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Summary

The problem of computing periodic solutions can be expressed as a boundary value problem

and solved numerically via piecewise collocation. Here, we extend to renewal equations the

corresponding method for retarded funcional di�erential equations in [K. Engelborghs et al.,

SIAM J. Sci. Comput., 22 (2001), pp. 1593-1609]. The theoretical proof of the convergence

of the method has been recently provided in [A. Andò and D. Breda, SIAM J. Numer.

Anal., 58 (2020), pp. 3010-3039] for retarded functional di�erential equations and in [A.

Andò and D. Breda, submitted in 2021] for renewal equations and consists in both cases in

applying the abstract framework in [S. Maset, Numer. Math., 133 (2016), pp. 525-555] to

a reformulation of the boundary value problem featuring an in�nite-dimensional boundary

condition. We show that, in the renewal case, the proof can also be carried out and even

simpli�ed when considering the standard formulation, de�ned by boundary conditions of

�nite dimension.
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1 INTRODUCTION

Renewal equations (REs), also known as Volterra integral equations (see, e.g.,1 for an extensive treatment), constitute an important class

of delay equations which do not involve derivatives. In other words, they specify the value of the unknown function at the present time

in terms of its past values. Such equations appear in a wide range of applications, from the theory of industrial replacement to that of

population dynamics, where they arise from the presence of some physiological structure (e.g., age) of the relevant population2,3,4,5.

A general RE can be written as

x(t) = F(xt) (1)

where F : X→ Rd is an autonomous, usually nonlinear function, the state space X is de�ned as X := L1([−τ, 0],Rd)6 for some delay τ > 0,

and the state or history xt ∈ X at time t associated to (1) is de�ned as

xt(θ) := x(t + θ), θ ∈ [−τ, 0].

The in�nite dimension of the state space represents a main reason why the dynamical analysis for REs is harder than that for ordinary

di�erential equations. An important aspect of the dynamical analysis is the study of invariant sets; in particular, we are interested in
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2 ALESSIA ANDÒ

periodic orbits. In this respect, the theory for REs has been developed only recently. In7 an extension of the Floquet theory to REs was

proposed, allowing the study of local asymptotic stabilty of periodic solutions, while8 provides a theoretical analysis of convergence of the

piecewise collocation method described in9 to actually compute the periodic solutions. Such analysis is based on the abstract approach

in10 for general Boundary Value Problems (BVPs).

The problem of �nding a periodic solution of (1) with period ω > 0 can be expressed as a BVP in two di�erent but equivalent ways

(see9 Section 2 for a comparison of the two formulations in the case of Retarded Functional Di�erential Equation, RFDEs).8 considers a

BVP of the form 
x(t) = F(xt), t ∈ [0, ω],

x0 = xω

p(x|[0,ω]) = 0,

(2)

whose solution represents the restriction to two periods (say [−ω, ω] without loss of generality) of the original solution. The boundary

condition includes the periodicity condition, stating that the solution states at the extrema of the period are equal, plus an extra phase

condition, de�ned by a scalar linear function p and necessary in order to remove translational invariance. The convergence proof in8 is

based on reformulating (2) as a �xed-point problem, similarly to what was done in11 for RFDEs.

The aim of the present paper is to provide a simpli�cation of the proof of convergence given in8 by considering the alternative periodic

BVP formulation, which features a �nite-dimensional boundary condition, is the one which is most commonly considered in the literature

on RFDEs (e.g.,12,13,14,15) and, most importantly, leads to the same numerical method (the reader can refer to8 Section 4 for numerical

tests to support the validity of the method). Section 2 will describe both the BVP formulation and the relevant numerical method.

Section 3 will go through the steps of the convergence analysis, by stating the propositions that ensure the validity of both the theoretical

assumptions (Subsection 3.1) and the numerical ones (Subsection 3.2) required in10. As it will be shown, some parts of the proofs of the

latter can be notably simpli�ed by resorting to the BVP with �nite-dimensional boundary condition.

2 PIECEWISE ORTHOGONAL COLLOCATION FOR PERIODIC BOUNDARY VALUE PROBLEMS

The problem of �nding a periodic solution of (1) with period ω > 01 can be expressed as a BVP whose solution represents the restriction

to one period (say [0, ω] without loss of generality) of the original solution. The boundary condition includes part of the periodicity

condition, stating that the solution values at the extrema of the period are equal. The rest of the periodicity condition is, in a certain

sense, included within the relevant RE: indeed, whenever one needs to evaluate the solution x at points that fall o� the interval [0, ω] due

to the delay, one exploits the periodicity to bring back the evaluation to the domain [0, ω]. More rigorously, this corresponds to de�ning,

for t ∈ [0, ω], a periodic state xt ∈ X as

xt(θ) =

x(t + θ), t + θ ∈ [0, ω],

x(t + θ + ω), t + θ ∈ [−ω, 0),

for θ ∈ [−τ, 0] ⊂ [−ω, 0], allowing in turn to de�ne the periodic BVP as
x(t) = F(xt), t ∈ [0, ω],

x(0) = x(ω)

p(x) = 0.

(3)

Examples of phase conditions are the trivial one, of the form xk(0) = x̂ for some k ∈ {1, . . . , d} for a �xed x̂ and the integral one, of the form

ω∫
0

〈x(t), x̃′(t)〉dt = 0,

where x̃ is (an approximation of) a given reference solution16. Since the method described here is typically used within a numerical

continuation framework, such a reference solution could be, e.g., the (piecewise polynomial approximation of) the solution obtained at

the previous continuation step.

1One can always consider ω ≥ τ without loss of generality, since a solution with period ω is also a solution with period kω for any positive
integer k.
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ALESSIA ANDÒ 3

The following description of the numerical method to solve (3) assumes, for the time being, that the function F de�ning the right-hand

side can be exactly computed. The �rst step (see, e.g.,9) is to reformulate (3) so that the interval of de�nition of the RE remains �xed

and no longer depends on the unknown ω. This is achieved by de�ning the map sω : R→ R as

sω(t) :=
t

ω
,

which allows to write (3) equivalently as 
x(t) = F(xt ◦ sω), t ∈ [0, 1]

x(0) = x(1)

p(x) = 0.

(4)

As explained in9 and then reported in8, (4) can be solved through piecewise orthogonal collocation, which is now a standard approach

(originally developed for ODEs, see MatCont
17). For L and m positive integers, the numerical solution u in [0, 1] is a piecewise continuous

polynomial obtained by solving the following system having dimension (1 + Lm)× d + 1:
u(ti,j) = F(uti,j ◦ sw), j ∈ {1, . . . ,m}, i ∈ {1, . . . , L}

u(0) = u(1)

p(u) = 0

for a given mesh 0 = t0 < · · · < tL = 1 and collocation points

ti−1 < ti,1 < · · · < ti,m < ti

for all i ∈ {1, . . . , L}. The unknowns are, other than w approximating ω, those of the form ui,j := u(ti,j) for (i, j) = (1, 0) and i ∈ {1, . . . , L},
j ∈ {1, . . . ,m}. In the context of piecewise collocation, one typically refers to the corresponding Finite Element Method (FEM), which

consists in considering a �xed value for m while the mesh size L increases, in view of convergence. This is indeed the case for the rest of

the present paper.

In realistic applications, right-hand sides F usually feature an integral, therefore cannot be exactly computed in general. For instance,

F can be of the form

F(ϕ) :=

0∫
−τ

K(σ, ϕ(σ)) dσ (5)

for some integration kernel K : [−τ, 0]× Rd → Rd, or

F(ϕ) := f

 τ∫
0

k(σ)ϕ(−σ) dσ

 , (6)

for some integration kernel k : [0, τ ]→ Rd and some function f : Rd → Rd. The analysis that follows focuses on (5), but one can apply the

same ideas to extend it to (6). By rescaling time via the function sω one obtains

F(xt ◦ sω) =

0∫
− τ
ω

ωK(ωθ, xt(sω(ωθ)) dθ =

0∫
− τ
ω

ωK(ωθ, x(t + θ)) dθ. (7)

If the integrand can be exactly computed, as it is usually the case in applications, then (7) is approximated as

FM(xt ◦ sω) := ω

M∑
i=0

wiK(ωαi, x(t + αi)),

where M is a given approximation level and the quadrature nodes − τ
ω

= α0 < · · · < αM = 0 are allowed to be completely independent of

the collocation nodes mentioned earlier. Indeed, such nodes and the corresponding weights w0, . . . ,wM are meant to de�ne a quadrature

formula which exploits the possible irregularities in K.

3 CONVERGENCE ANALYSIS

The convergence analysis of the numerical method described in Section 2 follows the abstract approach10, intended for neutral functional

di�erential equations. Note that REs can be treated as equations of this kind by interpreting the relevant solutions as derivatives of other

functions.This may recall the approach used in18, which involves the integration of the relevant REs.
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4 ALESSIA ANDÒ

The general �xed-point problem described in10 consists in �nding (v∗, β∗) ∈ V× B with v∗ := G(u∗, α∗) and (u∗, α∗, β∗) ∈ U× A× B
such that

(u∗, α∗, β∗) = Φ(u∗, α∗, β∗)

for Φ : U× A× B→ U× A× B given by

Φ(u, α, β) :=

 F(G(u, α), u, β)

(α, β)− B(G(u, α), u, β)

 , (8)

where F : V×U×B→ U in the �rst line de�nes the right-hand side of the functional equation of the relevant BVP and B : V×U×B→ A×B
in the second one represents the boundary conditions. The solution v = G(u, α) lies in a normed space of functions V and is obtained

through the operator G : U× A→ V which reconstructs it given a function u from a Banach space U and an initial value/state α from a

Banach space A. β is a vector of possible parameters, living in a Banach space B of �nite dimension.

In the case of REs, the right-hand side prescribes the values of the solution, rather than those of its derivative. This means that no

further step is required to retrieve the solution v∗, once one has the solution (u∗, α∗, β∗) of (8). Thus, in principle, one could choose to

work with A = ∅ - instead of with an in�nite-dimensional A, as it is needed in8 - and G(u) = u. This is indeed the case, as it will be shown

in the rest of this section.

In order to prove that the BVP (4) is amenable of the analysis in10, the �rst step is to observe that it can be rewritten as a �xed point

problem of the form (8). The only parameter involved is the period ω, therefore B = R. In order to work with the space A = ∅, the boundary
conditions need to be scalar and limited to the phase condition, unlike in the formulation (2) considered in8, where in�nite-dimensional

boundary conditions need to be imposed. As a consequence, the periodicity condition must be moved from the BVP to the de�nition

of the space, i.e., U can only contain functions satisfying the periodicity condition. By choosing U ⊆ {u : [0, 1] → Rd | u(0) = u(1)}, the
solutions of (4) are exactly the pairs (u∗, ω∗) ∈ U×R with (u∗, ω∗) ∈ U×(0,+∞) the �xed point of the map Φ : U×R→ U×R de�ned by

Φ(u, ω) :=

F(u(·) ◦ sω)

ω − p(u)

 . (9)

Consequently, (4) leads to an instance of (8) with A = ∅, F : U × R→ U and B : U × R→ R given respectively by

F(u, ω) := F(u(·) ◦ sω) (10)

and

B(u, ω) := p(u).

The operator B is linear and independent of ω. Provided that U only contains function satisfying the periodicity condition, and does

actually contain the sought solution of (4), its precise de�nition does not play a role up to this point. However, the �xed point problem

(9) needs to satisfy several assumptions in order to apply the general framework in10, and the validity of such assumptions depend on

both U and the regularity of the right-hand side F, given in turn by the regularity of the integrand K in (5). Unlike the theoretical

assumptions, the numerical ones also depend on the discretization of the problem. Subsections 3.1 and 3.2 contain the propositions stating

the validity of the theoretical and numerical assumptions respectively. As it is eventually remarked in Subsection 3.3, the validity of both

the theoretical and the numerical assumptions implies that the relevant numerical method is convergent.

3.1 Theoretical assumptions

The hypotheses on the regularity of the problem (9) that are needed to satisfy the theoretical assumptions are listed below. B∞ denotes

the set of measurable and bounded functions and it has been chosen - instead of the classical L1 space - in order to deal with collocation,

which requires to evaluate the relevant functions pointwise. X denotes the state space relevant to the rescaled BVP (4). Note that, with

respect to the similar hypotheses needed in8, the only di�erence is in 3.1, concerning the speci�c choices of the spaces U and A.

(T1) X = B∞([−τ, 0],Rd), X = B∞([−1, 0],Rd).

(T2) U = {u ∈ B∞([0, 1],Rd) | u(0) = u(1)}, A = ∅.

(T3) K : [−τ, 0]× Rd → Rd is continuous and has partial derivatives D1K, D2K.
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ALESSIA ANDÒ 5

(T4) D2K : Rd → Rd is continuous.

(T5) There exist r > 0 and κ ≥ 0 such that

‖DK(ω·, vt)− DK(ω∗·, v∗t )‖Rd←L(R×Rd,Rd) ≤ κ‖(vt, ω)− (v∗t , ω
∗)‖X×R

for every (vt, ω) ∈ B((v∗t , ω
∗), r), uniformly with respect to t ∈ [0, 1].

The �rst theoretical assumption (AFB,10 page 534) states that the the operators F and B appearing in (8) are Fréchet-di�erentiable.

In our case, B is given by a linear function, thus the assumption is a consequence of the following proposition, which can be proved by

simply following the steps in the proof of8 Proposition 3.2.

Proposition 1. Under 3.1, 3.1 and 3.1, F in (10) is Fréchet-di�erentiable at every (û, ω̂) ∈ U× (0,+∞), and

DF(û, ω̂)(u, ω) = L(·; û, ω̂)[u(·) ◦ sω̂ ] + ωM(·; û, ω̂) (11)

for (u, ω) ∈ U × (0,+∞), where, for t ∈ [0, 1],

L(t; û, ω̂)[u(·) ◦ sω̂ ] := ω̂

0∫
− τ
ω̂

D2K(ω̂θ, û(t + θ))u(t + θ) dθ (12)

and

M(t; u, ω) :=

0∫
− τ
ω

K(ωθ, u(t + θ)) dθ −
τ

ω
K
(
−τ, u

(
t−

τ

ω

))
+ ω

0∫
− τ
ω

D1K(ωθ, u(t + θ))θ dθ.

The second theoretical assumption (AG,10 page 534) concerns the boundedness of the Green operator G appearing in (8). However,

in the case of (9), such operator is not involved, as explained at the beginning of Section 3. Thus, formulation (9) allows us to skip the

corresponding technical step in the convergence proof.

The third theoretical assumption (Ax∗1,10 page 536) states that the Fréchet derivative of Φ in (8) is locally Lipschitz continuous at

its �xed points. From this point on, (u∗, ω∗) denotes a �xed point of Φ in (9). The validity of the assumption is a consequence of the

following proposition, whose proof goes as the one of8 Proposition 3.4.

Proposition 2. Under 3.1, 3.1, 3.1 and 3.1, there exist r ∈ (0, ω∗) and κ ≥ 0 such that

‖DΦ(u, ω)− DΦ(u∗, ω∗)‖U×R←U×(0,+∞) ≤ κ‖(u, ω)− (u∗, ω∗)‖U×R

for all (u, ω) ∈ B((u∗, ω∗), r).

In order to prove the validity of the last theoretical assumption ( Ax∗2,10 page 536), one needs an additional requirement, other than

the hypotheses stated at the beginning of this subsection. Such requirement is anyway a consequence of the hyperbolicity of the periodic

solution of interest, which is in turn a standard assumption in the context of application of the principle of linearized stability (see7).

In particular, if the periodic solution is hyperbolic and L in (12) is continuous, then the initial value problem associated to the linear

homogeneous RE

x(t) = L(t; u∗, ω∗)[xt ◦ sω∗ ] (13)

is well-posed.

Proposition 3. Let T∗(t, s) : X → X be the evolution operator for the linear homogeneous RE (13). Under 3.1, 3.1, 3.1 and 3.1, if 1 is a

simple eigenvalue of T∗(1, 0), then the linear bounded operator IU×R − DΦ(u∗, ω∗) is invertible, i.e., for all (u0, ω0) ∈ U × R there exists

a unique (u, ω) ∈ U × R such that u = L∗[u· ◦ sω∗ ] + ωM∗ + u0

p(u) = ω0.
(14)
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6 ALESSIA ANDÒ

Proof. The proof is based on treating (14) as a boundary value problem for v the periodic extension of u to [−1, 1], i.e.,
v(t) = L∗(t)[vt ◦ sω∗ ] + ωM∗(t) + u0(t)

v1 = v0

p(v|[0,1]) = ω0.

(15)

for t ∈ [0, 1]. (15) is, in turn, an instance of the boundary value problem8 (19) in Proposition 4 with ϕ0 = 0. By8 Proposition 4, there is

a unique solution (v, ω) to (15), which means that (v|[0,1], ω) ∈ U× R is the unique solution to (14).

3.2 Numerical assumptions

The present subsection deals with the numerical assumptions required by10, that is, those concerning the discretization scheme used to

reduce (9) to a �nite-dimensional problem. Before stating the hypotheses needed to prove such numerical assumptions, we describe below

the discretization scheme, given by both the primary and the secondary discretization. The former concerns the approximation of the

Banach spaces involved, and is de�ned as in8 for the space U, except for the fact that in the present case it needs to take into account

the boundary condition de�ning U in 3.1. The latter, on the other hand, concerns the approximation of the right-hand side (10) whenever

such an approximation is needed, such as in the case (5).

The primary discretization consists in reducing the space U to �nite-dimensional space UL given a level of discretization L. This happens

by means of a restriction operator ρ+L : U→ UL and a prolongation operator π+
L : UL → U, which extend respectively to

RL : U× R→ UL × R, RL(u, ω) := (ρ+L u, ω)

and

PL : UL × R→ U× R, PL(uL, ω) := (π+
L uL, ω).

All of them are linear and bounded. In the following we describe the speci�c choices we make in this context, based on piecewise polynomial

interpolation.

Recall that U concerns the interval [0, 1]. We choose the uniform outer mesh

Ω+
L := {t+i = ih : i = 0, 1, . . . , L, h = 1/L} ⊂ [0, 1], (16)

and inner meshes

Ω+
L,i := {t

+
i,j := t+i−1 + cjh : j = 0, . . . ,m} ⊂ [t+i−1, t

+
i ], i = 1, . . . , L, (17)

where 0 = c0 < · · · < cm = 1 are given abscissae for m a positive integer and can be chosen arbitrarily for the purposes of the present

proof. Correspondingly, we de�ne

UL := RLm×d, (18)

whose elements uL are indexed as

uL := (u1,1, . . . , u1,m, . . . , uL,1 . . . , uL,m)T (19)

with components in Rd. Note that UL (as well as its elements uL and the relevant restriction and prolongation operators) depend indeed

on both L and m. However, only L is being used for indexing, in order to recall that L is in fact what determines the discretization level,

since m remains constant when using FEM. Finally, we de�ne, for u ∈ U,

ρ+L u := (u(t+1,1), . . . , u(t
+
1,m), . . . , u(t+L,1) . . . , u(t

+
L,m))T ∈ UL (20)

and, for uL ∈ UL, π
+
L uL ∈ U as the unique element of the space

Π+
L,m := {p ∈ C([0, 1],Rd) : p|

[t+i−1,t
+
i ]
∈ Πm, i = 1, . . . , L} (21)

such that

π+
L uL(0) = uL,m, π+

L uL(t
+
i,j) = ui,j, j = 1, . . . ,m, i = 1, . . . , L. (22)
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ALESSIA ANDÒ 7

Above Πm is the space of Rd-valued polynomials having degree m and, when needed, we represent p ∈ Π+
L,m through its pieces as

p|
[t+i−1,t

+
i ]

(t) =
m∑

j=0

`m,i,j(t)p(t
+
i,j), t ∈ [0, 1], (23)

where, for ease of notation, we implicitly set

t+i,0 := t+i−1, i = 1, . . . , L,

and {`m,i,0, `m,i,1, . . . , `m,i,m} is the Lagrange basis relevant to the nodes {t+i,0} ∪Ω+
L,i. Observe that the latter is invariant with respect to i

as long as we �x the abscissae cj, j = 1, . . . ,m, de�ning the inner meshes (17). Indeed, for every i = 1, . . . , L,

`m,i,j(t) = `m,j

(
t− t+i−1

h

)
, t ∈ [t+i−1, t

+
i ],

where {`m,0, `m,1, . . . , `m,m} is the Lagrange basis in [0, 1] relevant to the abscissae c0, c1, . . . , cm with c0 := 0.

The secondary discretization is de�ned as in8 and reported below for convenience. Such discretization is only needed whenever F in

the �rst of (8) cannot be computed exactly. In this case, it is approximated with an operator FM that can be computed, for a given level

of discretization M. In our case, given by (5), the secondary discretization basically consists in performing a quadrature. Thus, we de�ne

FM(u, ω) = FM(u(·) ◦ sω) := ω

M∑
i=0

wiK(ωαi, uαi ), (24)

where − τ
ω

= α0 < · · · < αM = 0, as done in8. The operator B in the second of (8) is not subject to a secondary discretization, since in

our case it is entirely de�ned by p in the second of (9), which can typically be evaluated exactly in π+
L UL. Thus, by setting

ΦM(u, ω) :=

FM(u(·) ◦ sω)

ω − p(u)

 , (25)

the discrete version ΦL,M := RLΦMPL : UL × R→ UL × R of the �xed point operator Φ in (9) is de�ned as

ΦL,M(uL, ω) :=

ρ+L FM(π+
L uL(·) ◦ sω)

ω − p(π+
L uL)

 .

We are now able to state the further hypotheses on the regularity of the right-hand side and on the chosen discretization scheme which

are needed to prove the validity of the numerical assumptions.

(N1) The primary discretization of the space U is based on the choices (16)�(22).

(N2) The nodes α0, . . . , αM, together with the weights w0, . . . ,wM chosen for the secondary discretization as in (24) de�ne an interpolatory

quadrature formula which is convergent in B∞([0, 1],Rd).

The validity of the �rst numerical assumption (AFKBK,
10 page 535) can be proven as done in8, thanks to the following proposition.

Proposition 4. Under 3.1,3.1 and 3.1 FM is Fréchet-di�erentiable, from the right with respect to ω, at every point (û, ω̂) ∈ U×(0,+∞) and

DFM(û, ω̂)(u, ω) = LM(·; û, ω̂)[u(·) ◦ sω̂ ] + ωMM(·; û, ω̂)

for (u, ω) ∈ U× (0,+∞), where, for t ∈ [0, 1],

LM(t; û, ω̂)[u(·) ◦ sω̂ ] := ω̂

M∑
i=0

wiD2K(ω̂αi, û(t + αi))u(t + αi)

and

MM(t; u, ω) :=
M∑

i=0

wiK(ωαi, u(t + αi))−
τ

ω
K
(
−τ, u

(
t−

τ

ω

))
+ ω

M∑
i=0

wiD1K(ωαi, u(t + αi))αi.

For the sequel it is useful to de�ne Ψ,ΨL,M : U× R→ U× R as

Ψ := IU×R − Φ, ΨL,M := IU×R − PLRLΦM. (26)

Indeed, the second numerical assumption (CS1,10 page 536) concerns the Lipschitz continuity of ΨL,M in (26), and is a consequence of

the following proposition, which in turn can be proved as8 Proposition 3.8.
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8 ALESSIA ANDÒ

Proposition 5. Under 3.1, 3.1, 3.1, 3.1 and 3.2, there exist r1 ∈ (0, ω∗) and κ ≥ 0 such that

‖DΨL,M(u, ω)− DΨL,M(u∗, ω∗)‖U×R←U×(0,+∞) ≤ κ‖(u, ω)− (u∗, ω∗)‖U×R

for all (u, ω) ∈ B((u∗, ω∗), r1) and for all positive integers L and M.

Finally, the last numerical assumption (CS2,10 page 537) ensures in particular that the chosen discretization scheme is both stable and

consistent. The stability part is given by the next proposition, which can be proved much more easily than in8 due to the possibility to

apply Banach's perturbation lemma more directly. This represents, in particular, the greatest simpli�cation in the proof of the convergence

analysis with respect to that presented in8. The proof of such proposition makes use of some standard results on the primary discretization,

stated below as a lemma for convenience.

Lemma 1. Under 3.2, let ρ+L , π+
L be de�ned respectively in (20), (22) and let Λm be the Lebesgue constant corresponding to the nodes

used for discretization in a single mesh interval. Then, under 3.1,

‖π+
L ρ

+
L ‖U←U ≤ Λm (27)

holds for all positive integers L and

lim
L→∞

‖π+
L ρ

+
L u− u‖U = 0 (28)

holds for all u ∈ C([0, 1],Rd).

Proof. By (23),

π+
L ρ

+
L u(t) =

m∑
j=0

`m,i,j(t)u(t
+
i,j)

holds for u ∈ U and t ∈ [t+i−1, t
+
i ], i = 1, . . . , L. Then (27) follows from

‖π+
L ρ

+
L u‖U ≤ max

i=1,...,L
max

t∈[t+i−1,t
+
i ]

m∑
j=0

|`m,i,j(t)|‖u‖U = Λm‖u‖U.

As for (28),

π+
L ρ

+
L u(t)− u(t) =

m∑
j=0

`m,i,j(t)u(t
+
i,j)−

m∑
j=0

`m,i,j(t)u(t) +
m∑

j=0

`m,i,j(t)u(t)− u(t)

=

m∑
j=0

`m,i,j(t)[u(t
+
i,j)− u(t)] +

 m∑
j=0

`m,i,j(t)− 1

 u(t)

=

m∑
j=0

`m,i,j(t)[u(t
+
i,j)− u(t)]

holds always for t ∈ [t+i−1, t
+
i ], i = 1, . . . , L. Therefore ‖π+

L ρ
+
L u− u‖U ≤ Λmω(u; h), where ω denotes the modulus of continuity. The latter

vanishes as h→ 0 only if u is at least continuous.

Proposition 6. Under 3.1, 3.1, 3.1, 3.2 and 3.2, DΨL,M(u∗, ω∗) is invertible and its inverse is uniformly bounded with respect to both L

and M.

Proof. The result follows from the Banach's perturbation lemma, once we show that

lim
L,M→∞

‖DΨL,M(u∗, ω∗)− DΨ(u∗, ω∗)‖U×R←U×(0,+∞) = 0.

Since the phase condition is not a�ected by the discretization scheme, we are left to prove that

lim
L,M→∞

‖π+
L ρ

+
L L∗M[u(·) ◦ sω∗ ]− L∗[u(·) ◦ sω∗ ]‖U = 0 (29)

for all u ∈ U, and that

lim
L,M→∞

‖π+
L ρ

+
L M∗M −M∗‖U = 0. (30)

As for (29), one gets

‖(π+
L ρ

+
L L∗M − L∗)[u(·) ◦ sω∗ ]‖U ≤ ‖π+

L ρ
+
L (L∗M − L∗,)[u(·) ◦ sω∗ ]‖U + ‖(π+

L ρ
+
L − IU)L

∗[u(·) ◦ sω∗ ]‖U.

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



ALESSIA ANDÒ 9

The �rst addend in the right-hand side above vanishes thanks to 3.2, (27) in Lemma 1 as well as standard results such as19 Corollary of

Theorem Ia. The second addend vanishes as well thanks to (28) of Lemma 1, given that L∗[u(·) ◦ sω∗ ] ∈ C([0, 1],Rd) for all u ∈ U, as it
follows through the de�nition of L∗ in (12) under 3.1. Similar arguments hold for (30).

Eventually, to prove the validity of CS2, one can prove the following proposition, similarly to8 Proposition 3.9.

Proposition 7. Under 3.1, 3.1, 3.1, 3.2 and 3.2,

lim
L,M→∞

1

r2(L,M)
‖[DΨL,M(u∗, ω∗)]−1‖U×R←U×R · ‖ΨL,M(u∗, ω∗)‖U×R = 0,

where

r2(L,M) := min

{
r1,

1

2κ‖[DΨL,M(u∗, ω∗)]−1‖U×R←U×R

}
with r1 and κ as in Proposition 5.

3.3 Convergence results

As anticipated, the results of the present section on the theoretical and numerical assumptions imply that the FEM for the �xed point

problem (9) converges, according to10. Note that such method corresponds exactly to that analyzed in8, despite the formulation of the

�xed point problem being formally di�erent. Theorem 3.1 therein can be reformulated for (9) as follows.

Theorem 1 (10 Theorem 2, page 539). Under 3.1, 3.1, 3.1, 3.2 and 3.2, there exists a positive integer N̂ such that, for all L,M ≥ N̂, the

operator RLΦMPL has a �xed point (u∗L,M, ω
∗
L,M) and

‖(u∗L,M, ω
∗
L,M)− (u∗, ω∗)‖U×R ≤ 2‖[DΨL,M(u∗, ω∗)]−1‖U×R←U×R · ‖ΨL,M(u∗ω∗)‖U×R.

The consequent results on the order of convergence in8 Subsection 3.3 remain unchanged. Concerning the primary discretization error

εL := ‖(IU×R − PLRL)(u∗, ω∗)‖U×R

the following holds.

Theorem 2 (8 Theorem 3.11). Let K ∈ Cp([−τ, 0] × Rd,Rd) for some integer p ≥ 0. Then, Under 3.1, 3.1, 3.1, 3.2 and 3.2, it holds that

u∗ ∈ Cp+1([0, 1],Rd), ψ∗ ∈ Cp+1([−1, 0],Rd), v∗ ∈ Cp+1([−1, 1],Rd) and

εL = O
(
hmin{m,p}

)
.

Observe that εL determines entirely the �nal order of convergence provided that one chooses a suitable quadrature formula, as explained

in8 Subsection 3.3. Thus, the �nal order m of convergence is guaranteed if K is su�ciently smooth.

Remark 1. As stated in8, the entire convergence analysis can as well be carried out for right-hand sides of the form (6). In this case, the

di�erent theoretical and numerical assumptions read

(T3) k ∈ C(R,Rd).

(T4) f ∈ C1(Rd,Rd).

(T5) There exist r > 0 and κ ≥ 0 such that∥∥∥∥∥f′

ω
τ
ω∫

0

k(θ)v(t− θ) dθ

− f′

ω∗
τ
ω∗∫
0

k(θ)v∗(t− θ) dθ)

∥∥∥∥∥
Rd

≤ κ‖(vt, ω)− (v∗t , ω
∗)‖X×R

for every (vt, ω) ∈ B((v∗t , ω
∗), r), uniformly with respect to t ∈ [0, 1].

Moreover, the above can be easily further generalized to the case

F (ψ) = f

 τ1∫
0

k1(σ)ψ(−σ) dσ, . . . ,
τn∫
0

kn(σ)ψ(−σ) dσ

 .
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10 ALESSIA ANDÒ

4 CONCLUSIONS

The recent work8 provided the �rst complete theoretical proof of the convergence of the piecewise collocation method to compute periodic

solutions of REs. Such proof is based on formulating the problem as a BVP of the form (2), in view of applying the abstract approach

in10 for general BVPs. The aim of the present paper is to describe how the proof can be shortened and simpli�ed when one applies the

approach in10 to the BVP (3), which is equivalent to (2) while being de�ned by a �nite-dimensional boundary condition. In particular,

as it turns out, the proof of the stability of the method can be notably simpli�ed.

As observed in11, the periodic BVP corresponding to (3) for RFDEs is not amenable of the analysis in10. However, one could in principle

try to further reformulate the problem as a di�erent - albeit equivalent - BVP featuring a �nite-dimensional boundary condition (e.g., as

the one considered in20). The considerations above suggest that doing so might be worth the e�ort, especially in view of extending the

convergence analysis to classes of more complex equations, e.g., neutral equations or di�erential equations de�ned by non-constant delays.

ACKNOWLEDGMENTS

We thank Dimitri Breda (University of Udine) for his careful review of the manuscript and valuable advice.

Financial disclosure

None reported.

Con�ict of interest

The authors declare no potential con�ict of interests.

References

1. Gripenberg G, Londen S-O, Sta�ans O. Volterra integral and functional equations. Encyclopedia of Mathematics and its

ApplicationsCambridge: Cambridge University Press; �rst ed.2009.

2. Breda D, Diekmann O, Graaf W, Pugliese A, Vermiglio R. On the formulation of epidemic models (an appraisal of Kermack and

McKendrick). J. Biol. Dyn.. 2012;6(2):103-117.

3. Diekmann O, Gyllenberg M, Huang H, Kirkilionis M, Metz J A J, Thieme H R. On the formulation and analysis of general deterministic

structured population models. II. Nonlinear theory. J. Math. Biol.. 2001;43:157-189.

4. Diekmann O, Gyllenberg M, Metz J A J, Thieme H R. On the formulation and analysis of general deterministic structured population

models. I. Linear theory. J. Math. Biol.. 1998;36:349-388.

5. Feller Willy. On the Integral Equation of Renewal Theory. Ann. Math. Statist.. 1941;12(3):243�267. .

6. Diekmann O, Getto P, Gyllenberg M. Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars.

SIAM J. Math. Anal.. 2008;39(4):1023-1069.

7. Breda D, Liessi D. Floquet theory and stability of periodic solutions of renewal equations. J Dyn Di� Equat. 2020;. DOI:

10.1007/s10884-020-09826-7.

8. Andò A, Breda D. Numerical computation of periodic solutions of renewal equations from population dynamics submitted, arxiv.org/

abs/2105.09199; .

9. Engelborghs K, Luzyanina T, Hout K J, Roose D. Collocation methods for the computation of periodic solutions of delay di�erential

equations. SIAM J. Sci. Comput.. 2001;22(5):1593-1609.

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.

arxiv.org/abs/2105.09199
arxiv.org/abs/2105.09199


ALESSIA ANDÒ 11

10. Maset S. An abstract framework in the numerical solution of boundary value problems for neutral functional di�erential equations.

Numer. Math.. 2016;133(3):525-555.

11. Andò A, Breda D. Convergence analysis of collocation methods for computing periodic solutions of retarded functional di�erential

equations. SIAM Journal of Numerical Analysis. 2020;58(5):3010-3039.

12. Bader G. Solving boundary value problems for functional-di�erential equations by collocation. In: Numerical boundary value ODEs,

(Vancouver, B.C., 1984), Birkhäuser; 1985:227-243.

13. Barton David A W, Krauskopf Bernd, Wilson R Eddie. Collocation schemes for periodic solutions of neutral delay di�erential

equations. J. Di�er. Equ. Appl.. 2006;12(11):1087-1101.

14. Engelborghs K, Doedel E. Stability of piecewise polynomial collocation for computing periodic solutions of delay di�erential equations.

Numer. Math.. 2002;91(4):627-648.

15. Reddien G W, Travis C C. Approximation methods for boundary value problems of di�erential equations with functional arguments.

J. Math. Anal. Appl.. 1974;46:62-74.

16. Doedel E.. Lecture notes on numerical analysis of nonlinear equations. In: Osinga H M, Krauskopf B, Galán-Vioque J, eds. Numerical

continuation methods for dynamical systems, Understanding Complex Systems. Springer; 2007:1-49.

17. MatCont https://sourceforge.net/projects/matcont/.

18. Scarabel F, Diekmann O, Vermiglio R. Numerical bifurcation analysis of renewal equations via pseudospectral approximation. J.

Comput. Appl. Math.. 2020;397:113611.

19. Erdös P, Turán P. On interpolation, (I) quadrature and mean convergence in the Lagrange interpolation. Annals of Math.. 1937;38:142-

155.

20. Sieber J. Finding periodic orbits in state-dependent delay di�erential equations as roots of algebraic equations. Discrete Contin. Dyn.

S. Ser. S. 2012;32(8):2607-2561.

AUTHOR BIOGRAPHY

Alessia Andò. A. Andò obtained her MSc in Mathematics at University of Udine (Italy) in 2014. After that, she

obtained a Master in High Performance Computing, organized by SISSA and ICTP (Trieste, Italy) in 2016. She

completed her PhD in Computer Science, Mathematics and Physics at University of Udine in 2020. She is currently

a postdoctoral researcher at its Department of Mathematics, Computer Science and Physics, where she has also been

a member of the Computational Dynamics Laboratory (CDLab) since 2017.

How to cite this article: (2021), Convergence of collocation methods for solving periodic boundary value problems for renewal equations

de�ned through �nite-dimensional boundary conditions, , 2021;00:1�6.A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.

https://sourceforge.net/projects/matcont/

	Convergence of collocation methods for solving periodic boundary value problems for renewal equations defined through finite-dimensional boundary conditions
	Abstract
	Introduction
	Piecewise orthogonal collocation for periodic boundary value problems
	Convergence analysis
	Theoretical assumptions
	Numerical assumptions
	Convergence results

	Conclusions
	Acknowledgments
	References
	Author Biography




