spread among regression methods varies from
0.20 K�da–1 (LAD/LIN) to 0.10 K�da–1 (LAN/LIN) at
200 hPa. In SH, large trend differences are also estimated
at pressure levels below 300 hPa, with spread among
methods varying from −0.15 K�da–1 (LMR/LIN) to
0.05 K�da–1 (LAD/LIN).

Comparing trend differences estimated from P76 and
P51 at the global scale and over the NH (Figure 3 middle
and bottom panels), results show that differences among
regression methods estimated from P51 are four times
larger than those estimated from P76 at 250 hPa. Compar-
ing also trend differences for both percentage of datasets

P76 and P51 (Figure 3) in the Tropics at 200 hPa, differ-
ences estimated from P51 datasets are at least two times
larger than differences estimated from P76. This means
that differences among the regression methods maybe at
least two times smaller if the coverage of available obser-
vations increased from 51 to 76% of the total sampling.
This is consistent with the fact that trends calculated
using data records with significant temporal gaps of miss-
ing data (>20 years) are typically affected by large sam-
pling uncertainties. In other words, missing data values
increase the possibility to detect a trend in a stationary
time series (type-2 error, i.e., finding false negatives), also
increasing the discrepancies among different regression
methods.

On the other hand, adding more stations with large
temporal gaps to the stations with smaller gaps
(e.g., from P76 to P51) may substantially increase the
spreads among regression methods and, therefore, induce
larger uncertainties in trend estimations. In order to
reduce uncertainties derived from the choice of an esti-
mation method, the stations with the most complete data
records must be selected. This is evident for the trends
estimated at the global scale and in the NH at pressure
levels lower than 300 hPa in the UTLS regions, where
measurement coverage is more limited than at other
atmospheric levels.

Table 1 summarizes the results shown in Figure 2 at
four atmospheric layers: lower troposphere, middle tro-
posphere, upper troposphere and lower stratosphere
(hereinafter, LT, MT, UT and LS, respectively). The aver-
aged differences among the regression methods are
smaller for P100 and P90 (i.e., less than −0.02 K�da–1 for
P100 and around 0.06 K�da–1 for P90 in the UT) but statis-
tically significant. Differences also range around
±0.05 K�da–1 at all latitudes except in SH, where differ-
ences become statistically significant and can reach up to
−0.10 K�da–1 in the LS for P76. From P51, differences are
statistically significant as well and can reach up to
0.15 K�da–1 in the UT, likely related to the large variabil-
ity of the dynamical processes governing stratosphere–
troposphere exchange, as well as to the paucity of radio-
sonde records in the UTLS region.

In Figure 4 and Table 2, a similar comparison as in
Figure 3 and Table 1, respectively, is reported but for
RH. Comparing trend differences at 300 hPa for all Px, a
large spread among regression methods from 0.20%�da–1
(LMR/LIN) to 0.80%�da–1 (LAN/LIN) is obtained for P100.
A large spread at 925 hPa is shown in Figure 4 for all Px.
For P76, the trend differences range within −0.50%�da–1
(LMR/LIN) and −0.05%�da–1 (LAN/LIN) in the NH,
while in the SH, the differences are larger and range from
less than −1.0%�da–1 (LMR/LIN) to −0.50%�da–1
(LAD/LIN). The large differences at 300 hPa and 925 hPa
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for RH can be also due to the large water vapour variabil-
ity in the boundary layer in LT and also to the restricted
number of observations (McCarthy, 2008; Ladstädter
et al., 2011). Results provided in Table 2 further show
that trend differences in the LT and MT are statistically
significant, with values ranging within 0.06 and 0.20%�
da–1 in the MT and within 0.01%�da–1 and 0.10%�da–1 in

the LT for both P100 and P90 datasets. For P51, the maxi-
mum spread occurs in the MT, with significant differ-
ences exceeding 0.30%�da–1 in the SH, while in the
Tropics, differences are generally smaller and non-
statistically significant. The large spread among regres-
sion methods observed at all latitudes at 925 hPa, shown
in Figures 3 and 4, and at 250 hPa for temperature
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FIGURE 5 Sensitivity of temperature (K�decade–1) and relative humidity (%�decade–1) decadal trends to the missing data effects. The
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observation available, trend differences calculated between P100 and P90 datasets (i.e., P100 − P90) are only shown for the Northern
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datasets can be mainly explained by the small amount of
radiosonde data available, as mentioned above.

5 | SENSITIVITY OF TRENDS TO
TEMPORAL SUBSAMPLING
EFFECTS

In this section, we quantify the sensitivity of decadal
trends to temporal subsampling effects (i.e., missing data
or changes in the sampling frequency). The effects are
estimated for temperature and for RH time series in the
NH using differences between trends for P100 and for P90
at all pressure levels (Figure 5a,b, top panels). The effects
are also estimated at all latitudinal belts using the differ-
ence between P76 and P51 for temperature (Figure 5c,
middle panels) and for RH (Figure 5d, bottom panels). In
Figure 5, dots are representative of the median values for
each regression method (different colours), while hori-
zontal bars are representative of the first and third quar-
tiles of the corresponding probability distribution.

Based on trend differences estimated between P100
and P90 for temperature (Figure 5a), it can be inferred
that the temporal subsampling effects are larger at
300 hPa and at pressure levels below 150 hPa, where
there is a substantive increase in the sampling frequency.
At 300 hPa, the trend differences due to the missing data
and the high local variability can exceed 0.20 K�da–1 for
LIN, while for the nonparametric regression methods,
the differences are less than 0.10 K�da–1. At pressure
levels below 150 hPa, the spread among regression
methods becomes larger, with differences ranging within
±0.10 K�da–1. From Figure 5b, it is also possible to pro-
vide similar results as Figure 5a but for RH. Results show
large temporal subsampling effects exceeding 0.50%�da–1
at 300 hPa, mainly due to the small number of available
observations and the large atmospheric variability
(McCarthy, 2008; Ladstädter et al., 2011).

The effects of missing data are also obtained using P76
and P51. Figure 5c show statistically significant discrepan-
cies among the regression methods at 925 hPa and at
pressure levels below 200 hPa (with values exceeding
0.40 K�da–1 at 30 hPa), which are mainly due to the sub-
stantial increase of the missing data in the time series.
These effects are also observed for RH (Figure 5d), with
values exceeding 1.0%�da–1 at 925 hPa in the Tropics. For
temperature in the SH, a large spread is observed at
925 hPa and at atmospheric levels below 150 hPa and at
925 and 400 hPa for RH, mainly linked to the sparseness
of radiosounding stations and small amount of avail-
able data.

Table 3 further shows how the temporal subsampling
effect at different atmospheric layers is generally small

for all regression methods (around −0.01 K�da–1 in the
LT, 0.05 K�da–1 in the MT and in the UT and within
±0.02 K�da–1 in the LS), when the amount of missing
data is limited (i.e., P100 − P90). Also for RH, the averaged
trend differences due to missing data are generally small
(around −0.02%�da–1 in the LT and 0.10%�da–1 in the
MT). Similar results are obtained using P76 and P51
(Table 3, bottom rows), but in the NH and at the global
scale. The effects of missing data are statistically signifi-
cant in the LS, with trend differences exceeding
−0.20 K�da–1. Table 3 (bottom rows) reports analogous
results for RH. Results show that, except for SH where
uncertainties are larger (more than 0.30%�da–1 in MT and
0.40%�da–1 in LT), temporal subsampling effects are gen-
erally small (less than −0.12%�da–1 in the LT and no more
than ±0.11%�da–1 in the MT). These uncertainties are
mainly due to spatial and temporal inhomogeneities in
the station distribution.

In summary, the analysis reported in this
section allows users to quantify the temporal and spatial
subsampling uncertainties for their own climate applica-
tion based on radiosounding data. To reduce the uncer-
tainty on a trend estimation due to missing data below
±0.15 K�da–1 for temperature, selecting a dataset with at
least 76% of data coverage (i.e., time series observations
with at least 30-years of data coverage) is recommended,
while for RH, no clear correlation can be found between
the estimated uncertainties and the missing data effects.

6 | SENSITIVITY OF TRENDS TO
SPATIAL SUBSAMPLING EFFECTS

Figure 6 shows the sensitivity of temperature decadal
trends to the effects of spatial subsampling, that is,
uncertainty on trend estimations due to the selection of
different subsets of stations. Due to the limited observa-
tion availability and spatial coverage of the dataset in
the Tropics and SH, the effects of spatial subsampling
are quantified over the NH only. Spatial subsampling
effects are estimated using the difference between
decadal trends calculated for a subset of radiosounding
stations artificially selected (from 20 to 100 stations) ver-
sus the decadal trends obtained for the complete dataset.
In Figure 6, the median values for each regression
method are reported, along with the first and third quar-
tiles (horizontal bars).

At all pressure levels below 400 hPa, the spatial
subsampling effect becomes relevant for all Px, with a
large spread among the regression methods. It becomes
obvious that subsampling effects are larger when a small
number of stations is considered (<40 stations). There-
fore, when increasing the number of stations, a
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convergence process is observed, with trend differences
progressively decreasing to small values. This is true for
P100, P90 and P76 datasets, as shown in Figure 6. However,
an increasing the number of stations (e.g., from 20 to

more than 100 stations), coupled with a limited amount
of missing data, allows us to further reduce the noise
coming from an inappropriate spatial and temporal sam-
pling, thus reducing the uncertainties due to the choice
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of a regression method. Above 400 hPa in the LT, where
a dense distribution of observations is available, the
subsampling effect becomes smaller, with differences
generally less than ±0.01 K�da–1, while differences
increase when fewer than 20 stations are considered
(exceeding 0.10 K�da–1 at 850 hPa).

Results provided in Table 4 also show that the spatial
subsampling effects are generally small (lower than
±0.10 K�da–1 in the LT and no more than 0.20 K�da–1 in
the MT for all P100 and P90 datasets), but it is statistically
significant, especially when trends are calculated from a
moderate number of stations (e.g., less than 80). From
P76 and P51 datasets, the effects of the spatial subsampling
effects are also quite small and therefore negligible, with
values ranging around ±0.10 K�da–1. If fewer than 20 sta-
tions are considered, the differences become statistically
significant, with values exceeding 0.2 K�da–1 for both the
MT and the UT levels.

In Figure 7, similar results as Figure 6 are shown for
RH. The spatial subsampling relative effects estimated
are generally large at 1000 hPa and at 300 hPa, with
values ranging within ±0.50%�da–1 for all Px and the
number of stations considered. The calculated differences
are mainly due to both the high variability of the humid-
ity field in the LT and UT and to the biases and individ-
ual data processing typical of different radiosonde types.
The most significant effects are observed below 400 hPa,
with significant trend differences exceeding −1.0%�da–1
for all Px when 20 stations are considered, while they
decrease asymptotically from 20 to 100 stations. Table 5
shows the relative effect of spatial subsampling in the LT,
which is generally limited with values ranging around
±0.10%�da–1 for almost all Px, independent of the number
of selected stations. Instead, in the MT, the differences
become large and statistically significant for almost all
datasets, especially for P51, when the number of stations
considered is fewer than 80: In this case, differences can
be up to −1.0%�da–1 when 20 stations are selected.

7 | DISCUSSION AND
CONCLUSION

An extension of the analysis available in literature for the
quantification of uncertainties in the estimation of
decadal trends is presented in this paper. The effects of
different regression methods, of missing data and of
subsampling have been studied using historical radio-
sounding time series of temperature and RH from 656 sta-
tions in the period 1978–2018, available in version 2 of
IGRA (Durre et al., 2018). The strongest finding of this
paper is that accurate estimations of long-term decadal
trends in radiosounding time series may primarily

concern the choice of the regression method. When
trends are calculated on the entire IGRA dataset
(i.e., P100), differences among regression methods may
vary from −0.10 K�da–1 to −0.01 K�da–1 below 100 hPa
for temperature and from 0.2 to 0.8%�da–1 at 300 hPa for
RH. Differences can also increase up to 0.4 K�da–1 at
300 hPa when the amount of missing data exceeds 50% of
the original dataset for temperature, while for RH, signif-
icant differences are observed in the LT at 925 hPa for
almost all datasets. Such findings are consistent with pre-
vious studies available in the literature (e.g., Gaffen et
al., 2000; Santer et al., 2000), but they are more complete
because they are often limited to considering differences
between pairs of regression methods and/or considering
one percentage of data availability from datasets charac-
terized by trend rates slower than those observed over
the last two decades. Another important aspect of this
paper is that this is, to our knowledge, the most recent
work based on trends calculated using radiosounding
datasets, which are now measuring using improved sen-
sors in the epoch of the “climate change,” and therefore,
it comes at the right moment as an improvement of past
efforts.

In the past, analysis of uncertainties in trend estima-
tions has been typically carried out on different datasets,
selecting different station networks, periods of record and
regression methods. From the different samples of
dataset considered, as mentioned above, the spread
among regression methods is influenced by several fac-
tors, such as: (a) sensitivity of the regression methods due
to the specific nature and features of each dataset
(Lanzante, 1996; Weatherhead et al., 1998; Weatherhead
et al., 2002); (b) existence and timing of the largest
change points (Gaffen et al., 2000; Santer et al., 2000);
and (c) length, stability and amount of missing data in
the data records (Schlegel and Smit, 2016). Further stud-
ies based on a comparison of several trend estimation
methods using a larger number of stations with long data
records are still a valid solution to improve our knowl-
edge of climate trends and to quantify the related
uncertainties.

Finally, two additional caveats are worth noting.
First, the uncertainty contributions due to the effect of
spatial subsampling biases and, second, the sensitivity of
decadal trends to temporal subsampling effects
(i.e., missing data). For instance, as we mentioned above,
missing data are an intrinsic dataset characteristic due to
a lack of continuity in operations contingently occurring
at each measuring station. Although the completeness of
historical radiosounding observations is improving over
the years (Ferreira et al., 2019), missing data in the time
series are still frequent. This implies that, to provide a
reliable assessment of the uncertainties affecting the
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estimation of trends using radiosounding data, the sepa-
rate roles of temporal and spatial sampling effects due to
the missing data must be considered. The debate related
to the approach to consider for reducing biases due to
sampling errors has been ongoing for several years, and it

is a topic of several papers in literature (e.g., Santer
et al., 2000; Rosen et al., 2003; Agudelo and Curry, 2004;
Free and Seidel, 2005; McCarthy, 2008). Most of these
papers address spatial sampling errors with regard to
several factors (i.e., global datasets considered, approach
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adopted, network configurations and sizes, etc.). In our
study, the existing approaches were extended consider-
ing: (a) different sub-networks of stations to quantify
the impact on decadal trends and (b) uncertainties due
to the missing data and to the choice of regression
methods, identifying the minimum amount of IGRA sta-
tions, which any user could use without a significant
increase of the uncertainty due to the spatial sampling
effects.

Our results found that enlarging the number of sta-
tions, including those with an acceptable level of miss-
ing data, can allow us to reduce the trend estimation
uncertainties among different regression methods. In
analogy, uncertainties are smaller in regions where
data are denser (e.g., NH) and time series with a large
amount of missing data are filtered out. This can be
because missing data within the time series showing
no significant trends increases the probability of com-
mitting a type-2 error (Schlegel and Smit, 2016). Our
results also suggest that the use of the P76 dataset is
related to a small uncertainty in the estimation of
trends due to the choice of the regression method,
while the P51 dataset may increase the uncertainty up
to 0.4 K�da–1. Uncertainties also critically depend on
the coupling of the number of stations selected for an
application and the amount of missing data. Selecting a
sufficient number of stations (e.g., at least 60) with a
limited amount of missing data (e.g., at least P76) can
reduce the noise coming from an inappropriate spatial
and temporal sampling and, therefore, the uncer-
tainties due to the choice of the trend estimation
method. For example, for RH, 40 stations with the cov-
erage of the P76 dataset should be selected at
minimum.

There are some limitations to this work. First, the
dataset selected in this paper has been investigated with-
out considering restrictions on the persistence and the
position of the missing data within each time series (i.e., at
the beginning, in the end, or in the middle), with the aim
to quantify the uncertainty affecting the results of any
study based on the IGRA radiosounding data as a function
of its data completeness in time. Second, the different sub-
sets of the stations are randomly selected for each Px and
each latitude with the aim to reduce the effects due to the
irregular spatial distribution of the stations and their dif-
ferent time coverage at different pressure levels. Neverthe-
less, this work contributes to increasing the attention and
encourages further studies to improve the quantification
of uncertainties in climate trends.
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