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Abstract: This is a review paper on the generalization of Euclidean as well as pseudo-Euclidean
groups of interest in quantum mechanics. The Weyl–Heisenberg groups, Hn, together with the
Euclidean, En, and pseudo-Euclidean Ep,q, groups are two families of groups with a particular interest
due to their applications in quantum physics. In the present manuscript, we show that, together,
they give rise to a more general family of groups, Kp,q, that contain Hp,q and Ep,q as subgroups. It is
noteworthy that properties such as self-similarity and invariance with respect to the orientation of
the axes are properly included in the structure of Kp,q. We construct generalized Hermite functions
on multidimensional spaces, which serve as orthogonal bases of Hilbert spaces supporting unitary
irreducible representations of groups of the type Kp,q. By extending these Hilbert spaces, we obtain
representations of Kp,q on rigged Hilbert spaces (Gelfand triplets). We study the transformation laws
of these generalized Hermite functions under Fourier transform.

Keywords: Euclidean and pesudo-Euclidean symmetry groups; generalized Hermite functions;
rigged Hilbert spaces

MSC: 22D10; 43A80

1. Introduction

The theory of groups is considered the natural language for describing the symmetries
or invariance properties of physical systems. In particular, Lie groups are appropriate tools
used to study symmetries depending on continuous parameters and are very useful in
describing the invariance properties of the physical world. Lie groups, which are the subject
of interest in this manuscript, are the n-dimensional (nD) Heisenberg groups Hn [1], the Eu-
clidean group En = Rn � SO(n), and the pseudo-Euclidean groups Ep,q = Rp,q � SO0(p, q)
with the connected component of unity SO0(p, q). Both En and Ep,q are subgroups of their
corresponding affine groups. Notice that p + q = n throughout the paper.

The Heisenberg group has a closed connection to the indetermination principle in
quantum mechanics through Fourier transform [1,2] and, hence, to the Planck constant due
to the fact that the exponent in ε±ip·x/h̄ is dimensionless. This group also has a connection
to Gabor formalism [3,4], where the uncertainty principle for time–frequency operators
plays a fundamental role in wavelet expansion.

Furthermore, the invariance properties of Euclidean, Rn, or pseudo-Euclidean spaces,
Rp,q, are consequences of freedom in the characterization of these affine spaces. Based on
the description of the physical world, one has four options:

1. The existence of two sets of conjugate variables allows for equivalent descriptions
of the physical systems, which permit their study on either in the position or in
the momentum representations. Both representations are connected through the
Weyl–Heisenberg group Hp,q.
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2. Homogeneity, which means the freedom of choice of origin in the coordinate system,
positions, or momenta. The groups Ep,q and Hp,q are relevant in this case.

3. Self-similarity, which stands for the freedom to choose the unit of length.
4. The invariance from orientation is the freedom to select the orientation of the unit

vectors for the orthogonal bases of the physical space. In both the self-similarity and
invariance groups, Ep,q plays a role.

Options 1 and 2 are relevant in the discussion of the Heisenberg group and its relation
with Fourier transform, while options 3 and 4 have to do with the choice of reference frame.

In the present contribution, we propose a unified review of some important facts
concerning generalizations of Euclidean and pseudo-Euclidean groups [5–7], which are
interesting to use to realize symmetries in quantum mechanics. Thus, we consider these
options as an ensemble, contrary to the usual tradition of considering them separately.
The natural response comes with the use of the spaces Rn(or Rp,q), the Hilbert space L2(Rn)
(or L2(Rp,q)), as well all other spaces of functions defined on Rn or on Rp,q. Bases either in
the coordinate representation ({x}) or in the momenta conjugate representation ({p}) are
equally suitable in this context. As a matter of fact, options 1–4 above are not completely
independent, since Fourier transform, which gives an invertible correspondence between
coordinate and momentum representations [8,9], does not allow us to independently fix
self-similarity and orientation.

The assumption of these invariances may be considered a principle of relativity. Two
observers located at different points of the space and using different units of length and/or
momenta, and different orientations of unit vectors may give a different description of
the observed events. At the same time, the mentioned invariance principle should be
equivalent to the fundamental statement of relativity that establishes that both descriptions
have to be completely equivalent.

In a recent paper [10], we recalled the abovementioned program for the case of the
real line. We studied an extension Ẽ1,1 of the Heisenberg–Weyl group H1 isomorphic to the
central extension of the group of isometries of R1,1 with signature (+,−). The group Ẽ1,1
may be seen as the central extension of the Poicaré group in (1 + 1) dimensions enlarged
with the PT (parity-time reversal) transformation.

While in our precedent studies we used the space R as the point of departure, we now
generalize our analysis starting with the Euclidean and pseudo-Euclidean spaces such as
Rn and Rp,q. Thus, we include in our study the Euclidean and pseudo-Euclidean groups
En and Ep,q and the Heisenberg–Weyl groups Hn or Hp,q. They provide the existence of
two families of conjugate nD variables connected by Fourier Transform. Consequently, one
may expect the existence of a related indetermination principle.

We may represent the group Hp,q in terms of real matrices (n + 2)× (n + 2) as

Hp,q[a, b, c] =

1 aT c
0 In b
0 0T 1

 , (1)

where a ∈ Rp,q describes the translations in the space of momenta (aT stands for a row
vector where T symbolizes transposition); b ∈ Rp,q is the translations in the space of
coordinates (b denotes a column vector); c is related to a central charge or, in other words,
to the indetermination principle; and In is the identity matrix n× n.

Later, in Section 4.1, we shall see that the decomposition of the pseudo-Euclidean
group Ep,q as a semidirect product Ep,q = Rp,q � SOo(p, q) allows us to connect the groups
Hp+q and SO(p, q) into a new group. Along Ep,q, which describes the transformations on
the physical space, and Hp,q, a group related to the Canonical Commutation Relations, we
construct the more general group Kp,q, which contains the other two as subgroups. The Lie
algebra, kp,q, of Kp,q contains two kinds of generators: the canonical conjugate observables
and the generators of the spatial symmetry. To construct Kp,q, we replace the identity matrix
In that appears at the center of (1) based on a matrix that is the product of a scalar factor
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k ∈ R∗, which is related to the self-invariance and the general orientation of the space times
a matrix Λ ∈ SOo(p, q). Thus, we obtain an (n + 2)× (n + 2) matrix representation of Kp,q
given by

Kp,q[a, b, c, k, Λ] =

1 aT c
0 kΛ b
0 0T 1

 . (2)

Obviously, both representations (1) and (2) are real. The groups Kp,q are simply con-
nected if p and q are even. Otherwise, Kp,q are doubly connected: the identity component
characterized by k > 0, i.e, det Kp,q[a, b, c, k, Λ] > 0, which is a subgroup of Kp,q, and a
second connected component with negative determinant.

Here, we study in detail the representations of Kp,q supported on L2(Rp,q), where
we use standard bases with a closed connection to the nD Fourier transform and their
eigenvalues. These are the bases defined by the Hermite functions. In addition, we
introduce a generalization of the Hermite functions so as to describe the abovementioned
invariance. The action of the group Kp,q is defined by its transformations on Rp,q. The nD
Hermite functions, to be defined later, are complex square integrable functions giving new
complete orthonormal sets in L2(Rp,q).

The presence of both discrete and continuous bases for infinite dimensional repre-
sentations of Kp,q justifies the introduction of a structure such as rigged Hilbert spaces,
also called Gelfand triplets [11,12]. Gelfand triplets also serve to give good topological
properties, such as continuity, to the elements of the Lie algebras when represented by
linear operators, which in general are not bounded on a Hilbert space.

Additionally, structures such that Kp,q, Ep,q and Hp,q are well defined are of obvious
interest. They are also interesting because of their physical applications. For example,
the group K3 has interesting applications to 3D quantum physics. This group has only
spatial dimensions. What if a group such as Kp,q, with q > 1, has more than one time-like
dimension? A similar question arises when one deals with a anti-de Sitter group, such as
SO(3, 2). Then, the situation is far from being clear.

On the other hand, if q = 1, we are in a different scenario where the situation on
Minkowski spaces of the type R3,1 or R1,1 is well known. These Minkowski spaces have a
time-like variable, which could be associated to a time. This induces a coordinate and its
conjugate momentum, which on spaces such as Kp,1, are represented by a coordinate opera-
tor X0 and its conjugate P0. They satisfy a commutation relation of the form [X0, P0] = I .
The interpretation of X0 and P0 as a time operator and an energy operator, respectively,
seems to come naturally. Such an interpretation may only be possible outside the world of
ordinary non-relativistic quantum mechanics, where the energy operator is a semibounded
Hamiltonian, Semiboundedness of the Hamiltonian prohibits commutation relations of
the type [T, H] = I . Additionally, non-relativistic quantum mechanics moves on spaces of
the form Rn and not of the form Rp,q. Thus, a possible interpretation of the commutation
relation [X0, P0] = I as a relation between the time and energy operators may only be
possible on relativistic quantum theories. Note that this commutation relation yields an
exact uncertainty time–energy relation. Observe that any representation for both X0 and P0
as operators on an infinite dimensional Hilbert space must have an absolutely continuous
spectrum covering the whole real line R.

Is this applicable to the physical world? Does this relation of uncertainty time–energy
have a link to physical reality? Any answer to these questions is highly conjectural. One
may think that symmetries such as Kp,1 are just local symmetries acting on a neighbourhood
of each point on the space–time continuum. Another point of view may state that these
groups express symmetries on the physical word excluding energy translation, in which
case, we should just keep Kp. In the present paper, we use finite dimensional representations
only. Using infinite dimensional representations gives additional complications due to
the absence of unitary equivalence of the CCR representations without the additional
conditions leading to the Stone–von Neumann theorem.
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The paper is organized as follows: In Section 2, we summarize and generalize the
results starting with the 1D space introduced in [10]. In Section 3 and to prepare for the
study of the most general case, we introduce 2D spaces both in the plane and the hyperbolic
plane. As in the general case, the generators are a sum of the generators related to the
CCR and those describing invariance on the physical space. We left the study of the most
general symmetric spaces Rp,q for Section 4, where we construct a unique algebra, and a
unique representation of this algebra, putting together canonical conjugate observables
and generators of invariance, as noted before. In Section 5, we introduce the rigged Hilbert
space structures associated with these generalized Hermite functions and the structures
discussed along the present manuscript. We close the paper with a short discussion and a
few concluding remarks.

2. Heisenberg–Weyl Group in the Real Line R
As mentioned before, in a recent paper [10], we considered the 1D Heisenberg–Weyl

group, H1 and its connection with the group of transformations of the real line, E1. There-
after, we obtained a new group establishing a relation between the indetermination princi-
ple, the Fourier Transform, and the Hermite functions.

As is well known, the Heisenberg–Weyl group H1 realizes in one dimension on the
coordinate space the basic commutation relation of Quantum Physics [x, p] ≡ [x,−ih̄ ∂

∂x ] =
ih̄. Conditions on unitary equivalence of this representation of the Canonical Commutation
Relations (CCR) and the Stone–von Neumann theorem are analyzed in [13]. One of the
matrix representations of the Heisenberg–Weyl group, H1, is given in terms of the group
M3(R) real 3× 3 upper triangular matrices [14,15]. Typically,

H1[a, b, c] =

1 a c
0 1 b
0 0 1

 , a, b, c ∈ R . (3)

Here, we easily obtain the multiplication law based on matrix multiplication. If we
wish to include self-similarity and orientation, we have to upgrade H1 and extend it to the
group K1, which is also a subgroup of M3(R). A representation of K1 may be realized by
the matrices of the form

K1[a, b, c, k] =

1 a c
0 k b
0 0 1

 , a, b, c ∈ R, k ∈ R∗ . (4)

From (4), we obtain the group law through matrix multiplication, so that

K1[a′, b′, c′, k′] · K1[a, b, c, k] = K1[ka′ + a, k′b + b′, c′ + c + a′b, k′] . (5)

It is noteworthy that K1 has two connected components. These are (i) the connected
component of the identity, which is characterized by k > 0 and is a subgroup of K1, which
we henceforth denote by Ko

1, and (ii) a second component for which its elements are labelled
by k < 0. The elements belonging to this component can be obtained by multiplication of
the elements of Ko

1 by the matrix P1 := Diagonal[1,−1, 1], which represents the “parity” or
space-inversion operator.

The real parameters a, b, and c of H1 are in correspondence with the three generators X,
P, and I of the Lie algebra of H1 and H1. In addition, the Lie algebra K1 of K1 also contains
a generator D associated with the parameter k. The explicit form of these generators in the
representation (4) is
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X = ∂K1[... ]
∂a

∣∣∣∣
I3

=

 0 1 0
0 0 0
0 0 0

, P = ∂K1[... ]
∂b

∣∣∣∣
I3

=

 0 0 0
0 0 1
0 0 0

,

I = ∂K1[... ]
∂c

∣∣∣∣
I3

=

 0 0 1
0 0 0
0 0 0

, D = ∂K1[... ]
∂k

∣∣∣∣
I3

=

 0 0 0
0 1 0
0 0 0

.

(6)

The commutation relations for K1 are

[X, P] = I , [D, X] = −X , [D, P] = P, [I, • ] = 0 . (7)

The real line R is a metric space that supports two important continuous conjugates
(in the sense of position–momentum conjugation) bases {|x〉}x∈R and {|p〉}p∈R for L2(R),
constructed with the generalized eigenvectors of the operators X and P

X |x〉 = x |x〉 , P |p〉 = p |p〉 . (8)

At this point, it is necessary to underline that this notion of continuous basis does not
have anything to do with the notion of a Hamel basis for a linear space, a orthonormal
basis (complete orthonormal set) for a Hilbert space, or a Schauder basis in a Banach space.
It is instead a system functional that spans the vectors on a locally convex space, dense as a
subspace of the Hilbert space, through some integral formula involving these functionals,
very much in the fashion of spectral decompositions of self adjoint operators. We delay the
precise meaning of this notion to Section 5. See also the references quoted therein.

The first of the bases, {|x〉}x∈R, satisfies the following relations:

〈 x|x′ 〉 =
√

2π δ(x− x′) ,
1√
2π

∫
R

dx |x〉〈x| = I . (9)

These generalized bases are well defined on certain extensions of the Hilbert space,
the Gelfand triplets, as discussed later.

A similar result can be obtained for the second basis, {|p〉}p∈R, in (8). We know that
the Fourier transform (FT) and its inverse (IFT) connect both bases [9]:

FT[|x〉, x, p] =
1√
2π

∫
R

dx eipx|x〉 = |p〉, IFT[|p〉, p, x] =
1√
2π

∫
R

dp e−ipx|p〉 = |x〉 . (10)

Obviously, from (10), we have that 〈 x|p 〉 = ei p x.
The proper meaning of these bases is discussed later in Section 5. In any case, recall that

there exists a representation of the Heisenberg–Weyl group H1 by unbounded operators on
L2(R). Let us call P and X the operators satisfying the commutation relation [X, P] = I.
On L2(R), these operators may be represented by [P f ](x) = −i d f (x)/dx and [X f ](x) =
x f (x). We also may choose an abstract representation of these operators on an abstract
infinite dimensional separable Hilbert spaceH; see our previous comment on the unitary
equivalence of CCR representations. Since there is always a unitary mapping betweenH
and L2(R), it gives the relation between the representations of P and X on L2(R) and the
operators satisfying the same commutation relation on H. In order to avoid notational
complexity, we also denote the latter operators by P and X.

Then, following [9], being given an arbitrary vector | f 〉 in the abstract Hilbert spaceH,
we may write that

| f 〉 = 1√
2π

∫
R

dx f (x) |x〉 = 1√
2π

∫
R

dp f̂ (−p) |p〉 , (11)

with f (x) = 〈x| f 〉 and f̂ (−p) = 〈p| f 〉, and we have to take into account that f̂ (p) =
FT[ f (x); x, p]. Note that, if f (x) is real, then f̂ (−p) = f̂ (p)∗.
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Relation (11) gives the vectors in the abstract Hilbert spaceH in terms of both conjugate
continuous bases. The components of both spans in (11) gives respective square integrable
functions that are Fourier transforms of each other. We have to underline that not all vectors
| f 〉 ∈ Hmay be written as in (11), only those belonging to a dense inH space of test vectors,
as shall be explained in Section 5.

The action of the group elements e−iPb and e−iXa on the continuous bases is given by

e−iPb |x〉 = |x + b〉 , e−iXa |p〉 = |p− a〉 , a, b ∈ R , (12)

From the well-known relations (12), we conclude that the continuous basis {|x〉} is
equivalent to the continuous basis {|x+ b〉} and, similarly, in the momentum representation
for {|p〉} and {|p− a〉}.

The basis {|x〉}x∈R as well as the basis {|p〉}p∈R support each infinite dimensional
unitary irreducible representation (UIR) of the Heisenberg–Weyl group H1. We denote this
representation as Uh(g) no matter which of the two conjugate continuous bases we are
using. The representations are labelled by h ∈ R∗ ≡ R/{0}. Explicitly [10,16,17],

Uh(g) ≡ Uh(c, a, b) := eihcI eih(aX−bP) = eih(c−ab/2)I eihaX e−ihbP . (13)

The action of (13) on the continuous basis is clear. For instance,

Uh(g) |x〉 = eihc eiha(x+b/2) |x + b〉 . (14)

The corresponding expression for |p〉 is left to the reader. Additionally, the action of
this UIR Uh(g) translated to the functions of L2(R) can be straightforwardly computed by
taking into account (11). Its explicit expression is given by

(Uh(g) f )(x) = eihc eiha(x−b/2) f (x− b) . (15)

Nevertheless, the group H1 does not exhaust the invariances of the real line if we
add the hypothesis of self-similarity and orientation. Hence, the continuous basis {|x〉} is
equivalent to the continuous basis {|k x〉} with k ∈ R∗; {|p〉} and {|k′p〉} show the same
equivalency with k′ ∈ R∗. The relation between k and k′ is obvious: k′ = k−1. Thus, the real
line R supports a UIR, Uh,C , of K1. Let us start with the connected component Ko

1 of K1.
In this case, we have k = ed > 0, d ∈ R. We have that (see Formula (53) of [10])

eidD |x〉 = ed/2 |ed x〉 . (16)

Therefore,

Uh,C(g̃) |x〉 = ed/2 eih(c+C) eiha(ed x+b/2) |ed x + b〉 , g̃ = (a, b, c, d) ∈ Ko
1 . (17)

Here, C is a real number giving the eigenvalues of the quadratic Casimir of Ko
1, which

is C = X P− I D. To study the dilations given by negative k, we have to introduced the
parity operator P : x → −x. Thus, when the operator P enters into the game and is
realized as a unitary operator, a UIR of K1 acts on the continuous spatial bases as

Uh,C(g̃, α) |x〉 = Uh,C(g̃) |xα〉 = ed/2 eih(c+C) eiha(ed xa+b/2) |ed xα + b〉 . (18)

Here, α stands either for an identity (xα ≡ xI = x) or for the parity (xα ≡ xP = −x).
While the elements of the form (g̃, I) belong to Ko

1, those of the form (g̃,P) belong to the
second connected component of K1. We can rewrite (18) in terms of k ∈ R∗ with |k| = ed

and d ∈ R
Uh,C(c, a, b, k) |x〉 =

√
|k| eih(c+C) eiha(k x+b/2) |k x + b〉 . (19)
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The corresponding action on the functions of L2(R) is given by

(Uh,C(g̃, α) f )(x) =
1√
|k|

eih(c+C) ei h a(x−b/2) f
(

k−1 (x− b)
)

. (20)

As is well known, the Hermite functions {ψm(x)}m∈N and their Fourier transforms
{ψm(p)}m∈N, which are also Hermite functions satisfying the properties,

FT[ψm(x), x, p] = im ψm(p) , IFT[ψm(p), p, x] = (−i)m ψm(x) . (21)

are complete orthonormal sets (bases) in L2(R), [18,19]. We recall that, regardless of the
complex character of the Hilbert space L2(R), all Hermite functions are real.

The invariance properties of K1 are shown by a generalization of the Hermite functions
obtained using the UIR’s of K1. The explicit form of these generalized Hermite functions in
the coordinate representation is

χm(x, a, b, k) := |k|1/2 e−ia(k x+b/2) ψm(k x + b) , a, b ∈ R , k ∈ R∗ , (22)

similar to the momentum representation. We have obtained two sequences of functions de-
pending on three parameters, which we denote here as {χm(x, a, b, k)} and {χm(p, a, b, k)}
for all fixed values of k 6= 0, a, b ∈ R. The well-known orthonormal and completeness
relations of the Hermite functions produce similar relations for these generalized Hermite
functions, so these families of functions are orthonormal bases in L2(R).

However, these generalized Hermite functions are not eigenfunctions of the Fourier
transform and its inverse, contrarily to the ordinary Hermite functions (21), since they
transform under the Fourier transform as its inverse:

FT[χm(x, , a, b, k), x, p] = im χm(p, b,−a, k−1) ,

IFT[χm(p, a, b, k), p, x] = (−i)m χm(x,−b, a, k−1) .
(23)

3. Euclidean and Pseudo-Euclidean Plane Cases

In this section, we consider a generalization of our results relative to the analysis on
the real line. In this case, we enter 2D configuration spaces, which are either the Euclidean
plane R2 and the pseudo-Euclidean plane R1,1. We study both cases separately.

3.1. The Groups H2 and K2 on the Plane

The Heisenberg–Weyl group on 2D, H2, admits a representation by real 4× 4 upper
triangular matrices as follows:

H2[a, b, c] =

 1 aT c
0 I2 b
0 0T 1

 ≡


1 a1 a2 c
0 1 0 b1
0 0 1 b2
0 0 0 1

 , a1, a2, b1, b2, c ∈ R . (24)

As with the 1D case studied in the previous section, the 2D Heisenberg–Weyl group,
H2, can be extended by adding the group of proper rotations SO(2) and the dilations on
the plane, R∗, to obtain the group K2, which admits a representation by real 4× 4 matrices
given by

K2[a, b, c, k, R(θ)] =

 1 aT c
0 k R(θ) b
0 0T 1

 , R(θ) ∈ SO(2) , k ∈ R∗ , (25)

with
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R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
, θ ∈ [0, 2π). (26)

The group law, obtained by matrix multiplication, is given by

K2(a, b, c, k, R) · K2(a′, b′, c′, k′, R′) = K2(a′ + k′R′ Ta, b + kR b′, c + c′ + a · b′, kk′, R R′) , (27)

where R R′ ≡ R(θ) R(θ′) = R(θ + θ′). The identity element is Id = K2(0, 0, 0, 1, I2), which
is the identity matrix on GL(4). The inverse of K2(a, b, c, k, R) is

K2(a, b, c, k, R)−1 = K2(−k−1 R a,−k−1 R−1 b,−c + k−1 a · R−1 b,−k−1, R−1) . (28)

3.2. The Groups H1,1 and K1,1 on the Pseudo-Plane

Another interesting generalization of the 2D Heisenberg–Weyl group, H2, can be
obtain by replacing the Eucliden plane R2 with the pseudo-Euclidean plane R(1,1) using
the metric of signature (+,−), obtaining H1,1, which formally is like H2 (24). Thus, we
may obtain the group K1,1 from H1,1 by adding the connected component of the identity of
O(1, 1) and SO0(1, 1), and the dilations R∗. Hence, we have that

K1,1[a, b, c, k, Λ(η)] =

 1 aT c
0 k Λ(η) b
0 0T 1

 , Λ(η) ∈ SO0(1, 1) , k ∈ R∗ , (29)

with

Λ(η) =

(
cosh η sinh η
sinh η cosh η

)
, η ∈ R . (30)

The group law is given by an expression similar to (27) provided that rotations R
are replaced by pseudo-rotations Λ. The inverse of K1,1[a, b, c, k, Λ(η)] may be computed
similarly as in (28).

3.3. The Lie Algebras of K(2) and K(1, 1)

At this point, we move the discussion from the Lie group K(2) and K(1, 1) to their
respective Lie algebras K2 and K1,1. Both algebras are 7D with infinitesimal generators
given by X1, X2, P1, P2, I, D and either J or K if the algebra is eitherK2 orK1,1, respectively.
Note that the generator J come from the Lie algebra so(2) and the generator K from so(1, 1).
A 4× 4 realization of these generators is the following:

Xα =
∂K−
∂aα

∣∣∣∣
Id

=

 0 αT 0
0 O2 0
0 0T 0

 , Pα =
∂K−
∂bα

∣∣∣∣
Id

=

 0 0T 0
0 O2 α

0 0T 0

 ,

I =
∂K−
∂c

∣∣∣∣
Id

=

 0 0T c
0 O2 0
0 0T 0

 , D =
∂K−
∂k

∣∣∣∣
Id

=

 0 0T 0
0 I2 0
0 0T 0

 ,

(31)

where α is either the column vector (1, 0)T for α = 1 or (0, 1)T for α = 2, and O2 is the
2× 2 zero matrix. In comparison with the 2D case studied in the previous subsection, we
replace the symbol K2[a, b, c, k, R(θ)] in (25) with K− in (31) if the considered Lie algebra is
K2. If the algebra were instead K1,1, then K− replaces to K1,1[a, b, c, k, Λ(η)] in (29).

Since K2 is an Euclidean algebra with metric signature (+,+), covariant and con-
travariant coordinates coincide on it. This is not the case for the algebra K1,1, which has
a signature (+,−). Here, the contravariant, xµ, and the covariant, xµ, coordinates are
related via the metric tensor gµν in the sense that xµ = gµνxν, so that X1 = X1, X2 = −X2

and analogously for P1 and P2. Finally, the 4× 4 matrix representation of the other two
generators J of K2 and K of K1,1 is
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J =
∂K−
∂θ

∣∣∣∣
Id
=

 0 0T 0
0 −i σ2 0
0 0T 0

 , K =
∂K−
∂η

∣∣∣∣
Id
=

 0 0T 0
0 σ1 0
0 0T 0

 , (32)

where σi are Pauli matrices.
From (31) and (32), we may obtain the commutation relations for the algebra elements.

For those belonging to both algebras K2 and K1,1, the commutators are

[Xα, Pβ] = δαβ I, [D, Xα] = −Xα, [D, Pα] = +Pα . (33)

In addition to these common generators, we have to add J to K2 with commutation
relations

[J, Xα] = εαβXβ, [J, Pα] = εαβPβ , (34)

and K to K1,1, with new commutation relations given by

[K, Xα] = (−1)α εαβXβ, [K, Pα] = (−1)α+1 εαβPβ , (35)

where εαβ is the skew-symmetric tensor.
We conclude this note with an interesting remark. The matricesP1 = Diagonal[1,−1, 1, 1]

and P2 = Diagonal[1, 1,−1, 1] act on any generator Y of either K2 and K(1, 1) as Pα YP−1
α .

This is {Xα, Pα} → {−Xα,−Pα} on each of these two algebras. Observe that
P1P2 = Diagonal[1,−1,−1, 1], and this corresponds to the effect of the negative sign of
the parameter k for negative values. Moreover, we have that Diagonal[−1,−1] = R(π) ∈
SO(2), which is not in SO0(1, 1) but instead in SO(1, 1). As a consequence, K2 has only a
connected component while K(1, 1) has two.

The Adjoint Action

The adjoint action of the group K2 on its Lie algebra K2 is given by g2Yg−1
2 , where

g2 ≡ K2[a, b, c, d, R(θ)] ∈ Ko
2, ed = k with d ∈ R, R ∈ SO(2) and Y ∈ K2. This action

produces the following transformations:

g2 X g−1
2 = e−d R−1X− e−d R−1b I , g2 P g−1

2 = ed R−1P + a I . (36)

where Y = (Y1, Y2)
T .

Analogously, the adjoint action of K0
1,1 on X , P ∈ K1,1 is explicitely given by

g1,1 X g−1
1,1 = e−d Λ−1X− e−d Λ−1b I , g1,1 P g−1

1,1 = ed ΛP + a I , (37)

where, now, g1,1 ≡ K0
1,1[a, b, c, d, Λ(η)] ∈ K0

1,1 and Λ ∈ SO0(1, 1).
Note that g2 = ecI eb·P eθ JεdD ea·X and similarly for g1,1, after the replacement eθ J → eηK.

3.4. Bases on the Plane and the Hyperplane

To begin with, let us consider two 2D real vector spaces R2 and R1,1. On these
spaces, we defined respective metrics with respective signatures (+,+) and (+,−). Let
us consider the Hilbert spaces L2(R2) and L2(R1,1), on which we define the coordinate or
position operators X ≡ (X1, X2) and their conjugate momentum operators P ≡ (P1, P2).
These operators act on the generalized eigenvectors |x〉 ≡ |x1, x2〉 = |x1〉 ⊗ |x2〉 and
|p〉 ≡ |p1, p2〉 = |p1〉 ⊗ |p2〉, respectively, as (see Section 5)

Xα |x〉 = xα|x〉 , Pα |p〉 = pα|p〉 , α = 1, 2 . (38)

These generalized eigenvectors are transformed into each other by means of Fourier
type transformations (10) such as
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|p〉 = 1
2π

∫
R2|R1,1

dx eip·x |x〉 , |x〉 = 1
2π

∫
R2|R1,1

dp e−ip·x |p〉 . (39)

The scalar product p · x depends on the basic space considered, either R2 or R1,1 since
they have different metrics.

As for the 1D case (12), we have similar relations

e−ib·P |x〉 = |x + b〉 , e−ia·X |p〉 = |p− a〉 . (40)

Hence, the continuous basis {|x〉} is equivalent to the continuous basis {|x + b〉} with
b ∈ R2 (or R1,1). The same result is valid with respect to the bases in the momentum
representation, {|p〉} and {|p− a〉}.

The use of the 2D Fourier transform serves us to realize that the five operators given
by X, P, and I determine a UIR representation of H2 or H1,1 by exponentiation. As in the
1D case, where the basic linear space is the line R, we may add some other invariances
to those of H2 or H1,1. Thus, let us consider a transformation on R2 or in R1,1 of the
type K0

−[a, b, Λ, d], where Λ is either a rotation R(θ) on the Euclidean plane R2 or pseudo-
rotation Λ(η) on the pseudo-Euclidean plane R1,1. Then, if |x′〉 and |p′〉 are the transformed
generalized vectors resulting from these transformations on coordinates and momenta,
see (20), we have that

|x〉 K− [a,b,c,Λ,d]−−−−−−−→ |x′〉 := |ed Λx + b〉 , |p〉 K− [a,b,c,Λ,d]−−−−−−−→ |p′〉 := |e−d Λ−1Tp− a〉 . (41)

Let H be an abstract infinite dimensional separable Hilbert space and S : H 7−→
L2(R2), or alternatively, S : H 7−→ L2(R1,1), a unitary map. Let | f 〉 ∈ H and U| f 〉 = f (x).
Following the ideas developed in [9] or Section 5, we have the following decomposition for
vectors | f 〉 in a suitable dense subspace ofH:

| f 〉 =
∫
R2|R1,1

dx f (x) |x〉 , f (x) = 〈x| f 〉 . (42)

The action of the extended groups K2 and K1,1 on the generalized kets |x′〉 and |p′〉,
given by (41) permits us to calculate the action of a UIR of these groups, U(g), on functions
of L2(R2) or L2(R1,1), which is

(U(g) f )(x) = f (k−1Λ−1(x− b)) (U(g) f )(p) = f (kΛT(p + a)) . (43)

Let us recall that, for K(2), we have Λ ≡ R and (Λ−1)T = Λ, while for K1,1, we have
instead (Λ−1)T = GΛG−1, where G is the matrix associated to the metric tensor.

3.5. Based on Functions Defined in the Euclidean and Pseudo-Euclidean Planes

Let {ψα(xα)} be the set of all Hermite functions on R, which form an orthonormal
basis on L2(R). Consequently, the set of functions

Ψm(x) := ψm1(x1)ψm2(x2) , m = (m1, m2) ∈ N2 , (44)

is a orthonormal complete set (orthonormal basis) on L2(R2) or L2(R1,1). Consequently,
for any f (x) ∈ L2(R2) (L2(R1,1)), we have that

f (x) =
∞

∑
m∈N2

cm Ψm(x) =
∞

∑
m1=0

∞

∑
m2=0

cm1,m2 ψm1(x1)ψm2(x2) , cm1,m2 ∈ C . (45)

In addition, functions Ψn(x) verify the following normalization and completeness
relations, which can be easily obtained from the corresponding relations of the 1D case,
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∫
R2

dx [Ψm′(x)]
∗ Ψm(x) = δm,m′ ≡ δm1,m′1

δm2,m′2
,

∑
m∈N2

[Ψm(x)]∗ Ψm(y) = δ(x− y) ≡ δ(x1 − y1) δ(x2 − y2) .
(46)

We may call the functions Ψn(x), the double Hermite functions or the 2D Hermite functions.
A symmetrized version of these nD Hermite functions can be found in Ref. [20] (see
also [21]). They are real functions and eigenfunctions of the Fourier transform and of its
inverse, i.e.,

FT[Ψm(x); x; p] =
2

∏
α=1

FT[ψmα(xα), xα, pα] = im̃ Ψm(p) ,

IFT[Ψm(p); p; x] =
2

∏
α=1

IFT[ψmα(pα), pα, xα] = (−i)m̃ Ψm(x) .

(47)

where m̃ := ∑α mα.
As we have proceeded with the 1D Hermite functions, we use the invariance prop-

erties to 2D Hermite functions to construct a representation of the groups K2 and K1,1
supported on a kind of generalized Hermite functions, to be defined next. To begin with this
construction, let us define the following functions:

Xm(x, a, b, k, Λ) := |k| e−i a(kΛ+b/2)Ψm(kΛx + b) . (48)

Using (22), (44) and (48), we obtain an explicit form of the 2D generalized Hermite
functions in terms of the 1D generalized Hermite functions, χm(x, a, b, k), as

Xm(x, a, b, k, Λ) = χm1((Λx)1, a1, b1, k) χm2((Λx)2, a2, b2, k) , (49)

where (Λx)α denotes the α-th contravariant component of the vector Λx. The 2D general-
ized Hermite functions (48) determine a complete orthonormal set (orthonormal basis) on
both L2(R2) (or L2(R1,1)). In fact, it is very simple to show that∫

R2
dxXm(x, a, b, k, Λ) [Xm′(x, a, b, k, Λ)]∗ = δm,m′ ,

∑
m∈N2

Xm(x, a, b, k, Λ) [Xm(y, a, b, k, Λ)]∗ = δ(x− y) .
(50)

In addition, for the Fourier transform in 2D and its inverse, respectively, we have the
following relations:

FT[Xm(x, a, b, k, Λ) ; x, p] =
2

∏
α=1

FT[χmα(xα, aα, bα), xα, pα]

= im̃ [Xm(p, b,−a, k−1, Λ−1T) ,

IFT[Xm(p, a, b, k, Λ) ; p; x] =
2

∏
i=α

IFT[χmα(pα, aα, bα); pα, xα]

= (−i)m̃ Xm(x, b,−a, k−1, Λ−1T) ,

(51)

which closes the discussion in 2D.

3.6. Free Relativistic Particle in One Dimension

In this subsection, we intend to lift to the relativistic context our comments on
Section 3.3. For simplicity, we refer here just to the Lie algebra, k1,1, of the group K1,1
with the same infinitesimal generators fulfilling the same commutation relations. Nev-
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ertheless, in order to underline the relativistic character of the discussion, we introduce
the following notation for these generators: {X, T, P, E, I, D, K}, so that we have called T
and E to X2 and P2, respectively, in order to underline their respective character of “time”
and energy. We keep X1 as X and P1 as P. We use the notation in Section 3.3 for the
remainder generators. The discussion may be lifted to p spatial dimensions without further
conceptual complications.

In the Introduction, we listed four invariance options for the description of the physical
world. In the realm of special relativity, we drop the homogeneity on the space of momenta
and the self-similarity. These are not invariant in special relativity due to the zero point
energy and the mass, which fixes the origin and the scale of the energy.

The group of invariance of the special relativity is the subgroup of K1,1, which is
obtained by eliminating dilations of impulses and self-similarity. We call K̃1,1 the resulting
subgroup. It admits a 4 × 4 matrix representation as in (29), with a = 0 and k = 1.
The adjoint action of g ∈ K̃1,1 on {X, P} and {T, E} has essentially been given in (37),
choosing a = 0 and k = 1. Explicitly,

gXg−1 = γX− βγT − b′1 I , gTg−1 = γT − βγX− b′2 I , (52)

gPg−1 = γP + βγX , gEg−1 = γE + βγP . (53)

Here, β = v/c and γ = 1/
√

1− β2 as usual in special relativity.
It is noteworthy that the representations of K̃1,1 contains the representations of the one

dimensional Lorentz group on the space of impulses (or momenta) {E, P}, as a matter of fact
(gEg−1)2 − (gPg−1)2 = E2 − P2, and the representation of the one dimensional Poincarè
group on the “configuration space” {X, T}. As is well known, the unitary representations
of a group are also unitary representations (possibly reducible) of their subgroups.

The generators {X, P} and {T, E} may be represented by self-adjoint operators on
L2(R1,1), with orthonormal basis given in (49), which generate a unitary irreducible repre-
sentation of K1,1 satisfying the exponential commutation relations,

eia1X eib1P = e−ia1b1 eib1P eia1X , eia2T eib2E = e−ia2b2 eib2E eia2P . (54)

Taking into account the Stone–von Neumann Theorem, relations (54) are equivalent
to the commutation relations [X, P] = I and [T, E] = I, which are properly defined
on respective dense subspaces in L2(R1,1), save for a unitary equivalence. Note that
all operators {X, TP, T, E} are self adjoint on this space. With the equivalence between
these operators and the generators on Section 3.3, we can say that they admit matrix
representations such as those given in (31).

4. The n-Dimensional Case

The purpose of the present section is the generalization of the contents of previous
sections to the n-dimensional (nD) case.

4.1. The Pseudo-Orthogonal Groups O(p, q) and Some of Their Extensions

We begin with the p + q dimensional, (p + q)D, real vector space Rp,q, which is the
real, nD, vector space Rn, n = p + q, endowed with the quadratic form (pseudometric)
defined for any pair x, y ∈ Rn as

〈x, y〉 = gαβ xα xβ = xα yβ , α, β = 1, 2, . . . , n , (55)

where gαβ are the components of the metric tensor G with signature (

p︷ ︸︸ ︷
+,+, . . . ,+,

q︷ ︸︸ ︷
−,−, . . . ,−).

The Lie group of linear transformations leaving invariant this quadratic form is O(p, q).
Needless to say that, for q = 0, we recover the orthogonal group O(n). The groups
O(p, q) and SO(p, q) are not connected as they have four and two connected components,
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respectively. Recall that O(n) (q = 0) has just two connected components. For each
Λ ∈ O(p, q), the invariance of the pseudometrics G with respect to the group O(p, q)
means that

ΛT G Λ = G . (56)

The connected component of the identity is the subgroup SO0(p, q) with Lie algebra
soo(p, q), so that each Λ ∈ SOo(p, q) has the form Λ = etA with A ∈ so0(p, q) and

AT G + G A = 0 , (57)

so that GA is antisymmetric. The elements A of the orthogonal Lie algebras so(n) are
antisymmetric, since here, G = In. In the general case, so0(p, q), we have

G · A =

(
Ip O
O −Iq

)
·
(

A11 A12
A21 A22

)
=

(
A11 A12
−A21 −A22

)
=

(
−AT

11 −AT
21

−AT
12 −AT

22

)
, (58)

where A11 and A22 are submatrices of dimensions p2 and q2, respectively. The submatrices
A12 and A21 have dimensions q× p and p× q, respectively. The remaining submatrices
A11 and A22 are antisymmetric and correspond to rotations. We also have A21 = AT

12 a
characteristic of pseudo-rotations.

The dimension of so(p, q) is n(n − 1)/2 with n = p + q. A representation of each
element of a basis of the Lie algebra so0(p, q) is given by all matrices Mαβ with the property(

Mαβ

)γ

δ
= −gγ

α gβδ + gγ
β gαδ , α < β , α, β = 1, 2, . . . , n , (59)

with g β
α = δαβ. Each of the

(
Mαβ

)γ

δ
is the infinitesimal generator of a pseudo-rotation on

the plane αβ fulfilling Mαβ = −Mβα. Their commutations relations are given by

[Mαβ, Mγδ] = −
(

gβγ Mαδ − gαγ Mβδ − gβδ Mαγ + gαδ Mβγ

)
, α < δ , β < γ . (60)

Formulas (59) and (60) are also valid for so(n) with G = In. Since so(n) is a particular
case of so0(p, q), we always use the notation so0(p, q) in both cases in the sequel.

4.2. On the Groups Related to E(p, q)

Let Tp,q be the group of translations isomorphic to Rp,q. Then, we may consider
the semidirect product E(p, q) = Tp,q � SO0(p, q). The action of each element (a, Λ) of
E(p, q), with Λ ∈ SO0(p, q) and a ∈ Tp,q, on x ∈ Rp,q, is given by (a, Λ) x := Λ x + a.
The multiplication law on E(p, q) is

(a′, Λ′) · (a, Λ) = (a′ + Λ′ a, Λ′ Λ) . (61)

The Lie algebra e(p, q) contains the n(n − 1)/2 generators Mαβ of so0(p, q) shown
in (59) plus n generators Pα associated to the translations. The commutators of e(p, q) are,
in addition to those in (60), those involving translations, i.e.,

[Pα, Pβ] = 0 , [Mαβ, Pγ] =
(

gαγ gβδ − gαδ gβγ

)
Pδ = gαγ Pβ − gβγ Pα . (62)

There is an interesting property according to which we may imbed E(p, q) as subgroup
of GL(n + 1) so that the left affine action x′ = (a, Λ) x := Λ x + a becomes linear:

x′ = (a, Λ) x ≡
(

Λ a
0T 1

)(
x
1

)
=

(
Λ x + a

1

)
=

(
x′

1

)
. (63)

The right action and the right affine action of E(p, q) are given by, respectively,(
xT
)′

= xT Λ,
(

xT
)′

= xT Λ + aT . (64)
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From this point of view, we may write the multiplication law as

(a, Λ) · (a′, Λ′) = (a′ + a Λ′, Λ Λ′) , (65)

and the embedding of E(p, q) into GL(n + 1) gives now the following action:

xT (a, Λ) ≡
(

1 xT ) ( 1 aT

0 Λ

)
. (66)

By transposing (66), we obtain

x′ =
(

1 0T

a ΛT

)(
1
x

)
=

(
1

a + ΛTx

)
=

(
1
x′

)
. (67)

The Lie commutators of e(p, q) from the perspective of the right action are not exactly
those from the perspective of the left action. Now, in addition to (60), we have

[Xα, Xβ] = 0 , [Mαβ, Xγ] = εαβ

(
gαγ gβδ − gαδ gβγ

)
Xδ = εαβ gαγ Xβ − εαβ gβγ Xα , (68)

where Xα are the generators of translations and εαβ = ±1. The plus sign for εαβ correspond
to infinitesimal generators of rotations, while the minus sign corresponds to hyperbolic
rotations or pseudo-rotations on the plane αβ. For standard rotations, the commutator (68)
coincides with the commutator for left actions (62). For hyperbolic rotations, (Λ−1)T 6= Λ
and a minus sign appears in (68).

Combining left and right affine actions, we arrive at a new subgroup of GL(n+ 2) with
dimension n(n + 3)/2 + 1. Each element of this subgroup is given by one
Λ ∈ SO0(p, q), two a, b ∈ Tp,q, and a new real parameter c ∈ R associated with a central
charge. Each group element is denoted here either as (a, b, c, Λ) or as Hp,q[a, b, c, Λ] with
matrix representation given by

(a, b, c, Λ) ≡ Hp,q[a, b, c, Λ] ≡

 1 aT c
0 Λ b
0 0T 1

 , (69)

This is the so-called double group of E(p, q) and denoted by dE(p, q) or Kp,q. If,
in addition, we include dilations k ∈ R∗, we obtain an extended group that we call
either dE(p, q) or Kp,q. Any group element (a, b, c, k, Λ) ∈ dE(p, q) admits the following
matrix representation

(a, b, c, k, Λ) ≡ Kp,q[a, b, c, k, Λ] ≡

 1 aT c
0 k Λ b
0 0T 1

 . (70)

Obviously, when k = 1, Kp,q becomes Kp,q. Moreover, Kp,q has one or two connected
components depending on if p and q are both even or not.

It is easy to obtain the group law for Kp,q just based on matrix multiplication

(a, b, c, k, Λ) · (a′, b′, c′, k′, Λ′) = (a′ + k′Λ′ Ta, b + kΛ b′, c + c′ + a · b′, , kk′, Λ Λ′) . (71)

The identity is Id = (0, 0, 0, 1, In), which coincides with the identity in GL(n + 2), as
should be. The inverse of an arbitrary element (a, b, c, k, Λ) ∈ Kp,q is

(a, b, c, k, Λ)−1 = (−k−1 Λ−1 T a,−k−1 Λ−1 b,−c + k−1 a ·Λ−1 b,−k−1, Λ−1) . (72)
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4.3. The Lie Algebra Kp,q

As previously mentioned, the dimension of the Lie algebra Kp,q of the Lie group Kp,q

is n(n + 3)/2 + 2. A basis of Kp,q includes n right-translation operators Xα, n = p + q
left-translation operators Pα, a central operator I, a dilation operator D, and n(n− 1)/2
rotation/pseudo-rotation operators. These rotation/pseudo-rotation operators may be split
into p(p− 1)/2 and q(q− 1)/2 rotations on the spaces Rp and Rq, respectively, and p× q
pseudo-rotations.

A (n + 2)× (n + 2) matrix realization of Kp,q is given by

Xα =
∂K−
∂aα

∣∣∣∣
Id

=

 0 αT 0
0 On 0
0 0T 1

 , Pα =
∂K−
∂bα

∣∣∣∣
Id

=

 0 0T 0
0 On α

0 0T 1

 ,

I =
∂K−
∂c

∣∣∣∣
Id

=

 0 0T 1
0 On 0
0 0T 1

 , D =
∂K−
∂k

∣∣∣∣
Id

=

 0 0T 0
0 In 0
0 0T 1

 ,

(73)

where α is either the column vector (1, 0, . . . , 0)T , (0, 1, 0, . . . , 0)T ,. . . , or (0, 0, . . . , 1)T cor-
responding to the values α = 1, 2, . . . , n, respectively. Finally, On is the n× n zero matrix.
The remaining n(n− 1)/2 generators belong to the Lie algebra soo(p, q) and are given by

Jαβ =
∂A

∂ϕαβ

∣∣∣∣
Id
=

 0 0T 0
0 Mαβ 0
0 0T 0

 , (74)

with α < β , α, β = 1, 2, . . . , n. By ϕαβ, we mean the parameters associated with the pseudo-
orthogonal transformations defined in (59). For the sake of completeness, let us give here
the complete list of the generators:

[Xα, Xβ] = 0 , [Pα, Pβ] = 0 , [D, Jαβ] = 0 , [I, • ] = 0 ,

[Xα, Pβ] = δαβ I , [D, Xα] = −Xα , [D, Pα] = Pα,

[Jαβ, Jγδ] = −
(

gβγ Jαδ − gαγ Jβδ − gβδ Jαγ + gαδ Jβγ

)
, α < δ , β < γ

[Jαβ, Xγ] = εαβ

(
gαγ gβδ − gαδ gβγ

)
Xδ = gαγ Xβ − gβγ Xα ,

[Jαβ, Pγ] =
(

gαγ gβδ − gαδ gβγ

)
Pδ = gαγ Pβ − gβγ Pα .

(75)

4.4. The nD Weyl–Heisenberg Group and Its Extension

In this brief subsection, we want to discuss the relations of the nD Weyl–Heisenberg
group with those groups previously introduced. Let us just recall that the nD Weyl–
Heisenberg group is behind of the most common commutation relations in quantum
physics, which are [xi, pj] ≡ [xi,−ih̄ ∂

∂xj
] = i δij h̄. It admits a representation by real

(n + 2)× (n + 2) upper unitriangular matrices [14] such as

Hp,q[a, b, c] =

1 aT c
0 In b
0 0T 1

 , a, b ∈ Rp,q , c ∈ R . (76)

Under this representation, it is easy to obtain the group law just based on matrix
multiplication. This is

Hp,q[a, b, c] · Hp,q[a′, b′, c′] = Hp,q[a + a′, b + b′, c + c′ + a · b′] . (77)
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It comes from (76) that the identity element of the Weyl–Heisenberg group on this
matrix representation is the identity matrix, Id = Hp,q[0, 0, 0], and that the inverse of an
arbitrary group element in (76) is

H−1
p,q [a, b, c] = Hp,q[−a,−b,−c + a · b] . (78)

This is a subgroup of the group of all upper triangular matrices (n + 2)× (n + 2),
Mn+2(R) [15] and a subgroup of Kp,q; see (70).

4.5. Bases on Rp,q and on L2(Rp,q)

We may define a generalized basis of the multicomponent operators X and P such that
for any of their components Xα or Pβ, we have respective generalized continuous basis |x〉
and |p〉, (x, p in either Rn or Rp,q), such that

Xα |x〉 = xα|x〉 Pα |p〉 = pα|p〉 , α = 1, 2, . . . , n = p + q . (79)

Then, everything is as in the 2D case described in Section 3.5.
As a support of infinite dimensional UIR of Kp,q, we use the space L2(Rp,q), where we

have selected the following orthonormal basis:{
Ψm(x) ≡

n

∏
α=1

ψmα(xα)

}
m∈Nn

, n = p + q , (80)

Function (80) is the generalized nD Hermite functions [20]. Therefore, any f (x) ∈ L2(Rp,q)
admits the following span:

f (x) = ∑
m∈Zn

cm Ψm(x) , cm :=
n

∏
α=1

cmα , cmα ∈ C . (81)

These functions satisfy the properties of orthonormalization and completeness similar
to those of (46), but now, m and x are nD instead 2D. Transformation laws with respect to
the Fourier transform (FT) or its inverse (IFT) of the generalized Hermite functions are like
those of the 2D case (48) but now taking into accont that we consider the nD case.

When the spaces L2(Rp,q) are used to support a UIR of the group Kp,q, the action of
this representation on the members of the generalized nD Hermite functions is given by{

U(g)[Ψm(x)] = Ψm(g−1x )
}

, {U(g)[Ψm(p) = Ψm(gp )} , g ∈ Kp,q . (82)

Then, we proceed as in the 1D case in terms of the 1D generalized Hermite functions,
χ(x, a, b, k) [10] defining n functions

χmα(xα, aα, bα, k, Λ) :=
√
|k| e−i k aα (Λx)α

ψmα(k(Λx)α + bα) ; (83)

hence,

Xm(x, a, b, k, Λ) :=
n

∏
α=1

χmα(xα, aα, bα, k, Λ) = |k|n/2 e−i k a·Λb Ψm(kΛ x + b) , (84)

where each fixed set {a, b, k, Λ} determines one reference frame and its properties: scale,
origin and unit vectors, so that it determines an orthonormal basis. Therefore, the ele-
ments of the sequence {Xm(x, a, b, k, Λ)}must satisfy the orthonormality and completeness
relations displayed in (50) but now for nD objects.

Finally, under the FT and IFT basis {Xm(x, a, b, k, Λ)}, we recover expressions similar
those of in the 2D case (51) but now considering nD objects instead of 2D.

Here, we close our discussion on these generalized basis.
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5. Representations on Rigged Hilbert Spaces

Rigged Hilbert spaces are structures that are needed in order to define continuous
bases, to relate discrete and continuous bases, and to define continuity for the represen-
tations of the elements of Lie algebras as linear operators defined on dense subspaces of
infinite dimensional separable Hilbert spaces. As is well known, a rigged Hilbert space
(RHS) or Gelfand triplet is a triplet of spaces

Φ ⊂ H ⊂ Φ× , (85)

where H is an infinite dimensional separable Hilbert space. As a subspace of H, Φ is
dense on H and is endowed with its own locally convex topology, which is finer than
the topology inherited by Φ from H. The space Φ× is the linear space of all continuous
antilinear functionals over Φ. We represent the action of any F ∈ Φ× into ϕ ∈ Φ as
〈ϕ|F〉. We consider antilinear functionals instead of linear functionals in order to be
consistent with the Dirac notation as usual in quantum mechanics. The antidual space
Φ× is endowed with any topology compatible with the structure of dual pair {Φ, Φ×},
although we usually consider the weak topology. In this case, the canonical injections (i.e.,
mappings i : B ⊂ D 7−→ D such that i(ϕ) = ϕ, ∀ ϕ ∈ B) i : Φ 7−→ H and i : H 7−→ Φ× are
continuous mappings.

RHSs have been used for various purposes, such as in a correct mathematical de-
scription of the Dirac formulation of quantum mechanics, in the construction of states for
unstable quantum systems, in the description of quantum irreversibility produced by the
quantum decay, in providing an appropriate context for some spectral decompositions
of the operators used in classical chaotic systems, or in defining some constituents of the
axiomatic quantum field theory among others. Some references on RHS, very far from
exhaustive, include [11,12,22–28].

In the present discussion, we use explicit representations of functions such as Xm (84),
where the Hilbert space is of the type L2(Rn), with n being any positive integer.

To begin with, let us go back to Section 2, where the Hilbert space under consideration
is L2(R). Let us consider the Schwartz space S of all indefinitely differentiable functions
such that they and all their derivatives vanish at infinity faster than the inverse of any
polynomial. Its antidual, S×, is the space of tempered distributions, considered antilinear
continuous functionals on S . Then,

S ⊂ L2(R) ⊂ S× (86)

is a RHS. We recall that all Hermite functions belong to S and that the Fourier transform is
a one-to-one onto and bicontinuous mapping (i.e., continuous with continuous inverse)
from S onto itself. For any a, b ∈ R and and any k ∈ R∗, χm(x, a, b, k) ∈ S .

The operator X and P in (8) may be represented by the multiplication (X̃ f )(x) = x f (x)
and derivation (P̃ f )(x) = −id f (x)/dx on S , respectively. It is well known that both are
linear and continuous with the topology on S . In addition, they are essentially self adjoint
on S .

Recall that, if Q is a continuous operator operator on Φ, it may be extended to a
continuous operator on Φ×, by means of the duality formula:

〈Qϕ|F〉 = 〈ϕ|QF〉 , ∀ ϕ ∈ Φ, ∀ F ∈ Φ× , (87)

where we also denote by Q the continuous extension of Q into Φ×. As a consequence, we
may extend by continuity X̃ and P̃ to S×.

Although the construction yielding most of results in Section 2 has been given in [9],
let us summarize it here, so that this paper is self-contained. The point of departure
is an abstract infinite dimensional separable Hilbert space H and a unitary mapping
W : H 7−→ L2(R), which is in principle arbitrary. If Φ := WS , where the topology on
S is transported into Φ by W. The construction of Φ automatically gives the antidual
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Φ×. Then, W may be extended to a bicontinuous mapping WS× = Φ× by means of the
duality formula

〈Wϕ|WF〉 = 〈ϕ|F〉 , ∀ F ∈ Φ× , ∀ϕ ∈ Φ , (88)

where we also denote by W this extension. Let us call U := W−1, so that after (88),
〈Uϕ|UF〉 = 〈ϕ|F〉, ∀ F ∈ Φ× and ∀ ϕ ∈ Φ. Let us summarize this scheme using the
following diagram:

Φ ⊂ H ⊂ Φ×

↓ U ↓ U ↓ U
S ⊂ L2(R) ⊂ S× .

(89)

Then, X = U−1 X̃ U and P := U−1 P̃ U are continuous and essentially self adjoint on
Φ and, therefore, continually extensible to Φ×.

Based on the results of Gelfand and Maurin [12,29] (see a summary in [9]), for all
x, p ∈ R (the original result states “for all almost everywhere with respect to some measure”,
but in this case, the Lebesgue measure is on a straight line and since the representation
space is the Schwartz space S , the result is now valid for “all”), there exist |x〉, |p〉 ∈ Φ×

such that (i) X|x〉 = x |x〉 and P|p〉 = p |p〉; (ii) the unitary operator U may be chosen such
that ∀ ϕ ∈ Φ, Uϕ = 〈ϕ|x〉∗ =: [ϕ(x)]∗ ∈ S and FUϕ = F [ϕ(x)]∗(p) = 〈ϕ|p〉, where F is
the Fourier transform (this is the unitary operator U, which “diagonalizes” the operator
X, i.e., X̃ϕ(x) = xϕ(x), ∀ ϕ(x) ∈ S) and the star denotes complex conjugation; and (iii) for
any ϕ, ψ ∈ Φ, one has the following two decompositions valid for n = 0, 1, 2, . . . :

〈ϕ|Xnψ〉 =
∫ ∞

−∞
xn 〈ϕ|x〉〈x|ψ〉 dx , 〈ϕ|Pnψ〉 =

∫ ∞

−∞
pn 〈ϕ|p〉〈p|ψ〉 dp , (90)

where 〈x|ψ〉 = 〈ψ|x〉∗ and 〈p|ψ〉 = 〈ψ|p〉∗.
Thus, the Theorem by Gelfand and Maurin justifies the relations (8). Relations (9)–(11)

are also discussed in [9]. Formula (12) are also easily justified. Sinc, for all ϕ(x) ∈ L2(R),
we have that

eiP̃b ϕ(x) = ϕ(x + b) , ∀b ∈ R. (91)

This shows that eiP̃b preserves S . Note that U−1 eiP̃b U = eiPb, so that using the duality
formula, we have for all ϕ ∈ Φ

〈ϕ|e−iPb|x〉 = 〈eiPb ϕ|x〉 = ϕ∗(x + b) = 〈ϕ|x + b〉 , (92)

so that for all x ∈ R, we have that e−iPb |x〉 = |x + b〉. We show that e−iXa |p〉 = |p− a〉,
for any real number a, analogously.

Taking into account that S is invariant under the action of eiP̃b, we have that

〈ϕ|e−iPb |p〉 = 〈eiPb ϕ|p〉 =
[
eiP̃b ϕ(p)

]∗
=
[
eipb ϕ(p)

]∗
= e−ipb 〈ϕ|p〉 , (93)

so that e−iPb |p〉 = e−ipb |p〉, for any p ∈ R and arbitrary real number b. Analogously,
e−iXa |x〉 = e−ixa |x〉 for all x ∈ R and arbitrary real number a. From these considerations,
relations (14)–(18) also follow.

In the case from Section 4.5, the Hilbert space is represented by L2(Rn). We replace the
space S by the nD Schwartz space, S(Rn). This is the space of all indefinitely differentiable
functions f (x) : Rn 7−→ C, such that for any non-negative integers m1, m2, . . . , mn and
p1, p2, . . . , pn, one has

lim
||x||→∞

∣∣∣∣∣xp1
1 xp2

2 . . . xpn
n

∂m̃ f (x1, x2, . . . , xn)

∂m1 x1∂m2 x2 . . . ∂mn xn

∣∣∣∣∣ = 0 , (94)
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with m̃ = m1 + m2 + · · ·+ mn and ||x|| :=
√

x2
1 + x2

2 + . . . x2
n. Here, the realization of the

abstract RHS Φ ⊂ H ⊂ Φ× as in (89) is

S(Rn) ⊂ L2(Rn) ⊂ S×(Rn) . (95)

For each α = 1, 2, . . . , n, we define the following operators on S(Rn):

X̃α f (x) = xα f (x) , P̃α f (x) = ∂ f (x)/∂xα . (96)

Let H be an infinite dimensional separable Hilbert space and U : H 7−→ L2(Rn) by
unitary. Define Φ := U−1 S(Rn) and transport the Frèchet topology from S(Rn) to Φ
via U. Then, for any α = 1, 2, . . . , n, define Xα := U X̃α U−1 and Pα := U P̃α U−1. Now,
the Theorem by Gelfand and Maurin states that, for any x ∈ Rn, there is a |x〉 ∈ Φ× so that

(i) Xα |x〉 = xα |x〉 and a similar result holds for Pα (recall that all Xα commute with each
other and that the same is true with the Pα).

(ii) For any ϕ ∈ Φ, we have that Uϕ = 〈ϕ|x〉∗ ∈ S(Rn) and F [Uϕ](p) = F (〈ϕ|x〉∗)(p) =
〈ϕ|p〉∗, where F is the nD Fourier transform.

(iii) Similar spectral decompositions to those of (90) hold for Xα and Pα.

With all these ideas in mind, we straightforwardly generalize the formulas in Section 2
to achieve similar formulas to those in Section 4.5.

Thus, in the continuous representation, the elements of the Lie algebras Kp,q may be
represented by continuous linear operators on S(Rn). By duality, these operators may
be extended to continuous operators on the dual S×(Rn), for any topology compatible
with the dual pair. Hence, these algebras are also represented by algebras of continuous
operators on the dual.

6. Discussion and Concluding Remarks

We carefully reviewed the properties of some generalizations of Euclidean and pseudo-
Euclidean groups with interest in physics. In a previous paper, [10], we studies the ge-
ometric transformations of symmetry on the real line as groups represented by UIR on
L2(R). These groups included translations and dilatations, the Euclidean group E(1),
as well as dilations on R. We also analyzed the role of the Fourier transform that is in close
connection with the Heisenberg–Weyl group H1 with well-known implications in ordinary
non-relativistic quantum mechanics. This gives a new Lie group, K1, which has dimen-
sion four, as the spatial reversion has been enlarged with a discrete symmetry. The four
infinitesimal generators of K1, when represented as operators acting on L2(R) are X = x,
P = −ih−1 d/dx, D = −i(2h)−1(x d/dx + d/dx) and I = h. This group has two connected
components, and it may also be represented as a subgroup of the group of (1 + 2)× (1 + 2)
matrices (4).

Here, we provide a generalization of the above results to n dimensions (nD). This
generalization produces the group Kp,q, which admits a UIR on L2(Rp,q). This group
contains the pseudo-Euclidean groups Ep,q and Hp,q plus the discrete symmetry acting on
Rp,q as x→ −x when p and q are not both even. We show that Kp,q may be represented by
a subgroup of the group of (n + 2)× (n + 2) matrices (2), where n = p + q.

We also introduce an orthonormal basis on L2(Rp,q) formed by nD Hermite functions
on the variable x ∈ Rp,q and analyze their properties. These are given by products of
Hermite functions on a single variable xα (80). We have shown that these orthonormal
basis are suitable for a UIR of Kp,q. These nD Hermite functions are also eigenfunctions of
the Fourier transform (48).

Using the action of the group Kp,q on L2(Rp,q) and the nD Hermite functions, we
construct the nD generalized Hermite functions. These are also orthonormal basis for
L2(Rp,q), although they fail to be eigenfunctions of the Fourier transform.

As usual, the generators of the group Kp,q may be represented by self-adjoint operators
on the representation space L2(Rp,q), which are unbounded. Nevertheless, the Lie algebra
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of Kp,q admits a representation on suitable rigged Hilbert spaces (Gelfand triplets) such
that all its elements as well as the elements of its envolving algebra may be represented as
bounded (continuous) operators on two different locally convex topologies.

The nD Hermite functions appear in many quantum systems for which their respective
Hamiltonians in nD are quadratic [30,31]. Typical examples include the following: (i) in
Quantum Optics, the study of the photon distribution on multimodes mixed states [32]; (ii)
in multidimensional signals analysis, the nD Hermite functions play a role in the decomposi-
tion of signals in terms of wavelets involves Fourier transform or Gabor transform [3,33,34];
and (iii) some further applications in optics of the nD Hermite functions, such us in vision
studies are discussed in [35–37].

A commutator of the Lie algebra of the groups of the form Kp,q suggests the possibility
of a definition of a time–energy commutator. This commutator is well defined for finite
as well as for infinite dimensional representations, although such an interpretation is not
clear for well-known reasons. Nevertheless, in relation to the groups Kp,1, with q = 1 and
particularly K3,1, K2,1, and K1,1, one may interpret the dimension represented by q as a time.
This introduces, along its canonical conjugate variable, a time–energy commutator, for their
corresponding Lie algebra generators. However, this interpretation is untenable on the
whole space and only acquires a meaning locally, which means that this interpretation
could have a sense when dealing with the algebra and not when considering the group.

Finally, the study of the effects of the other discrete symmetries that currently are
associated with the group Op,q will be the object of future research.
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