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ABSTRACT Bike sharing is an important tool to reduce congestion and pollution in urban areas. Electrically
Power Assisted Bicycles (EPAC’s) make cycling possible also for sedentary people. Standard EPAC’s
are difficultly integrable into a free-floating sharing system because the battery pack requires frequent
recharging. This paper studies the challenges, opportunities and solutions of implementing a free-floating
bike sharing system based on electric bicycles. The analysis revolves around the charge sustaining paradigm.
The idea of charge sustaining leverages the metabolic efficiency gaps to reduce the overall physical effort
required without determining a net discharge of the battery. Already validated in private bicycles, the idea
needs to be modified and adapted to the challenges of a shared fleet. The paper analyzes two approaches to
the fleet level energymanagement and assistance control of a fleet of charge sustaining bicycles. Specifically,
we compare a fixed price approach against a flexible pricing approachwhere the user can select the cost based
on the pedaling effort they are willing to exercise. A simulation framework (calibrated on data collected
during a large trial in Milan, Italy) assesses the operational costs and revenues of the two approaches
quantifying how they depend on the design and environmental parameters. We provide and validate a lower
bound in terms of usage rate that guarantees economic sustainability, additionally showing that a flexible
pricing strategy can lower this bound and grant more degrees of freedom to the users.

INDEX TERMS Bicycles, electric vehicles, intelligent vehicles, public transportation, hybrid power systems.

I. INTRODUCTION
The decarbonization process our society needs to undertake
requires a deep change in how we understand mobility. The
current mobility model, based on privately owned fossil
fueled vehicles, is not sustainable. A possible approach is
that of optimizing mobility adopting a systems engineering
approach. This requires a multi-modal approach where users
have access to different vehicles for different trips. Bicycles
will play an important role in this scenario.

Bicycles are eco-friendly, efficient, have a small footprint
and promote a healthy lifestyle. One could argue that bicy-
cles are close to the ideal means of transportation in urban
contexts. The main limitation of bicycles is that they require
a certain level of physical prowess: many people may not be
willing or capable to exert the required effort. Electrically
Power Assisted Bicycles (EPAC) overcome this limitation.
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approving it for publication was Chandan Kumar .

In EPAC’s, an electric motor amplifies the rider’s pedal-
ing torque with the additional advantage of a transparent
assistance: they are operated exactly as a normal bicycle
without requiring additional training nor license. See, for
example, [1]–[5] for more information on EPAC’s.

A truly multi-modal mobility approach cannot rely on
users privately owning all the vehicles they may need to
operate. Shared mobility is thus posed to play a central role
in the future. In the context of this paper, we are partic-
ularly interested in bike sharing (as discussed in [6]–[9]).
Bike sharing systems are either station-based or free floating.
In station-based services, the users pick up and return the
bicycles at designated stations; in free-floating systems, users
can pick up and release the bicycles anywhere within a region
of operation. Free-floating services are more convenient for
the users, but pose more challenges for the operators (see
for example [10]–[12]). In this field, most research focuses
on the analysis of the bikes spatial distribution in order to
plan efficient rebalancing operations and maximize the usage
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rate. Among the most recent works in this field, we men-
tion [10], [13]–[17] for the analysis of usage patterns data
of bike sharing services in different cities and [18]–[21] for
studies on bike repositioning strategies. See for example [22],
[23] for an exhaustive review of the issues that the literature
considered up-to-now when designing and managing a bike
sharing service.

Given the picture painted above, a free-floating EPAC’s
sharing system represents a great incentive for a greener
and more efficient urban mobility. Recently, a number of
companies (Uber, Jump and Lime to name three) launched
free floating EPAC sharing systems. Operating these services
is challenging: in addition to the complexities of managing a
bicycle sharing system, the operators need to make sure that
the batteries are always charged. Usually technicians, whose
job is tomaintain the fleet, drive around the city in vans. These
interventions have a direct economic impact, and indirect
effects on pollution and traffic. The benefits associated with
reducing these interventions are thus multifaceted.

This paper investigates the challenges and opportunities
of operating a free-floating EPAC’s sharing systems and
proposes to apply a charge sustaining paradigm to electric
free-floating bike sharing. According to the charge sustain-
ing principle, one can exploit the variability of the human
pedaling efficiency and obtain a reduction of the cycling
effort while preventing battery depletion. This concept was
first applied to privately owned bicycles in [24], [25]. More
recently, in [26], we redesigned the energy management sys-
tem to account for bike sharing. In the latter work, we focused
on the bicycle-level energy management. The present paper
investigates the features of the complete fleet-level energy
and assistance management system. We study two philoso-
phies of fleet-level management: a fixed price approach that
considers a fixed cost per bicycle rental and a flexible pricing
approach. The flexible pricing approach, inspired by strate-
gies developed for the energy market [27], lets the users
decide the level of assistance they want and charge them
accordingly. Flexible pricing introduces an additional control
variable with which it is possibile to influence the energy
dynamics of the entire fleet.

We quantitatively assess and compare the two strategies
using a complete model of the energy stored on board of each
bicycle, and operation dynamics of the entire fleet. The main
contributions of the paper can be summarized as:
• we propose a parametric model of the fleet and user
dynamics. The model is calibrated on the data collected
during a trial on an electric bike sharing system (under
the name of Bitride) in Milan, Italy.

• We propose an economic model that accounts for the
operational costs, profits and the user price elasticity.
The goal of themodel is to enable a comparative analysis
of different fleet control strategies.

• We study the feasibility and potentials of free floating
electric bike sharing comparing two fleet-level energy
management systems and the corresponding pricing
strategies.

To the best of the authors’ knowledge, no work in the open
scientific literature addresses the control of the state of charge
dynamics of an entire fleet of shared bicycles and its associ-
ated costs. Some works [27], [28] explore the possibility of
using flexible pricing to improve the availability of shared
transportation systems with [29], [30] focusing on bicycle
sharing systems, but the idea of reducing the charging costs
by coordinating a vehicle level energy management system
with a flexible pricing strategy is unexplored.

The paper is structured as follows: Section II describes the
characteristic of the free-floating bike-sharing service and the
Bitride trial used as the basis for the work. Section III pro-
poses an energy-oriented model of the entire fleet. Section IV
details the two fleet management strategies. Section V studies
the quantitative results. Section VI draws the conclusions and
discusses their applicability.

II. SYSTEM DESCRIPTION
A bike sharing system is determined by the type of bicycle
and the environment. This section describes both.

The reference bicycle (see Fig. 1) is a city bicycle equipped
with an All-in-One (AiO) powertrain (see [24], [25]). The
powertrain contains:
• a 250 W brushless motor,
• a 160 Wh Lithium Cobalt Oxide battery pack,
• an Inertial Measurement Unit (IMU),
• an Electric Control Unit (ECU),
• sensors for pedaling cadence and pedaling direction.

FIGURE 1. Some of the bicycles employed in the electric bike sharing
pilot.

The AiO was primarily designed for privately owned bicy-
cles. Sharing applications require some modifications; in
particular the bicycle needs additional electronics for location
tracking (mainly through a Global Navigation Satellite Sys-
tem), connection with the back-end servers that manage the
rental process (through the cellular network) and to lock and
unlock the bicycle. This leads to a continuous power drainage
also when the bicycle is not being used.

The second aspect characterizing a bike sharing service
is the environment where it operates with its users and geo-
graphic characteristics. We consider the Bitride trial. Bitride
was a European Union supported pilot testing the feasibility
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FIGURE 2. Hourly distribution of the number of rides.

FIGURE 3. Weekly distribution of the number of rides.

FIGURE 4. Cyclist average rides time distribution.

of an electric bike sharing system in Milan. The system
deployed 300 bicycles and recruited a user basin of 280 riders.
Over a three months period, there were 1300 rides. For each
ride, we recorded the cyclist ID, the bicycle ID, the traveled
distance, duration and time of day. For a limited number of
trials also the velocity and slope profiles were recorded.

During this pilot, a maintenance team intervened whenever
a battery pack was depleted. This intervention guaranteed
that the bicycle availability was almost at 100% all the time.
This type of intervention is expensive; limiting the cost of
these interventions is the main goal of the charge sustaining
paradigm when applied to bike sharing.

The data confirm that bicycle rentals are not uniformly
distributed throughout the day and the week: rentals are
more frequent during working hours and on business days.
Figure 2 and 3 plot these distributions.

Each ride also reveals essential information on how the
users employ this type of bicycle. Fig. 4 plots the distribution
of rides duration. Most of the cyclists use the bicycle for very
short rides, about 5 minutes. The average of all rides duration
is about 8 minutes. This is a very different type of use with
respect to personal bicycles that are usually employed for
longer commutes.

FIGURE 5. Average ride speed distribution and cyclist type classification.

FIGURE 6. Bike sharing system model block diagram.

Fig. 5 plots the distribution of the ride average speed.
From the average velocity distribution, we classify riders as

Sedentary (10−14 [km/h]), Fit (14−16 [km/h]) and Athletic
(16− 20 [km/h]).

III. BIKE SHARING SYSTEM MODELING
In this section, we derive a model that describes the dynam-
ics of the complete bicycle sharing system. Many aspects
determine the behavior of the electric bicycle sharing sys-
tem; in particular one has to consider the energy dynamics
of each bicycle, the user renting behavior, the cost of each
maintenance intervention and the price of the rentals. Fig. 6
schematically represents the complete system. In the follow-
ing subsections, we describe the main elements separately.

A. FLEET MODEL
This component describes each bicycle state of charge (SoC)
dynamics. Two factors determine the SoC dynamics: the
bicycle dynamics and its energy and assistance management
system.

1) BICYCLE DYNAMICS
The power requirements of the bicycle assistance system
derive from the longitudinal force balance (see [31]):

Mv̇ = Fg(θ )+ Fµ(v)+ (Tc + Tm + Tb)r

Fg = −Mg sin(θ)

Fµ = −
1
2
ρCxAv2 − Dvv− Cr cos(θ ).
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FIGURE 7. Schematic representation of the power flows during the ride.

whereM is the total equivalent mass of the bicycle and of the
cyclist, v is the longitudinal bicycle speed, ρ is the air density,
A is the front area of the bicycle and of the cyclist, Cx is
the drag coefficient,Dv is the mechanical friction coefficient,
θ is the road slope (positive uphill), r is the wheel rolling
radius, Cr is the rolling friction coefficient, Tc is the traction
torque delivered by the cyclist at the wheel (only positive),
Tb is the braking torque delivered via mechanical brakes
(only negative), and Tm the wheel torque generated by the
motor (that can be both positive -if assistive; and negative - if
regenerative).

Fig. 7 summarizes the power flows. The battery power,
Pbatt , is the sum of the power consumed by the loads Pload
and the power absorbed (or generated) by the motor driver
that controls the motor. Pe represents the electrical power of
the motor, with Pm the mechanical power at the wheel. Pc is
the power applied by the cyclist. The sum of Pm, Pc and the
friction braking power gives the resulting traction power, Pt ,
defined at the wheel.

The power absorbed by the auxiliary loads is Pload = 2.5
[W] when the bicycle is used and 0.3 [W] when the bicycle
is in stand-by; when the bicycle is standing-by, it goes in a
power saving mode reducing the communication frequency
with the servers.

We model the State of Charge (SoC) of the battery, i.e. the
ratio between the residual energy and the battery capacity,
with a Coulomb counting approach:

SoC(t) = SoC(0)−
100
3600

∫ t
t0 Ibatt (τ )dτ

Q0

where Q0 is the total battery capacity in Ampere hour and
Ibatt is the battery current.
The reader is referred to [26], [32] for a more detailed

discussion and validation of this model. The model is com-
plemented by a closed-loop velocity controller that makes
it possible to simulate the power flow for a mission profile
characterized by a velocity and slope profiles.

2) BICYCLE-LEVEL ENERGY AND ASSISTANCE
MANAGEMENT SYSTEM
The bicycle-level energy and assistance management sys-
tem (EMS) determines the instantaneous motor torque based
on the cyclist’s action and a requested average battery target
power Pride. It implements the logic detailed in [26], [32] as
shown in Fig. 8.

The control logic implements a nested architecture. The
maneuver assistance module recognizes different types of
maneuvers and guarantees that assistance (and regeneration)

is active only when compatible with the condition (for exam-
ple assistance is disabled when going downhill). The power
control loop manages the level of assistance (and regenera-
tion) to reach a desired battery power level; the outermost SoC
control loop avoids slow drifts in the battery charge.

The EMS is capable of tracking a desired battery power
while providing a repeatable and pleasant riding experience.
The choice of the desired battery power determines the level
of assistance the rider experiences. A positive Pride yields
a net assistance and can considerably reduce the physical
effort required for a single trip. Previous works (see [25],
[26], [32], [33]) show that it is possible to reduce the cycling
effort even for negative values of Pride, i.e. values that lead
to a net recharging of the battery on the single trip. The
control logic, similarly to what happens in electric - internal
combustion engine hybrids, exploits differences in the ped-
alling efficiency. In particular, [25] shows that it is possible
to achieve a Pride = 0 [W ] and a reduction of up to 25%
of equivalent expended metabolic energy (with respect to a
traditional bicycle). More recently, [26] considers negative
Pride finding that, on average, the effort reduction effect is
present up to Pride = −22 [W ]. This means that the EMS can
harvest up to 22 [W ] without negatively affecting the overall
riding experience with respect to a traditional bicycle.

At initialization, the state of charge of all bikes is set to
50%; this allows for negative Pride also at fleet initialization.

B. USER AND RIDE EVENT MODEL
We model the interaction with the users through the concept
of ride events. A ride event corresponds to a user unlocking
a bicycle, cycling to their destination and finally locking
the bicycle. Each ride event is parametrized by the time it
happens (ride trigger), the selected bicycle (bike selection),
and the trip profile (trip generator). We model these aspects
stochastically. The proposed model focuses mainly of the
time dynamics, rather than on spatial dynamics. The model
assumes that the bicycles are uniformly distributed in space.
The assumption is valid for two reasons: 1) as it will become
clear later on, the energy management issue is challenging
when the demand is low with respect to the number of avail-
able bicycles. When this happens, the bicycle geographical
scarcity is not going to play a mayor role: users will always
find a bicycle nearby. 2) The data on which the model is
calibrated were collected in a relative small geographic area
where the uniformity assumption was always valid.

1) RIDE TRIGGER
The model determines the time of the day of a ride based
on the usage distribution recorded during the Bitride pilot.
We consider the probability of starting a ride event as function
of the hour in the day and day in the week: fn,hour (hour) is
the probability density describing the distribution of number
of rides for each hour of the day. Figure 9, for example,
plots the rides distribution for the hour starting at 11 AM.
The model also considers that the use of the system is not
uniform throughout the week; we assign to each week day
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FIGURE 8. Schematic of the bicycle EMS.

FIGURE 9. Hourly ride density function for 11 AM.

a weight wn,day, which is the proportion of number of rides
observed on the week day with respect to the average. The
product of the hourly rides distribution fn,hour (hour) and the
daily rides distribution wn,day generates f̄n(hour, day), which
is the density function of the number of rides given a week
day and day hour.

We calibrated the nominal model on the data collected
during the Bitride pilot, but we introduce the possibility of
scaling the model to quantify how different rental frequencies
affect the fleet dynamics. We introduce the parameter ν that
is the bike average daily usage (expressed in rentals per day
per bicycle). The original data refers to a value ν0.

2) BIKE SELECTION
Each ride event is assigned a bicycle in the fleet according to
a uniform distribution. Recall that each bike is characterized
by its SoC at the beginning of the ride.

3) TRIP GENERATOR
The trip generator returns a speed v(t) and road slope profile
θ (t) starting from information on trip duration and a cyclist
type.

Any trip is a combination of 9 primitive maneuvers:
{hard start, soft start, constant speed, coasting down, stop,
hard braking, soft braking, hard sprint, soft sprint}. Each
maneuver, with the exception of start and coasting down,
is parametrized by a constant acceleration and a range of
final speeds. The coasting down maneuver represents the
bicycle slowing under its own friction; we parametrize the
start maneuver as a time-varying acceleration profile that
starts with a peak and returns to zero with a settling time of 4
seconds. The trip generation algorithm executes the following
steps:

1) Sequence of primitives generation. The primitive
maneuvers are the nodes of a Markov Chain. Each

FIGURE 10. Comparison between a generated trip (on the left) and a
recorded trip (on the right). From top to bottom: bicycle speed, slope and
velocity distribution.

transition from a maneuver to another has a probability
of happening. This mechanism, tuned on recorded data,
allows only feasible transitions (e.g. the transition from
stop to a braking maneuver is meaningless) (see [34]
for more information on mechanisms to tune this type
of Markov Chains).

2) Duration of each maneuver choice. For the maneuvers
with a non null acceleration, the algorithm samples
the final speed from a uniform distribution and con-
sequently determines the duration. For the maneuvers
with null acceleration, the duration is directly sampled
from a uniform distribution.

3) Sequence composition. The algorithm adds maneuvers
until the trip time matches the randomly generated
duration (see Fig. 4) is reached; at that point a final soft
braking maneuver brings the bicycle to a full stop.

4) Road slope generation. The algorithm computes a road
slope for each constant speed maneuver. The road
slope is sampled from a distribution that matches the
orography of the city.

The random distributions used in the trip generation are
parametrized according to the type of user: (sedentary, fit
and athletic). Fig. 10 shows the comparison between the
velocity and the slope recorded during one of the trips of
the trial and one of the trips generated by the trip generation
algorithm. One can see that the two profiles have similar
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FIGURE 11. User nominal demand model as function of γ . The gray area
represents the randomization of the curve.

characteristics. The goal of the trip generation algorithm is
not that of replicating a recorded profile, but rather that of
generating realistic and ever varying trips.

The time evolution is discretized based on a time step
1T = 1 [h]. We assume that at each time step, each
cyclist can start at most one ride. At each time step, the
number of ride events is drawn from the probability density
f̄n(hour, day) and multiplied by ν/ν0 to obtain the number of
rides for that hour.

4) USER DEMAND MODEL
In most bike sharing services, the users can only decide
whether they want to rent a bicycle or not. The proposed
EMS opens an additional degree of freedom: the assistance
level Pride. Assuming a rational user (or homo economicus
hypothesis - see [35]), if given complete freedom, users
would inevitably choose the highest level of assistance. The
innate laziness of the homo economicus can however be coun-
teracted by their willingness to minimize monetary expenses.

We model these characteristics with an elasticity to price
variations, or in other words, how much the user is will-
ing to pay for a given level of assistance. Our model is
inspired by the theory of utilities flexible pricing as discussed
in [36]–[38]. We assume that the rider is primarily sensitive
to price variations; in other words, if given the possibility of
choosing the power level, cyclist would be glad to exert a
higher physical effort for a price discount. Let us parametrize
the discount as γ , that is the price variation associated to
a change in the level of assistance. For example, γ = 0
means that changing the level of assistance does not entail
any change of price. A γ = 0.1e/W means that the price of
the ride varies of 0.1e for every W of change of assistance
that the user selects. We model the nominal relation between
the desired assistance level and the discount with a piece-wise
linearmodel as depicted in Fig. 11. Fromfigure, the following
comments are due:
• The lower the discount, the higher the level of assistance
preferred by the users.

• Conversely, as γ increases, the users will be incentivized
to reduce the level of assistance. If γ is sufficiently
high, some users may choose a negative assistance level
meaning that they will pedal to recharge the bicycle.

• The model has two parameters γ lb and γ ub. Each user
is assigned a value γ lb ∈ [0 0.1] and γ ub ∈ [0.15 0.25].
In this way, the model considers different types of users
with different sensitivities.

Despite the lack of specific studies on price elasticity in
electric bike sharing systems, the saturation effect shown in
figure has been measured in other applications, for example
[39] considers utility pricing.
Each time a bicycle is rented, themodel determines the pre-

ferred Pride from a gaussian probability distribution centered
on the nominal Pride(γ ) and whose standard deviation varies
with γ , as shown by the gray area in Fig. 11. The randomiza-
tion accounts for time variability in the user price elasticity.
Note that, according to this model, with the right incentive,
a user could accept to increase the pedaling effort beyond the
−22 W battery power limit identified as the maximum value
where a pedaling efficiency benefit is present.

In modeling the user demand, we assume that the users
only change their preferred level of assistance without chang-
ing the decision of renting the bicycle or not. This assumption
is valid only if the final price is close to the prices that are
currently practiced. To put the pricing results into perspec-
tive, it is convenient to consider the cost of similar services at
the time of writing. In Milan, the rental price of station based
electric bicycles ranges from 0.25e to 4e (based on duration,
maximum 2 hours) on top of the yearly subscription fee of
36e. The free floating electric bike sharing managed by Uber
charges 1e per rental plus 0.23e per minute, to about 4e per
rental. In [14], the authors considered a free floating service
with prices around 5e for a 20 minutes ride.

C. FLEET MANAGEMENT
The fleet management component models the fleet battery
charge control strategy along with pricing strategies and eco-
nomic aspects.

1) PRICING STRATEGY
The main task of the pricing strategy is that of determining
Pride and the price for each ride. These values can be fixed
apriori according to some considerations or could be the
result of the interaction between the strategy and the users.
The control and pricing strategies will be detailed in the next
section.

2) ECONOMIC MODEL
The economic aspects of the service are determined by rev-
enues (R) and costs (C), whose difference yields the net profit
(P) and thus eventually the economic sustainability.

There are two types of service costs: fixed costs, which are
related to the initial investments and service logistics; and,
variable costs, which are mainly due to fleet maintenance.
Our analysis focuses on the variable costs as these are the
ones that are directly affected by the energy and assistance
management system and the pricing strategy. In particular,
the costs that we are mainly interested are the recharge
interventions. All other costs, while extremely important and
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impactful are not a direct consequence of the fleet electrifi-
cation which is our main scope.

A bicycle requires an intervention each time its state of
charge drops below a critical threshold. Every time this hap-
pens, the bicycle is removed from the pool of the avail-
able bicycles and returned re-initialized after two hours.
We assume each intervention costs CIN = 80 e (mainly due
to wages and amortization of the vans employed to transport
the bicycles).

There exist many revenue streams associated to bike shar-
ing: advertisement space rental, subsidies, subscription fees,
and single trip cost. In our model, we neglect advertisement
space rental and subsidies because we are interested in study-
ing the factors that are directly affected by the fleet electri-
fication. We thus consider that each single trip generates a
revenue based on the pricing strategies described later.

The combination of the above mentioned elements yields
a model of the complete fleet.

IV. PRICING AND FLEET CONTROL STRATEGIES
The economic sustainability of the electric bike sharing
scheme depends on the balance between costs and revenues.
If seen as a control problem, one has two control variables:
Pride and the ride cost ε. In this section, we propose two
control and pricing strategies: a fixed approach, and a flexible
price approach that tries to leverages the users’ elasticity.

A. FIXED PRICE STRATEGY
In this approach, Pride is determined only based on energy
considerations and does not allow for any degree of freedom.
In this context, the only available control variable is Pride and
it is used to minimize the recharging interventions.

The most trivial approach to guarantee charge sustaining
is to require that each bicycle harvests, during the rental, the
power consumed since the previous rental. Such a bike-level
approachwould transform the rental process in a lottery: since
the battery pack is depleted also when the bicycle is not being
used, bicycles that have just been used would yield a better
cycling experience than bicycles that have been standing-by
for a long period of time. Service level unpredictability is
generally not well received by users and must be avoided.

The proposed fixed price strategy overcomes this problem
by implementing a model based control of the average state
of charge of the entire fleet. In this way, it offers the cyclists
the same ride experience independently from the bike current
state of charge, bike history, and ride duration.

The strategy imposes the same average battery power Pride
to all bicycles and rides. Pride is derived from the model of
the average battery of the fleet:

SoC(t +1T )

= SoC(t)+1SoC(t),

1SoC(t)

=

∑Nbike
i=1

∫ t+1T
t

−100
Q [Pinact (1− σi(t))+ Prideσi(t)]dt

Nbike
(1)

SoC(t) [%] is the average among bikes of the battery charge
at instant t [h], 1SoC(t) is the average among bikes of
the variations of state of charge with respect to the initial
condition at time t [h], Q [Wh] is the total battery capacity,
σi is the activation variable indicating whether bike i is being
rented at time t and Pinact [W ] is the power dispersion during
stand-by.

Average charge maintaining is equivalent to imposing
1SoC(t) = 0, that is

P0ride = −
Pinact

( 1
Nbike

∑Nbike
i=1

∫ t
0 (1− σi(t))dt

)( 1
Nbike

∑Nbike
i=1

∫ t
0 σi(t)dt

) [W ]. (2)

Equation (2) can also be formulated as function of the daily
rides per bike ν and average ride duration t̄ride[h]:

P0ride(ν) = −
Pinact

(
1− ν

24 t̄ride
)

ν
24 t̄ride

. (3)

From the formulation of P0ride(ν) in (3), we observe that
• P0ride linearly depends on Pinact .
• P0ride hyperbolically depends on ν and on tride with a
diminishing return as the parameter grows and with a
very rapid growth of the required power as the parameter
decreases.

• The approach focuses on the average fleet SoC, not
the battery levels of each bike. The proposed solution
gives priority to the homogeneity of the service at the
expense of a higher risk of having bicycles that require
maintenance.

In the fixed price strategy, the price is constant and equal
to εC .

B. FLEXIBLE PRICE STRATEGY
The flexible price strategy attempts to leverage the users
price sensitivity to reduce maintenance costs. As noted in
Section III, users may be incentivized to reduce the assistance
level if offered a high enough discount on the rental price.

The flexible price strategy thus employs both available
control variables offering the freedom (at a price) to each user
to choose the level of assistance they prefer. This idea results
in the proposed flexible pricing strategy

ε = ε0 + γ (Pride − P0) (4)

where γ is the discount rate from the nominal case, ε0 is the
nominal price and P0 the nominal power. Fig. 12 graphically
represents the idea. From figure, a few comments are due:
• The users can choose the assistance level that they are
most comfortable with. The strategy will determine the
price.

• The strategy is not saturated to positive values, this
effectively opens the possibility of paying the users to
recharge a bicycle.

• Given the consideration on the limitation and validity
of the user demand model, we are mostly interested in
studying the impact of γ . Generally speaking, increasing
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FIGURE 12. Flexible pricing strategy: the price is determined based on
the user defined assistance level.

FIGURE 13. Power goal as function of the average daily rents per bike.

γ increases the reward for recharging the bicycle (or,
from another point of view, the penalty for more assis-
tance). We will need to fix values of ε0 and P0 in order
to compare the two strategies.

• We opted for a linear pricing strategy as a proof-of-
concept. More complex strategies are also possible.
The only requirement is that curves are monotonically
increasing.

V. FLEET DYNAMIC ANALYSIS
This section analyzes the dynamics of the bike sharing ser-
vice; we first consider the two strategies separately and then
we compare their features.

A. FIXED PRICE STRATEGY ANALYSIS
As described above, the fixed price strategy computes Pride
according to (3). Fig. 13 plots the target power as a function
of the pick up rate for the characteristics of the bicycle used
in the trial.

The figure seems to indicate that charge sustaining at the
fleet level is always achievable; in reality the sustainability
of the fixed price strategy is determined by two additional
factors: a) without a discount, users will only accept to regen-
erate so much power and b) no matter how much energy the
cyclists regenerate at each trip, if a bicycle is not rented for a
long period of time, its battery will be depleted. These factors
can be analytically quantified.

The first limit derives from plugging the bound Plbride =
−22 [W ] in (3):

ν
reg
lb =

−24
t̄ride

1

1+ Plbride/Pinact
[rides/bicyle/day]. (5)

FIGURE 14. Average state of charge of the fleet over time as a function of
the usage rate. Continuous lines correspond ν > νlb, dashed lines to
ν < νlb.

For usage rate below ν
reg
lb , it is impossible to guarantee

average charge sustaining because the effort required of the
cyclists is too high.

The second limit accounts for the discharge rate of a bicy-
cle in stand-by. If we define Tsteady as the time required for the
battery to discharge from the initial charge to the intervention
level SoCmin, when the bike is left inactive,

Tsteady =
SoCinit − SoCmin

Pinact
[h], (6)

the average required daily usage rate per bike νinactlb necessary
to guarantee with confidence level p̄ that each bike is used at
least once before intervention is:

νinactlb = 24

(
1−

(
1− p̄/100
Nbike

) 1
Tsteady

)
[rides/bicycle/day].

Fig. 13 also plots the regeneration limit and the inactivity
bound (with a confidence of level 70%). For the fleet at hand,
the regenerative bound νlb = ν

reg
lb = 2.5 [rides/bicycle/day]

is the limiting factor.
The model described in Section III allows us to deepen

the analysis of the fleet dynamics considering also transient
phenomena and economic aspects.

Figure 14 plots the behavior of the average SoC for
different values of ν over a 12-weeks period. From figure,
one can conclude that
• When ν > νlb, as predicted by the analysis, the average
fleet state of charge is maintained around the initializa-
tion one.

• When ν < νlb, the average battery level (dashed lines)
quickly drops below the initial value and converges to a
lower value. The lower equilibrium SoC is maintained
due to the recharging interventions.

• The average SoC occasionally exhibits a slow drift; this
is due to the fact that the control logic operates in open
loop with respect to the average fleet State of Charge.
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FIGURE 15. Sensitivity of the economic states (profit Ptot , costs, Ctot , and
revenues Rtot ) to the usage rate ν, evaluated at the end of a 12 weeks
simulation of the fleet with CSS for different value of εC .

Fig. 15 plots the economic states at the end of the evalu-
ation period. The figure considers different usage rates and
fixed costs ranging from 0.75e to 4e a range where the
demand model is considered reliable, based on the compari-
son outlined in Section III-B4. From these results, we propose
the following considerations:
• In the fixed price strategy, revenues are directly propor-
tional to ν and εC .

• Maintenance costs are independent from εC . They
decrease as ν increases and converge for ν > νlb to
a minimum value of 50 interventions every 3 months
(recall that the fleet is composed of 300 bicycles).
Reaching a steady-state average state of charge (as
shown in Fig. 14) does not guarantee the absence of
interventions. Occasionally bicycles may undergo bat-
tery depletion because of particularly challenging rental
patterns, as also noted in [19].

• When usage rate is low the total profit suffers from both
a high interventions cost and a low profit, which results
in a net loss, while for ν > νlb the income grows linearly
on ν.

• Depending on the ride price, the compensation
of the maintenance costs occurs at ν between
1 [ride/bicycle/day] and 2.5 [ride/bicycle/day].

B. FLEXIBLE PRICE STRATEGY
The flexible price strategy offers the option to chose the
preferred assistance level. Figure 16 plots the economic state
variables at the end of the 12-week period as a function of ν
for different values of the discount rate (γ ). Fig. 17 completes

FIGURE 16. Economic states sensitivity to ν for different values of γ . The
simulation considers ε0 = 3 e and P0 = −10 W.

FIGURE 17. Economic states sensitivity to γ for different values of ν. The
simulation considers ε0 = 3 e and P0 = −10 W.

the analysis from the dual perspective, by showing the states
as a function of the discount rate for several values of usage
rate. from figure, we observe that:

• The revenues depend linearly on ν. If γ is above
0.17 [e/W], the slope is negative. In these cases, the
discount rate is so high that users will, on average,
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FIGURE 18. Break even curves as a function of usage rate ν and average
ride cost εm.

choose a high level of regeneration in order to benefit
from the discount.

• The flexible price strategy allows the service man-
agers to also influence the maintenance costs. The costs
depend linearly on ν (until saturation at zero); and γ
has a quite strong effect on the cost also for γ below
0.17 [e/W].

• The profit linearly depends on the usage rate. The depen-
dency of the profit on the discount rate is complex. The
profit has an optimum for intermediate discount rates
and the optimal discount rate weakly depends on the
current usage rate. If too high a discount rate is used,
the profit will decrease: in this case the revenues are
dropping faster than the reduction in the costs.

• When employing a flexible price scheme, as the discount
rate decreases, the fleet behaves more and more as a
non-charge sustaining fleet.

• Since the economic model decouples the pick up fre-
quency dynamics and the price, the average ride price εm
monotonically depends on γ , as also shown by dividing
Rtot by the number of rentals in Fig. 17.

C. STRATEGIES COMPARISON
The two strategies depend on design parameters as well as
environmental characteristics. The easiest way to compare the
two is by looking at the break even point1 and its dependency
on several parameters. The break even point is a proxy of
the conditions in which the service is sustainable from the
economic point of view.

Fig. 18 plots the break even curves as a function of the
usage rate and the average ride price for different values of εm
(varying in a range in which the demand model is considered
reliable). Each point on a continuous curve for the flexible
price case corresponds to a different γ . Recall that the fixed
price strategy has only one design parameter, that is the cost of
the single ride. The flexible price strategy has two parameters
that define the price curve: (γ, ε0). The following conclusions
are in order:

1Here break even is employed loosely as we are considering only one
source of revenue and one type of cost.

• The most impactful variable in determining the ser-
vice sustainability is the usage rate. Unsurprisingly, the
higher the usage rate, the easier is to reach break even.

• In the flexible pricing case, there exist two break even
values of γ for each values of ν. The two points corre-
spond to two different philosophies. The γ that yields a
lower average ride price incentivizes more the cyclists
to recharge the bicycles. The other break even point
exploits the fact that cyclists are willing to pay more
to have more assistance. The extra revenue is used to
compensate the additional costs of recharging. In this
latter case, the system forfeits the charge sustaining idea
and is more similar to a traditional electric bike sharing.
The maximum profit lays in between these two extreme
cases.

• There exists a threshold (1.6 [rides/bicycle/day] for
ε0 = 4e) above which it is possible to reach break
even with a lower average ride cost than that of the fixed
price strategy; these break even points correspond to the
philosophy where the fleet partially relies on the cyclists
to recharge the batteries.

• By exploiting the lower half of the break even curve
of the flexible price case, an increase of ε0 leads to a
decrease of the average price to reach sustainability.

• As ν increases, all solutions tend to reach break even
with an average ride of price tending to 0. If ν is suf-
ficiently high the charge sustaining strategy guarantees
low maintenance costs.

VI. DISCUSSION AND CONCLUSION
This paper extends the idea of charge sustaining electric
bicycles to free-floating electric bike sharing.We propose two
different pricing models that serve as fleet level management
algorithms: the fixed price strategy aims at the minimization
of the maintenance interventions on the fleet of bicycles; the
flexible pricing strategy incentivizes the user to recharge the
bicycle in order to reduce the maintenance cost.

We characterize the dynamic and economic properties
through analytical analysis and simulations. The simulations
are bases on a stochastic model calibrated on data collected
during the pilot phase of Bitride. The model accounts for
different types of users andmirrors the actual rental dynamics
recorded during the pilot.

This work proposes a methodological framework to study
the feasibility of electric free floating bike sharing. Further-
more, we quantitatively study an instance of a charge sus-
taining system. These results to be interpreted in light of the
main features of the proposed analysis framework:

• the model, being calibrated on real data, accurately
describes and predicts the State of Charge dynamics of
the fleet. This allows us to draw strong conclusions on
the fixed price strategy. In particular, our framework
precisely quantifies the impact of the usage rate on
maintenance. In this sense, we show that a usage rate
of 2.5 [rides/bicycle/day] is the minimum value for
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which genuine charge sustaining and assistance can be
provided.

• For values of ν lower than 2.5 [rides/bicycle/day], users
contribution is needed to cover the operational costs.
This contribution takes the form of higher service cost
(fixed price case and upper break even for flexible pric-
ing) or lower assistance at a lower cost (lower break even
point of the flexible price case).

• The economic model is a differential model with respect
to a traditional bike sharing service; in fact, it accounts
only for one stream of revenue (rentals) and one cost
(maintenance). This limits the capability of the model
to predict the actual profit of the service. It however
provides a useful tool to preliminarily and quantitatively
assess the sustainability of transitioning to an electric
bike sharing system. The analysis of the model shows
that, based on the usage rate, either the fixed or flexible
price models yield the lowest average price to the public.
This can also be interpreted from the accessibility point
of view. Once a minimum level of usage rate is rate
is reached, the flexible pricing strategy yields a more
accessible service. Some users will be able to pay more
for a better service, effectively helping subsidizing the
service for other users who, by charging the bicycles,
can still access the service at a lower cost.

• Our framework assumes that the price will not affect
the demand (but only the service quality); this is a
strong assumption which prevents the extrapolation of
our results beyond the price range that is currently
being employed in bike sharing services. One could
safely expect that by increasing the price the usage rate
will also be affected, but no data on this are currently
available.

• Our analysis approach is general, but for the sake of
concreteness, it has been applied to a specific case. The
numerical results depend on the specific characteristics
of the sharing and bicycles at hand. In particular, our
analysis shows that the stand-by consumption is themost
important characteristic of the bicycle. By reducing the
stand-by consumption, one can skew the results toward
a lower usage rate limit.

This research, while proving the advantages of the
charge-sustaining paradigm when applied to a bike sharing
scenario, opens up a number of interesting questions mainly
regarding the validation of the hypotheses at the basis of
the user demand model and the design of possible business
models that would leverage these features.
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