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Abstract: The optimization of the passive and linear networks employed in quantum metrology,
the field that studies and devises quantum estimation strategies to overcome the levels of precision
achievable via classical means, appears to be an essential step in certain metrological protocols
achieving the ultimate Heisenberg-scaling sensitivity. This optimization is generally performed by
adding degrees of freedom by means of auxiliary stages, to optimize the probe before or after the
interferometric evolution, and the choice of these stages ultimately determines the possibility to
achieve a quantum enhancement. In this work we review the role of the auxiliary stages and of
the extra degrees of freedom in estimation schemes, achieving the ultimate Heisenberg limit, which
employ a squeezed-vacuum state and homodyne detection. We see that, after the optimization for
the quantum enhancement has been performed, the extra degrees of freedom have a minor impact
on the precision achieved by the setup, which remains essentially unaffected for networks with a
larger number of channels. These degrees of freedom can thus be employed to manipulate how the
information about the structure of the network is encoded into the probe, allowing us to perform
quantum-enhanced estimations of linear and non-linear functions of independent parameters.

Keywords: quantum metrology; quantum sensing; distributed parameter; heisenberg limit; typicality;
gaussian metrology; squeezing; estimation of functions

1. Introduction

In recent years, much attention has been put in the study of metrological schemes that
exploit quantum resources, such as entanglement and squeezing, to enhance the sensitivity
in the estimation of physical properties beyond the possibilities of classical strategies, with
applications to imaging [1,2], thermometry [3,4], mapping of magnetic fields [5,6] and
gravitational waves detection [7], among others. One of the most emblematic quantum
enhancements sought in quantum metrology is the renown Heisenberg limit [8–28], which
consists in achieving a scaling of the estimation error in the number N of probes (typ-
ically photons, or atoms) of order of 1/N, which surpasses the classical (or shot-noise)
limit 1/

√
N.

Gaussian metrology, which specializes in the study of estimation schemes employ-
ing Gaussian states of light and squeezing as metrological resource [29–32], represents
a promising path towards a feasible quantum-enhancement in estimation strategies and
the Heisenberg-scaling sensitivity [33–41]. It exploits the possibility to reduce the intrin-
sic noise of the electromagnetic field quadratures below the quantum fluctuations of the
vacuum. Such a reduced noise, together with relatively easy-to-implement experimen-
tal procedures to produce these squeezed-noise states, and their increased robustness to
decoherence compared to entangled states, make the Gaussian approach of great inter-
est for short-term applications of quantum technologies. A particular case analysed by
quantum metrology is the estimation of a single unknown parameter that appears within a
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given optical linear network multiple times, affecting for example different interferometric
components [34–36,38,42–48] (see Figure 1). This is the case of unknown temperatures or
magnitudes of the electromagnetic field, which modifies the physical properties of the
optical parts composing the network within the regime of passive and linear evolution
of the probe. The field investigating this type of schemes is generally referred to as dis-
tributed metrology, since the unknown parameter is effectively distributed among multiple
components of the network.

On the other hand, estimation schemes based on Gaussian metrology usually incur
in the challenge of adaptivity, i.e., the fact that the protocol depends on the value of the
parameter that tries to estimate [44,49–52]. A typical approach to deal with adaptivity in
Gaussian metrology consists in limiting the values that the unknown parameter can take,
for example restricting the working range of the estimation scheme only to small values of
the parameter, a condition that is common in a typical interferometric setup [43,46,48,53].
However, this solution unfortunately excludes certain experimental situations which re-
quire the ability to perform a quantum-enhanced estimation of the unknown parameter
without imposing restrictions on its value.

Ûϕ
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Figure 1. Example of a passive and linear network Ûϕ which depends on a single global parameter
ϕ [35]. The parameter can be thought as a physical property of an external agent (e.g., tempera-
ture, electromagnetic field) which affects multiple components, possibly of different nature, of the
network [35,38].

Remarkably, it has been found in a recent work that is possible to achieve Heisenberg-
scaling sensitivity in the estimation of a given unknown parameter distributed in an
arbitrary M-channel network with a Gaussian scheme that only requires a classical knowl-
edge of the parameter to optimize the network, i.e., the unknown parameter must be known
with a prior precision that can be achieved with a classical estimation strategy [35]. To
implement this scheme, a single auxiliary optical network is required in order to correctly
refocus the probe, a squeezed-vacuum state, into the only output port observed through
homodyne detection after the interferometric evolution, and a classical knowledge on the
unknown parameter is required to engineer this auxiliary network. In other words, since in
general an arbitrary M-channel linear network which encodes an unknown parameter does
not refocus the probe into a single output port, some degrees of freedom must be introduced
in the network by adding an auxiliary stage, which need to be optimized through a classical
estimation strategy, which assures that the refocusing is correctly performed [35].

Within this scheme, provided that the optimization of the degrees of freedom has
been performed, and the probe is correctly refocused in the only observed output port, it is
always possible to add a second auxiliary network, which represents further extra degrees
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of freedom introduced in the optical network. One may wonder how the choice of this
further auxiliary stage, and thus the presence of extra degrees of freedom, can influence
the estimation scheme. Remarkably, in Ref. [36] it has been shown that the extra degrees
of freedom introduced with a second auxiliary network do not have a major impact on
the precision of the estimation of the unknown parameter. In particular, for networks
with a large number of channels, it was shown that a random choice of the non-optimized
auxiliary network leaves the precision of the estimation scheme essentially unaltered [36].
Therefore, this auxiliary stage and the extra degrees of freedom can be used to manipulate
the way the information on the structure of the network is encoded in the probe.

In Ref. [37] it has been shown that it is possible to employ the previous scheme to
achieve the Heisenberg-scaling sensitivity in the estimation of suitable functions of multiple
parameters, and to exploit the degrees of freedom introduced by the non-optimized network
to control the form of the function that can be estimated. Despite, in principle, complications
may arise due to the presence of multiple parameters, representing multiple sources of
uncertainty, which require a more complex mathematical formalism to describe a multi-
parameter scenario, it is possible to employ the further degrees of freedom to manipulate
the way the information on the structure of the network is encoded into the probe, and
ultimately control the function of the parameters that is estimated at the Heisenberg-scaling
sensitivity [37]. It is worth mentioning that, although the task of estimating functions of
unknown parameters can be easily performed estimating separately each single parameter,
and then evaluating the function in the data post-processing analysis, the ability to directly
estimate a global property (e.g., spatial average of a field, field-gradients, or non-linear
functions) allows one to avoid the waste of resources to obtain superfluous information on
each single parameter, hence its relevance in applications, such as evaluation of averages of
magnetic fields or temperatures.

This review is organized as follows. First, we briefly review the general scheme
presented in Ref. [35] for the estimation of a single distributed parameter in Section 2.
In Section 3 we discuss the effect of the presence of a second auxiliary network on the
precision of the estimation, showing that the extra degrees of freedom introduced after the
optimization of the refocusing has been performed do not essentially affect the precision of
the estimation scheme [36]. Lastly, we will see in Section 4 how it is possible to exploit the
exceeding degrees of freedom of the auxiliary stages which are not employed to optimize
the network in a network with multiple parameters to change the function that can be
estimated at the Heisenberg-scaling precision [37]. We conclude presenting two examples.
The first is a 2-channel network which allows to estimate a function of three parameters
(two optical phases and a beam-splitter reflectivity) parametrized by some quantities that
can be chosen arbitrarily through the auxiliary stages. We will see that, according to the
choice of the auxiliary networks, the function estimated can be linear or non-linear in the
three parameters. The second is a scheme for the estimation of any linear combination of
parameters with positive weights. In particular, we will show how it is possible to employ
this scheme when the unknown parameter are not only phase-shifts, but also reflectivities
of beam-splitters, or more in general phases acquired through complex local networks.

2. Distributed-Parameter Quantum-Enhanced Estimation

We will start introducing the Gaussian estimation scheme for M-channel networks
which achieves the Heisenberg-scaling sensitivity recently proposed in Ref. [35]. Let us
consider an arbitrary linear passive network Ûϕ which depends on a single parameter ϕ
possibly distributed among several components of the network. The preparation of the
input probe consists in the injection of a single-mode squeezed vacuum state in the first
port of an auxiliary linear and passive network V̂in, which is used to scatter the photons
injected among all the modes. The input state in our protocol is therefore given by

|ψ0〉 = V̂inŜ1(r)|vac〉 (1)
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where Ŝ1(r) = e
r
2 (â2

1−â†2
1 ) is the squeezing operator associated with the first channel with

squeezing parameter r > 0, and |vac〉 is the M-channel vacuum state. The average number
N of photons injected in the network is thus N = sinh2 r. At the output of Ûϕ, a further
auxiliary network V̂out is employed to refocus all the photons into a single mode, namely
the first one, in order to capture all the information about the parameter in a single channel,
at which homodyne detection is performed with a given local oscillator phase θ. For a
linear passive unitary Û, it is possible to introduce the M×M unitary matrix U whose
elements Uij represent the single-photon transition amplitudes from the i-th input port to
the j-th output port, defined by the map

Û† â†
i Û =

M

∑
j=1

Uij â†
j . (2)

We now introduce the M × M unitary matrix uϕ = VoutUϕVin associated with the
evolution through the whole network V̂outÛϕV̂in. Then, we can write the probability

Pϕ =
∣∣(uϕ)11

∣∣2 =
∣∣(VoutUϕVin)11

∣∣2 (3)

that a photon injected in the first port of V̂in comes out from the first port of V̂out, and
the phase

γϕ = arg[(uϕ)11] = arg[(VoutUϕVin)11] (4)

accumulated through this interferometric evolution. One can show, by employing Cramér-
Rao analysis [54,55], that it is possible to achieve Heisenberg-scaling sensitivity in the
estimation of ϕ if the conditions

γϕ − θ = ±π

2
+

k
N

+O
(

1
N2

)
, (5a)

Pϕ = 1− `

N
+O

(
1

N2

)
, (5b)

are satisfied, where ` > 0 and k 6= 0 are arbitrary but both independent of N, and where θ is
an optimal choice for the local oscillator phase. Under conditions (5), the ultimate precision
achievable by this scheme with any estimator ϕ̃ after ν iterations of the measurement is given by

Var[ϕ̃] >
1

νF (ϕ)
=

1
8ν$(k, `)(∂ϕγϕ)2N2 , (6)

where F (ϕ) is the Fisher information associated with this estimation scheme, and

$(k, `) =
(

8k
1 + 16k2 + 4`

)2
, (7)

is an N-independent factor which reaches its maximum $ = 1 at k = 1/4 and ` = 0.
One can show that it is possible to optimize the refocusing network V̂out with only

classical prior information on the parameter ϕ, namely after a classical strategy is employed
to perform a prior coarse estimation of the unknown parameter.

In the following we will focus on the relation between the non-optimized auxiliary
network V̂in, which yields further degrees of freedom in the linear network of the scheme,
and the precision shown in Equation (6). Then, we will show how it is possible to employ
these extra degrees of freedom to manipulate the function of multiple parameters that can
be estimated with this scheme.

3. Typicality of Quantum Enhanced Sensitivity

In the previous section we have presented a generic protocol that allows us to achieve
the Heisenberg limit in the estimation of a parameter ϕ distributed in an arbitrary network Ûϕ
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when conditions (5) are met. In particular, in order to satisfy condition (5b), either the scattering
stage V̂in or the refocusing stage V̂out needs to be optimized after a classical prior estimation of
the parameter ϕ is carried out. The remaining auxiliary stage is thus left completely arbitrary,
and one may wonder how the choice of this stage can influence the precision of the estimation,
and in particular the pre-factor (∂ϕγϕ)2 appearing in the sensitivity in Equation (6). More
precisely, it may happen that a particularly unfortunate choice of the non-optimized stage
causes this pre-factor to vanish, for example if this auxiliary stage transforms the optical
mode of the probe into a mode which is insensible on or independent of the value of the
parameter (A trivial example is the case where the unitary matrix describing the network is
Uϕ = diag(1, exp(iϕ)), and the auxiliary stage is the identity Vin = 12, for M = 2. In this
case the probe is left in the first channel of the network, which does not depend on ϕ.) In
this section we will see that, for an arbitrary choice of the non-optimized auxiliary stage, the
pre-factor (∂ϕγϕ)2 tends to be far from zero, meaning that small values are mostly unlikely,
especially for networks with a large number M of channels [36]. For simplicity, we will
explicitly consider the case in which the refocusing stage V̂out has been optimized to satisfy
condition (5b) while V̂in is left arbitrary, but similar considerations can be done in the opposite
scenario due to the symmetry of the problem.

3.1. The Role of the Generator Gϕ

We can link the pre-factor (∂ϕγϕ)2, appearing in Equation (6), to the derivative of the
matrix element (uϕ)11

∣∣(∂ϕuϕ)11
∣∣2 =

∣∣∣(∂ϕ

√
Pϕ + i(∂ϕγϕ)

√
Pϕ

)
eiγϕ

∣∣∣2
= (∂ϕ

√
Pϕ)

2 + (∂ϕγϕ)
2Pϕ. (8)

When condition (5b) holds, Equation (8) simplifies to

(∂ϕγϕ)
2 =

∣∣(∂ϕuϕ)11
∣∣2 +O( 1

N

)
, (9)

so that the two quantities are equal up to a term of order 1/N. Condition (5b) can be recast
in terms of a constraint on the form of Vout

(Vout)1i = (V†
inU†

ϕ)1i +O
(

1√
N

)
(10)

If we now introduce the (generally ϕ-dependent) generator

Gϕ := iU†
ϕ

∂Uϕ

∂ϕ
(11)

of the unitary matrix Uϕ, we can further manipulate the pre-factor (∂ϕγϕ)2. Employing the
definition of Gϕ in Equation (11), and the relation in Equation (10), we can write

∣∣(∂ϕuϕ)11
∣∣2 =

∣∣∣∣(Vout
∂Uϕ

∂ϕ
Vin

)
11

∣∣∣∣2
=
∣∣(VoutUϕGϕVin)11

∣∣2
= (V†

inGϕVin)
2
11 +O

(
1
N

)
(12)
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Equations (9) and (12) conveniently express the pre-factor (∂ϕγϕ)2 as a function of the
generator Gϕ of the network and a unitary matrix U = Vin independent of the optimized
stage Vout, so that ultimately we can write for large N

(∂ϕγϕ)
2 ∼ f (U, Gϕ) = (U†GϕU)2

11 (13)

and thus the Fisher information appearing in the sensitivity in Equation (6) becomes

F (ϕ) ∼ 8$(k, `) f (U, Gϕ)N2. (14)

It is easy to see that the pre-factor f (U, Gϕ) can be written as the square of a convex
combination of the eigenvalues {gi}i=1,...,M of the generator Gϕ. In fact, if we call Vϕ the
matrix whose columns are the eigenvectors of Gϕ, so that D ≡ diag(g1, . . . , gM) = V†

ϕ GϕVϕ,
we can recast the pre-factor in terms of the eigenvalues {gi}i=1,...,M

(U†GϕU)2
11 =

(
M

∑
j=1

wjgj

)2

, (15)

where wj =
∣∣∣(V†

ϕU)j1

∣∣∣2, with ∑j wj = 1 by the unitarity of V†
ϕU. If we suppose, without

lack of generality, that the eigenvalues gi are ordered so that |gi| > |gi+1|, the maximum
value of the pre-factor is achieved for

w1 ≡
∣∣∣(V†

ϕU)11

∣∣∣2 = 1, (16)

namely when the first column of U coincides (up to a complex phase) with the first
eigenvector of Gϕ, belonging to the eigenvalue with the larger absolute value. Recalling
that U represents the action of the input auxiliary stage (see Equation (12)), and that the
elements of its first column coincides with the transition amplitudes from the first input
channel (see Equation (2)), we can understand the meaning of the condition (16): the input
stage must be chosen in order to maximize the effect of the network Ûϕ on the probe, which
must evolve under the optical mode (not necessarily coinciding with a physical channel)
which is most sensitive to the variations of ϕ—i.e., corresponding to the eigenvalue of
Gϕ with maximum absolute value. For a choice of U satisfying condition (16) (e.g., for
U = Vϕ), the pre-factor in Equation (13) coincides with the highest eigenvalue of the
generator squared

max
U

f (U, Gϕ) ≡ fmax = g2
1 ≡

∥∥Gϕ

∥∥2, (17)

namely the squared norm of the generator Gϕ. This coincides with the pre-factor of the
maximum Quantum Fisher information for Gaussian states found in Ref. [44], meaning that
the scheme presented in Section 2 is the optimal Gaussian strategy when also the auxiliary
stage V̂in ≡ U is optimized according to Equation (16).

3.2. Typical Behaviour of the Pre-Factor in the Heisenberg Scaling

Although the condition for the optimal choice of the unitary U has been easily found,
the eigenvectors of Gϕ in general depend on the value of the distributed parameter ϕ,
and on the structure of the network Ûϕ, and so do the solutions of Equation (16). On
the other hand, one may be interested in the case in which no prior knowledge on the
structure of Ûϕ—and thus on Gϕ— is given. In general, with these assumptions, finding
the optimal stage that maximizes the pre-factor f (U, Gϕ) and satisfies condition (16) is
impossible. Instead, in this scenario, it becomes more appropriate to study the behaviour of
the pre-factor for arbitrary choices of the auxiliary network, and ultimately of the non-fixed
degrees of freedoms introduced with it. In particular, one may be interested in knowing
how likely the value of f (U, Gϕ) is equal or close to zero, when the auxiliary stage is chosen
at random. However, to introduce concepts such as ‘how likely’ and ‘at random’, we must
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somehow endow the set of all the auxiliary linear network with a probability measure.
Conveniently, there is already a mathematical structure which well represents this set,
which we have already extensively employed: every M-channel linear and passive network
is described through the action of a M×M unitary matrix, and the ‘composition rules’ of
linear networks is well represented by the composition rules of U(M), the group of M×M
unitary matrices.

Since we are supposing that we do not possess any prior information on the structure
of Uϕ, all the auxiliary stages U are equivalent candidate to achieve the optimal value for
the pre-factor. For this reason, we can endow U(M) with its Haar measure P [56]. This
is the measure on the space of the M×M unitary matrices that generalizes the uniform
distribution on finite intervals of R. In fact, the Haar measure on U(M) is defined so
that the measure P of any open subset U ⊂ U(M) is invariant under left or right unitary
transformations, namely P(U ) = P(U′U ) = P(UU′), for every U′ ∈ U(M). In other
words, it is a measure that only depends on the ‘size’ of the subsets of U(M). Once we
have chosen the prescription to sample the network U, we are able to evaluate statistical
properties of the pre-factor f (U, Gϕ). In particular, we show in Appendix A that

EP [ f (U, Gϕ)] =
Tr
(

G2
ϕ

)
+ Tr

(
Gϕ

)2

M(M + 1)
(18)

is the expectation value of the pre-factor (13) over random choices of the matrix U, with respect
to the Haar measure. In the case of a generator proportional to the identity Gϕ =

∥∥Gϕ

∥∥1M,
which corresponds to a network made of M identical copies of single-channel unitaries acting
in parallel (This condition is satisfied for example for the metrological scheme introduced in
Ref. [12], although in such a case the generator Gϕ is independent of ϕ), we have Tr

(
Gϕ

)2
=

M2
∥∥Gϕ

∥∥2 and Tr
(

G2
ϕ

)
= M

∥∥Gϕ

∥∥2, so that the average value of the pre-factor equals the

maximum fmax =
∥∥Gϕ

∥∥2 in Equation (17). Indeed, with this kind of network, the auxiliary
stage which distribute the probe on all M channels becomes irrelevant, since the network
acts identically in each channel. Indeed, in such a case any unitary matrix Vϕ ≡ U
diagonalizes the generator Gϕ and therefore Equation (16) is satisfied for any Vin ≡ U.

In general, an average value of the pre-factor close to the maximum in Equation (17)
is favourable to a smaller value, since it implies a better Fisher information and a better
precision in average. The only case for which EP [ f (U, Gϕ)] is equal to zero is when the
whole generator is vanishing, occurrence happening only for networks Uϕ which do not
actually depend on the unknown parameter. A generator Gϕ with small eigenvalues—i.e., a
network which is not very sensitive to the variations of the parameter ϕ— would cause the
average in Equation (18) to decrease, diminishing the average precision of the estimation
scheme. However, it is possible to find a lower bound on the average value (18) using
Jensen’s inequality E[X2] > E[X]2 to obtain

EP [ f (U, Gϕ)] > EP [(U†GϕU)11]
2 =

[
Tr
(
Gϕ

)
M

]2

(19)

(see Appendix A). We notice how the right-hand side term in Equation (19) is the squared
average of the eigenvalues of Gϕ. This means that if we are able to control the value of the
average of the generator, say in such a way that it is larger of a certain fraction R > 0 of the
norm of the generator, i.e., Tr

[
Gϕ

]
/M > R

∥∥Gϕ

∥∥, then it follows from Equation (19) that
we can assure that the average of the pre-factor is larger than a fraction R2 of its maximum
value EP [ f (U, Gϕ)] > R2

∥∥Gϕ

∥∥2 ≡ R2 fmax.
Even though we may be able to control the average of f (U, Gϕ) through Equation (19),

it may happen that the typical values that the pre-factor takes are far from EP [ f (U, Gϕ)],
for random choices of the unitary U. A paradigmatic example of a random variable which
typically takes very different values than its average is a quantity which can only be equal
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to 0 or 1 with equal probabilities: in such case, its average 1/2 is never an effective outcome
of the random variable, let alone typical. Fortunately, this is not the case for the pre-factor
f (U, Gϕ), which is instead a well-behaved function of the random unitary U. In fact, we see
in Appendix A that f (U, Gϕ) is instead typical for networks with many channels, i.e., that
it is possible to apply results on the concentration of measure in high-dimensional spaces,
which assure that f (U, Gϕ) becomes almost constant for random choices of U ∈ U(M) for
large M, and thus it concentrates around its average value

P(| f −EP [ f ]| > ε) ≤ 2 exp

(
− AM∥∥Gϕ

∥∥4 ε2

)
, ∀ε > 0 (20)

with A = (72π3)−1. This results tell us that, for an arbitrary choice of auxiliary stage U =
Vin, the value of the pre-factor (∂ϕγϕ)2 ≡ f (U, Gϕ) appearing in the Fisher information in
Equation (14) is with overwhelming probability close to its average, for networks with a
large enough number of channels M (see Figure 2). Moreover, Equation (19) shows that it is
possible to bound from below the average EP ( f (U, Gϕ)) of the pre-factor, if some control
on the average of the eigenvalues of Gϕ is possible. This shows that, beside very unlikely
exceptions, the choice of the non-optimized stage is mostly irrelevant as for the precision
of the estimation scheme. In the next section, we will see how it is possible to exploit the
additional degrees of freedom introduced by the non-optimized network to manipulate
how the information on the structure of the network is encoded in the probe. This will
give us some freedom in choosing the function of a given set of parameters that can be
estimated with the Heisenberg limit precision.

M=2

2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

M=20

2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

Figure 2. Histograms of the pre-factor f (U, Gϕ) in Equation (13) for M = 2 (left) and M = 20 (right),
obtained numerically with 105 samplings of U with respect of the unitary Haar measure [36]. The
generator Gϕ chosen is a diagonal matrix with half 1s and half 3s as entries. The histograms are
normalized to the unity. We can see that in the histogram in the right, the values of the pre-factor are
more concentrated around its average EP [ f (U, Gϕ)] ' 4.

4. Estimation of Functions of Parameters

In the previous section, we have seen that it is always possible to add a ϕ-independent
auxiliary stage to the estimation setup shown in Section 2, which introduces degrees of
freedom that essentially do not affect the precision of the estimation scheme, especially for
networks with a large number of channels. A natural question that may arise is whether
the same setup can be employed in achieving the Heisenberg limit when the number of
unknown parameters affecting the arbitrary network increases, and if it is possible to
employ these degrees of freedom to select a specific function of the parameters that can
be measured with Heisenberg-scaling sensitivity. Although such task can be performed
estimating separately each single parameter, and then evaluating the function during the
data analysis, the ability to directly estimate a global property (e.g., spatial average of a
field, field-gradients, or non-linear functions) allows us to not waste resources to obtain
superfluous information on each single parameter. However, it cannot be excluded in
principle that complications may arise due to the presence of multiple sources of uncertainty,
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complications which already materialize starting from the more complex mathematical
formalism required to describe the multi-parameter scenario [57,58].

In this section we will describe a scheme for the estimation of functions of multiple
parameters encoded in a generic linear passive network [37]. We will show that, employing
a single squeezed vacuum state and a single homodyne detector, i.e., the same probe and
measurement of the setup shown in Section 2, it is possible to reach the Heisenberg limit in
the estimation of functions of the parameters, satisfying conditions that are similar to the
ones found for the single-parameter scheme. We find also in this scenario that a classical
knowledge on the unknown parameters is required to optimize the network through the use
of auxiliary stages, allowing us to conceive two-steps protocols achieving the Heisenberg
limit. Moreover, we will see how the exceeding degrees of freedom of the auxiliary stages
which are not employed to optimize the network can be used to change the functional
dependence between the quantity that can be estimated and the unknown parameters.

Once we will have described the estimation scheme and discussed the conditions that
need to be met in order to reach the Heisenberg limit, we will present two examples. The
first is a 2-channel network which allows us to estimate a function of three parameters, of
which two optical phases and a beam-splitter reflectivity, parametrized by some quantities
that can be chosen arbitrarily through the auxiliary stages employed. We will see that,
according to the choice of the auxiliary networks, the function estimated can be linear or
non-linear in the three parameters. The second is a scheme for the estimation of any linear
combination of parameters with positive weights. In particular, we will show how it is
possible to employ this scheme when the unknown parameter are not only phase-shifts, but
also reflectivities of beam-splitters, or more in general phases acquired through complex
local networks.

4.1. Setup

Let us consider a M-channel linear and passive network Ûϕ which depends on p
unknown parameters ϕ = (ϕ1, . . . , ϕp). The parameters ϕ may represent certain physical
properties associated with each component of the network, such as reflectivities of beam-
splitters, or phase-shift magnitudes, or they may be the values of external non-uniform
fields which influence several components of the network, such as the temperature and the
electromagnetic field (see Figure 3). The action of the network can be described with the
usual unitary matrix representation Uϕ, defined through Equation (2). The probe employed
is the same as shown in Equation (1), injected in a single input port of an auxiliary network
V̂in, say the first, with N = sinh2 r number of photons in average in the probe. In order to
infer some information on the parameters from the interferometric evolution of the probe,
we will perform homodyne measurements at a single output port, say the first, of the
quadrature x̂θ , where θ is the phase of the local oscillator. Similarly to the setup described in
Section 2, we will consider in this model the presence of a further refocusing network V̂out
acting on the probe after the evolution given by the network Ûϕ respectively. Intuitively, the
role of the stage V̂in is to distribute the probe among all the channels of the network, while
V̂out refocuses the probe into the only output port which is observed. However, in light
of the results of typicality presented in Section 3, which showed that the overall precision
of the single-parameter estimation scheme is essentially not affected by the choice of the
non-optimized network for a large number M of channels, we will exploit the remaining
degrees of freedom in the two auxiliary stages to manipulate how the information about
the structure of the network Ûϕ and on the parameters ϕ is encoded into the probe.
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|vac〉

|vac〉

|vac〉

...

|vac〉

1

2

3

...

M

l.o.ÛϕV̂in V̂out

Ŝ(r)
ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕp

Figure 3. Diagram of the setup described in Section 4.1 [37]. A squeezed vacuum state is injected in
the first input port of a network composed of a first auxiliary stage V̂in, a linear and passive network
Ûϕ which depends on multiple unknown parameters ϕ, and a second auxiliary stage V̂out. The two
auxiliary stages are linear and passive networks whose purpose is to manipulate how the information
on ϕ and on the structure of the network is encoded into the probe, and to refocus it in the only
output channel observed through homodyne detection. This setup reaches the Heisenberg limit in
the estimation of the overall phase acquired by the probe, which is a function of the parameters ϕ

that can be manipulated through the choice of V̂in and V̂out.

Since the photons of the probe are all injected in the first channel, and only the first
output port is observed, the only relevant element of the unitary matrix uϕ = VoutUϕVin—
representing the action of the whole setup on the probe— is (uϕ)11, namely the transition
amplitude from the first input to the first output port. We will employ the parametrization

(uϕ)11 ≡ (VoutUϕVin)11 =
√

Pϕei f (ϕ), (21)

which emphasizes the two relevant physical quantities, i.e., the transition probability
Pϕ :=

∣∣(uϕ)11
∣∣2 and the phase f (ϕ) := arg(uϕ)11 acquired by the probe through the net-

work, which is in general a function of the unknown parameters ϕ. We will see later that the
function f (ϕ) can be estimated at the Heisenberg limit. After the interferometric evolution,
the squeezed variance hence becomes x̂ f (ϕ)+π/2. If the quadrature x̂θ is observed through
homodyne detection, the probability distribution pϕ(x) which governs the outcomes of the
measurement is Gaussian, due to the Gaussian nature of the probe [30], and centred in zero,
due to the absence of displacement. We thus write the Gaussian probability distribution

pϕ(x) =
1√

2πσ2
ϕ

e
− x2

2σ2
ϕ , (22)

with variance σϕ calculated in Appendix B

σ2
ϕ =

1− Pϕ

2
+

Pϕ

2
[cosh(2r) + cos(2 f (ϕ)− 2θ) sinh(2r)], (23)

and can be thought as the average between the noises of the vacuum and of the squeezed
states, weighted by the factors 1− Pϕ and Pϕ respectively.

The presence of multiple independent parameters imposes the multi-parameter ap-
proach for the analysis of the ultimate precisions achievable with this setup, and the use of
the Fisher information matrix [54,55],

F (ϕ)ij =
∫

dx pϕ(x)
(

∂

∂ϕi
ln pϕ(x)

)(
∂

∂ϕj
ln pϕ(x)

)
(24)
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By plugging Equation (22) into Equation (24) one gets

F (ϕ) = 1
2σ4

ϕ

(
∇σ2

ϕ

)(
∇σ2

ϕ

)T
, (25)

where ∇ = ∇ϕ = ( ∂
∂ϕ1

, . . . , ∂
∂ϕp

)T. Having the probability distribution in Equation (22) a
null displacement, all the information on the parameters ϕ is encoded in the variance σϕ

through the transition probability Pϕ and the phase acquired f (ϕ). It is thus convenient to
separate the derivative of the variance in Equation (23) in two contributions

∇σ2
ϕ = (∂Pσ2

ϕ)∇Pϕ + (∂ f σ2
ϕ)∇ f (ϕ), (26)

where ∂P and ∂ f denote the partial derivatives with respect to P and f , so that we easily
obtain from Equation (23)

∂Pσ2
ϕ =

1
2
(−1 + cosh(2r) + cos(2 f (ϕ)− 2θ) sinh(2r)), (27a)

∂ f σ2
ϕ = −Pϕ sin(2 f (ϕ)− 2θ) sinh(2r). (27b)

4.2. Heisenberg Scaling

We can see from Equations (23)–(27) that, if no specific conditions are imposed on the
network uϕ, the Fisher information matrixF (ϕ) cannot generally reach the Heisenberg limit.
This is due to the presence of the squared variance σ4

ϕ at the denominator of Equation (25),
which may grow with order N2, with N number of photons injected, since

σ2
ϕ =

1− Pϕ

2
+

Pϕ

2

[
1 + 2N + 2 cos(2 f (ϕ)− 2θ)

√
N(N + 1)

]
= NPϕ(1 + cos(2 f (ϕ)− 2θ)) +O(1), (28)

while the derivatives in Equations (27) only contain terms of the type sinh(2r) and cosh(2r),
which are of order N. Thus it arises the need to impose conditions which prevent the
variance of the observed quadrature to grow with the number of photons. We show
in Appendix C that this setup reaches the Heisenberg limit in the estimation of f (ϕ) if
similar conditions to the ones in Equation (5) for the single-parameter scenario are met. In
particular, the conditions are

f (ϕ)− θ = ±π

2
+

k
N

+O
(

1
N2

)
, k 6= 0, (29a)

Pϕ = 1− `

N
+O

(
1

N2

)
, ` ≥ 0, (29b)

with k and ` arbitrary factors which are independent of N. In Section 4.3, we will discuss about
the meaning of the conditions in Equation (29), exploring their consequences and highlighting
the similarities with the single-parameter protocol in Section 2. In Appendix C we show that,
when conditions (29) are met, the Fisher information matrix in Equation (25) becomes

F (ϕ) ∼ 8$(k, `)N2(∇ f (ϕ)
)(
∇ f (ϕ)

)T, (30)

where $(k, `) is the same N-independent constant factor defined in Equation (7) for the
single-parameter estimation.

Despite the presence of the factor N2 in the Fisher information matrix in Equation (30),
it is generally impossible to reach the Heisenberg limit in the estimation of each of the
p parameters ϕ. In fact, we can easily see that the (asymptotic) expression of the Fisher
information matrix (30) is non-invertible: the (column) vector ∇ f (ϕ) is trivially the only
eigenvector associated with a non-vanishing eigenvalue of the Fisher information matrix.
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As discussed in Refs. [59,60], a singular Fisher information matrix is symptomatic of the
presence of parameters which do not admit estimators with finite variances, and the
traditional multi-parameter Cramér-Rao bound [54,55]

Cov(ϕ̃i, ϕ̃j) >
1
ν
F (ϕ)−1

ij (31)

is not applicable due to the non-invertibility of F (ϕ). In fact, only specific functions ψ(ϕ)
of the parameters ϕ admit unbiased estimators with finite variance [59,60]. In particular,
specialized to the Fisher information matrix of the problem at hand in Equation (30), the
functions ψ(ϕ) which admit finite variance are the ones satisfying [59]

∇ψ(ϕ) ∝ ∇ f (ϕ). (32)

The solutions of Equation (32) for all the possible values of ϕ are of the form ψ(ϕ) ≡
a1 f (ϕ) + a2, with a1/2 independent of ϕ, and in particular ψ(ϕ) ≡ f (ϕ) belongs to this
family, which entails the fact that the function f (ϕ) can be estimated with finite variance.
We can finally evaluate the Cramér-Rao bound associated with any estimator f̃ of f (ϕ),
obtaining in the asymptotic regime (see Appendix E)

Varϕ[ f̃ ] >
1
ν

1
8$(k, `)N2 , (33)

which reaches the Heisenberg limit in the mean number of photons N.
Lastly, it is worth to mention that we can saturate the Cramér-Rao bound in the limit

of large samples, namely it is always possible to find an estimator, the maximum-likelihood
estimator f̃MLE, which is unbiased and efficient in the asymptotic regime of large samples
ν → +∞ [55]. In order to find the maximum-likelihood estimator, we need to maximize
the Likelihood function

L(ϕ; x) =
ν

∏
i=1

pϕ(xi) =
1

(2πσ2
ϕ)

ν/2 exp

(
−|x|

2

2σ2
ϕ

)
(34)

In Appendix D we see that the solution which maximizes the Likelihood function (34)
is given by the estimator f̃MLE satisfying

σ2( f̃MLE) = S2(x), (35)

where σ2( f ) is the variance in Equation (23) as a function of f ≡ f (ϕ), supposing that Pϕ

satisfies Equation (29b) and is known, while S(x)2 is the usual sample variance

S2(x) =
1
ν

ν

∑
i=1

x2
i . (36)

Inverting the function σ2( f ), we can obtain the explicit expression of the maximum-
likelihood estimator in this regime

f̃MLE(x) = θ +
1
2

(
2nπ ± arccos

((
2S(x)2 − 1

)
− 2Pϕ sinh2 r

2Pϕ sinh r cosh r

))
, (37)

with n integer. We notice that the presence of the cosine function, which is invertible only
on intervals of its argument of the type [nπ, (n + 1)π[, requests a prior knowledge on the
argument 2 f (ϕ)− 2θ in order to choose the correct value of n in Equation (37). However,
we will discuss in the next section that a classical coarse estimation of the parameters ϕ is
required in order to optimize the network and satisfy condition (29b). In other words, the
error δϕ committed in the prior coarse estimation must be of order 1/

√
N, decreasing at
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the SQL with the number of photons N. For a large enough N, δϕ will be small enough to
unequivocally choose the correct interval of invertibility of the cosine, and thus the correct
n in Equation (37).

4.3. On the Conditions for the Heisenberg Scaling

Despite the presence of multiple parameters, the substantial similarity of conditions (29)
with the single-parameter counterparts in Equation (5) allows us to draw the same consider-
ation discussed for the single-parameter scheme in Ref. [35]. Condition (29a) is a minimum
resolution requirement on the tuning of local-oscillator phase θ, which must be controlled
with steps of order 1/N. Moreover, the requirement k 6= 0 in Equation (29a) implies that θ
must be tuned in such a way to measure a quadrature field x̂θ which is slightly different
from the minimum-variance quadrature x̂ f (ϕ)±π/2. This can be explained by the fact that
the minimum variance—i.e., σ2

ϕ for θ = f (ϕ)± π/2— is a stationary point for variations of
f (ϕ), and hence its gradient in Equation (26) is vanishing for Pϕ close to its maximum and
σ2

ϕ to its minimum.
Condition (29b) is a requirement on the refocusing of the probe into the only ob-

served channel. In order for the variance in Equation (23) of the observed quadrature to
be ‘squeezed’—i.e., σ2

ϕ ∼ 1/N— the contribution of the vacuum (1− Pϕ)/2 must be of
order 1/N. Moreover, similar considerations also for the prior knowledge on the param-
eter required for the optimization of the refocusing network can be drawn. First of all,
condition (29b) can be satisfied by only optimizing a single auxiliary stage, while choosing
arbitrarily the other. We can call ϕcl the result of a prior coarse estimation of the parameters
ϕ required to optimize a single auxiliary stage, say V̂out ≡ V̂out(ϕcl). The single-photon
probability transition Pϕ can be written as the squared modulus of the scalar product of the
two vectors UϕVine1 and Vout(ϕcl)

†e1, with e1 = (1, 0, . . . , 0)T

Pϕ =
∣∣∣eT

1 Vout(ϕcl)UϕVine1

∣∣∣2 ≡ η(ϕ,ϕcl), (38)

where η(ϕ,ϕcl) is a smooth function of ϕ and ϕcl which is maximized for ϕcl = ϕ, since
V̂out(ϕcl = ϕ) would satisfy η(ϕ,ϕ) ≡ 1. For small deviations δϕ = ϕ−ϕcl of the coarse
estimation from the true values of the parameters ϕ, we can expand Equation (38)

η(ϕ,ϕ− δϕ) = 1−
p

∑
i=1

∂η(ϕ, x)
∂xi

∣∣∣
x=ϕ︸ ︷︷ ︸

0

δϕi +
1
2

p

∑
i,j=1

∂2η(ϕ, x)
∂xi∂xj

∣∣∣
x=ϕ

δϕiδϕj + (O(δϕ))3, (39)

where the gradient∇xη(ϕ, x) is zero for x = ϕ = ϕcl. Thus, also in the presence of multiple
unknown parameter ϕ, if the errors δϕ in the prior estimations ϕcl are of order 1/

√
N, it

becomes possible to engineer the refocusing stage V̂out(ϕcl) that satisfies condition (29b),
and thus that allows to reach the Heisenberg limit, similarly to the single-parameter
estimation protocol.

4.4. Examples of Quantum-Enhanced Estimation of Functions

The presence of two auxiliary stages V̂in and V̂out, and the need to optimize only
one of them in order to satisfy condition (29b)—and ultimately to reach the Heisenberg
limit— entail the possibility to exploit the remaining degrees of freedom in the network
to manipulate how the information on the parameters ϕ are encoded in the probe. In this
section, two examples are proposed, which make use of these degrees of freedom to allow
us to choose the function to be estimated from a family of functions of some parameters
ϕ. The first example is a 2-channel network for the estimation at the Heisenberg limit of
non-linear functions of three parameters, of which two are magnitudes of phase-shifts and
one is the reflectivity of a beam-splitter. The second is a network for the estimation of linear
combination with positive weights of an arbitrary number of parameters.
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4.4.1. Non-Linear Functions

We here consider a 2-channel network Ûϕ for the estimation of non-linear functions
f (ϕ; α) of the reflectivity of a beam-splitter ϕ1 and the magnitudes of two phase-shifts
ϕ2/3, with reference to Figure 4. The functions f (ϕ; α) are parametrized by the quantities
α = (α1, α2, α3, α4), which can be implemented arbitrarily, with the only condition that
α1 − α2 = α4 − α3 ≡ ∆α. The possibility to choose the quantities α stems from the presence
of abundant degrees of freedom in the auxiliary networks V̂in and V̂out, which are not
employed for the optimization of the network needed to satisfy Equation (29b). The
protocol employed is the same considered in Section 4.1, with a single squeezed-vacuum
state with N = sinh2 r average number of photons injected in the first input port of the
overall network, with r squeezing parameter of the probe, and only the first output channel
observed through homodyne detection, to measure the quadrature x̂θ , where θ is the phase
of the homodyne local oscillator.

We can write the matrices representing the action of the beam-splitter and the phase-
shifts in the network Ûϕ as

UBS(ϕ1) = exp(iϕ1σ2) =

(
cos ϕ1 sin ϕ1
− sin ϕ1 cos ϕ1

)
UPS(ϕ2, ϕ3) = exp

(
i
ϕ2 + ϕ3

2
12 + i

ϕ2 − ϕ3

2
σ3

)
=

(
exp(iϕ2) 0

0 exp(iϕ3)

)
(40)

respectively, where σi, i = 1, 2, 3, is the i-th Pauli matrix and 12 is the 2× 2 identity matrix,
so that the network Ûϕ is represented by the matrix

Uϕ = UPS(ϕ2, ϕ3)UBS(ϕ1) =

(
cos ϕ1 exp(iϕ2) sin ϕ1 exp(iϕ2)
− sin ϕ1 exp(iϕ3) cos ϕ1 exp(iϕ3)

)
. (41)

1

2

1

2

V̂in

ω

α1

α2

Ûϕ

ϕ1

ϕ3

ϕ2

V̂out

ω− π
2

α3−ϕ2,cl

α4−ϕ3,cl

Figure 4. A 2-channel example of a network which allows to estimate at the Heisenberg limit certain
functions of the reflectivity ϕ1 of a beam-splitter and the magnitudes ϕ2/3 of phase-shifts [37]. The
form of the function can be manipulated by changing the values of the arbitrary parameters α, with
α1 − α2 = α4 − α3 = ∆α (see Equation (46)), while the value of ω is shown in Equation (43). Similarly
to the setup for the single-parameter model described in Section 2, a classical knowledge ϕcl of the
unknown parameters suffices to optimize the network.

The quantity ∆α = α1 − α2 that we will use to parametrize the family of functions
f (ϕ; α) is the relative phase between the arms of the input auxiliary stage V̂in ≡ V̂in(α1, α2),
which is overall described by the unitary matrix

Vin(α1, α2) = UPS(α1, α2)UBS(ω). (42)
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This auxiliary network consists of two phase-shifts of arbitrary magnitudes α1 and α2
in the first and second channel, and a beam splitter with reflectivity

ω =
1
2

arctan
(

cos(ϕcl,1)

sin(ϕcl,1) cos ∆α

)
, (43)

which can be engineered once a classical estimation ϕcl,1 of the unknown reflectivity ϕ1
of the beam-splitter in Ûϕ has been carried out, namely after a coarse prior estimation so
that the error δϕ1 = ϕ1 − ϕcl,1 is of order 1/

√
N. The refocusing auxiliary network V̂out is

described, with reference to Figure 4, by the unitary matrix

Vout(α3, α4) = UBS(ω− π/2)UPS(α3 − ϕcl,2, α4 − ϕcl,3), (44)

where the quantity ∆α = α4 − α3 enters in the relative phase of the two channels, this
time changed in sign. We can see from the expression of Vout that this auxiliary stage in
general depends on the classical estimation ϕcl of the unknown parameters, namely on
the results of a coarse prior estimation for which the committed errors δϕ = ϕ−ϕcl are of
order 1/

√
N.

We will now see that the Heisenberg limit can be achieved in the estimation of the
complex phase f (ϕ; α) ≡ arg(Vout(α3, α4)UϕVin(α1, α2)) of the network ûϕ depicted in
Figure 4, showing that it satisfies condition (29b). In fact, employing Equations (41)-(44),
we can explicitly evaluate the transition amplitude

(uϕ)11 = ei
(

α1+α3+
δϕ2+δϕ3

2

)(
cos
(

δϕ2 − δϕ3

2

)
sin 2ω cos ϕ1

+ cos
(

∆α− δϕ2 − δϕ3

2

)
cos 2ω sin ϕ1 + i sin

(
∆α− δϕ2 − δϕ3

2

)
sin ϕ1

)
, (45)

where the quantity ω is defined in Equation (43). In Appendix F we see that the transi-
tion probability Pϕ ≡

∣∣uϕ

∣∣2
11 actually satisfies the condition (29b) on the network for the

Heisenberg limit, which means that the auxiliary networks correctly operate on the probe
so that it gets refocused on the only observed channel. In Appendix F the complex phase
is evaluated

f (ϕ; α) = arctan
(

Im(uϕ)11

Re(uϕ)11

)
= α1 + α3 +

δϕ2 + δϕ3

2
+ arctan(Φ), (46)

with

Φ =
sin ϕ1 sin

(
∆α− δϕ2−δϕ3

2

)√
1− sin2(ϕcl,1) sin2 ∆α

cos ϕ1 cos ϕcl,1 cos
(

δϕ2−δϕ3
2

)
+ sin ϕ1 sin ϕcl,1 cos ∆α cos

(
∆α− δϕ2−δϕ3

2

) , (47)

which is in general a non-linear function of the parameters ϕ. We see from Equations (46)
and (47) how the choice of the arbitrary values of the parameters α affects the functional
dependence of the phase arg(uϕ)11 on the parameters ϕ, and thus of the quantity which can
be estimated at the Heisenberg limit. In particular, beside the term α1 + α3 which simply
adds an overall phase, the relative phase ∆α affects the functional dependence between the
quantity Φ in Equation (47) and ϕ.

For example, for ∆α = π/2 the beam-splitters in the auxiliary stages V̂in and V̂out be-
come balanced—i.e., ω = ±π/4 from Equation (43)—while the function of ϕ in Equation (46)
we can estimate reduces to

f (ϕ; ∆α = π/2) = α1 + α2 −
ϕcl,2 + ϕcl,3

2
+ ϕ1 +

ϕ2 + ϕ3

2
, (48)
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thus becoming a linear function of the parameters. From Equation (45), we can evaluate
the transition probability Pϕ =

∣∣(uϕ)
∣∣2
11 for the choice of ∆α = π/2, and for ω = π/4

Pϕ = cos2
(

δϕ2 − δϕ3

2

)
= 1− (δϕ2 − δϕ3)

2

4
+O(δϕ)3, (49)

which satisfies condition (29b) as expected, since the error in the coarse estimation are
assumed to be classical, i.e., so that δϕ = O(1/

√
N). Comparing Equations (29b) and (49),

and assuming that δϕi = ki/
√

N with ki independent of N, it is easy to evaluate the factor

` =
(k2 − k3)

2

4
(50)

which enters through $(k, `) in Equation (7) in the Cramér-Rao bound in Equation (33).
Moreover we notice that, if the two phase-shifts are completely known quantities, so that
we are able to perfectly balance them with the auxiliary stage V̂out with δϕ2/3 = 0, the
overall network ûϕ in Figure 4 reduces (up to a global phase (α1 + α2)/2) to a setup which
transform the reflectivity ϕ1 in an optical delay, without any prior information on the
parameter. In fact in this case, the overall phase f (ϕ; ∆α = π/2) in Equation (48) becomes
α1 + α2 + ϕ1. In Section 4.4.2 we will make use of this type of networks specifically for
this purpose, and be able to treat the reflectivities of beam-splitter as if they were simple
phase-shift.

For ∆α = 0, the reflectivity ω in Equation (43) becomes ω = −ϕcl,1/2− π/4, while
the function estimated at the Heisenberg limit in Equation (48) reads

f (ϕ; ∆α = 0) = α1 + α2 +
δϕ2 + δϕ3

2
+ arctan

(
− tan

(
δϕ2 + δϕ3

2

)
sin ϕ1

cos δϕ1

)
= α1 + α2 +

δϕ2 + δϕ3

2
− δϕ2 + δϕ3

2
sin ϕ1 +O(δϕ)3, (51)

where the termO(δϕ)3 can be neglected since it is of order N−3/2 or smaller, i.e., beyond the
Heisenberg limit resolution. In particular, we notice from Equation (51) that f (ϕ; ∆α = 0)
is a relatively simple non-linear function, in which we can find the products ϕ2 sin ϕ1 and
ϕ3 sin ϕ1, between each phase-shifts and the transmittivity amplitude of the beam-splitter.
If we once again evaluate the transition probability Pϕ =

∣∣(uϕ)
∣∣2
11 from Equation (45) for

∆α = 0 we obtain

Pϕ = 1− δϕ2
1 −

(δϕ2 − δϕ3)
2 cos2 ϕ1

4
+O(δϕ)3, (52)

which satisfies condition (29b) as expected, since δϕ is of order 1/
√

N. In particular, we
can easily evaluate the N-independent factor

` = k2
1 +

(k2 − k3)
2 cos2 ϕ1

4
(53)

which enters in the Cramér-Rao bound in Equation (33), if we assume δϕi = ki/
√

N with
ki independent of N. If moreover ϕ1 = 0, the network in Figure 4 reduces to a balanced
Mach-Zehnder, which allows us to estimate the average of the two phase-shifts since the
overall phase in Equation (51) reduces, for ϕ1 = 0, to

f (ϕ; ∆α = 0) = α1 + α2 −
ϕcl,2 − ϕcl,3

2
+

ϕ2 + ϕ3

2
, (54)

where the average of the two phase-shifts ϕ2 and ϕ3 sums a known quantity, which can
thus be subtracted during the estimation without affecting the overall precision. In the
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next example, we will generalize such scheme, considering a similar network, but with an
arbitrary number of channels and generally unbalanced beam-splitters.

4.4.2. Linear Combinations of Arbitrary Parameters

We now consider a network Ûϕ which depends on M independent parameters ϕ (see
Figure 5), that allows us to estimate with a precision at the Heisenberg limit any linear
combination

L(ϕ) =
M

∑
i=1

wi ϕi ≡ w ·ϕ (55)

with positive weights w = (w1, . . . , wM). As also discussed previously in this chapter, the
ability to change arbitrarily the weights stems from the presence of degrees of freedom
in the auxiliary stages V̂in and V̂out that are not employed to refocus the probe in the
only observed channel, i.e., to satisfy condition (29b). At first, we will suppose that the
parameters ϕ can either be magnitudes of phase-shifts or reflectivities of beam-splitters.
Later, we will show how it is possible to generalize the scheme for an arbitrary set of
parameters. We will also suppose, without loss of generality, that the weights w sum to
one, namely that the linear combination in Equation (55) is a convex sum. To estimate a
generic linear combination, it would suffice to rescale the estimated convex sum, causing a
rescaling of the error in the estimation which does not affect the Heisenberg limit.

V̂in Ûϕ V̂out

1

2

3

...

M

1

2

3

...

MϕM

...

ϕ3

ϕ2

ϕ1

−ϕM,cl

...

−ϕ3,cl

−ϕ2,cl

−ϕ1,cl L(ϕcl)

...

ϕi ∈ ϕi

(a)

, +π
4

+π
4

−π4

ϕi
−π4

+π
4

−π4
(b)

Figure 5. Network for the estimation at the Heisenberg limit of any linear combination of M
parameters with positive weights, as shown in Equation (55) [37]. As shown in the lower panel, each
parameter ϕi can either be (a) an optical phase acquired through a single-mode phase-shift, or (b) the
reflectivity of a lossless beam-splitter. The network (b) is given in Equation (56), and its purpose is
to transform the reflectivity into an optical phase. Two auxiliary stages V̂in and V̂out are employed,
whose purpose is to distribute the probe according to the weights in the linear combination (see
Equation (59)), and to refocus the probe into the first output port of the network (see Equation (60)).

With reference to Figure 5, we now describe the network Ûϕ affected by M unknown
parameters ϕ. The parameters ϕ act in parallel, in the sense that the i-th parameter ϕi only
affects the i-th mode of the network, and they can equivalently be the magnitudes of a
phase-shift UPS(ϕi) = eiϕi or the reflectivities of beam-splitters UBS(ϕi) = eiϕiσ2 , with σ2
the second Pauli matrix. For each unknown beam-splitter, a 2-channel passive and linear
network is employed in Ûϕ, whose purpose is to transform the reflectivity into a relative
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phase between the two ports of the beam-splitter (see the panel (b) in Figure 5). This can be
done through the network

VUBS(ϕ)V† = UPS(ϕ) ≡
(

eiϕ 0
0 e−iϕ

)
, (56)

with
V = UBS

(π

4

)
UPS

(π

4

)
. (57)

We also remark that, despite each mode of Ûϕ with an unknown beam-splitter is practi-
cally composed of two separated channels, the overall network VUBS(ϕ)V† in Equation (56)
acts as a phase-shift in each of the two channels, namely the two modes are not mixed.
Since this local network VUBS(ϕ)V† is only fed through a single input port, it essentially
acts as a single-channel phase shift of magnitude ±ϕ on the probe, depending on which
of the two arms are employed. The overall network Ûϕ can be thus described with the
unitary matrix

Uϕ = diag(eiϕ1 , . . . , eiϕM ), (58)

regardless of the nature of the parameters ϕ, whether they are phase magnitudes or beam-
splitter reflectivities.

The input auxiliary stage is a M-channel generalized beam-splitter, which scatters the
probe injected in the first input port into each of the M channels of Ûϕ according to the
weights w. Specifically, the unitary matrix Vin representing the input network is chosen
so that

|(Vin)i1|2 = wi. (59)

Noticeably, this constraint is ϕ-independent, i.e., V̂in does not need to be optimized
after a prior coarse estimation of ϕ. The output auxiliary network V̂out can be though as
been composed of three separate stages. First, a phase shift of magnitude −ϕcl,i is applied
to the i-th channel, where ϕcl,i is a coarse estimate of the prior classical measurement of ϕi,
so that the error committed δϕi = ϕi − ϕcl,i is of order 1/

√
N. Then, a second generalized

beam-splitter which does not depend on ϕ is in place, whose purpose is to invert the
action of V̂in and thus refocusing the probe into the first channel of the network. Finally,
a phase-shift of magnitude L(ϕcl) is applied before the homodyne detection at the first
output port. The overall action of the network V̂out is thus described by the unitary matrix

Vout = UPS(L(ϕcl), 0, . . . , 0)V†
in UPS(−ϕcl), (60)

where we denoted with UPS(λ1, . . . , λl) = diag(eiλ1 , . . . , eiλl ).
With this setup, the probability amplitude (uϕ)11 = (VoutUϕVin)11 found in Equation (21)

can be easily evaluated through Equations (58)–(60), and it reads

(uϕ)11 = eiL(ϕcl)
M

∑
i=1

wieiδϕi = eiL(ϕcl)

(
1 +

M

∑
i=1

iwiδϕi −
1
2

M

∑
i=1

wiδϕ2
i

)
+O(δϕ)3, (61)

where we can neglect the term O(δϕ)3, since it is of order N−3/2 and thus beyond the
Heisenberg limit resolution we can achieve. We can now evaluate the transition probability
Pϕ =

∣∣uϕ

∣∣2
11 through Equation (61)

Pϕ =

∣∣∣∣∣eiL(ϕcl)
M

∑
i=1

wieiδϕi

∣∣∣∣∣
2

= 1 +

(
M

∑
i=1

wiδϕi

)2

−
M

∑
i=1

wiδϕ2
i +O(δϕ)3 (62)

which clearly satisfies condition (29b), so that the Heisenberg limit can be achieved in
the estimation of the complex phase f (ϕ) = arg(uϕ)11. We can thus evaluate, comparing
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Equations (29b) and (62), the factor ` which enters in the Fisher information shown in
Equation (33),

` =

(
∑

i
wiki

)2

−∑
i

wik2
i , (63)

where we supposed that δϕi = ki/
√

N with ki independent of N. From Equation (61)
we obtain

f (ϕ) = L(ϕcl) +
M

∑
i=1

wiδϕi +O(δϕ)3 = L(ϕ) +O(δϕ)3, (64)

so that it is possible to recover the linear combination (55) at the Heisenberg limit from the
estimation of f (ϕ). We notice in fact that L(ϕ) in (55) and the complex phase f (ϕ) in (64)
are equal up to a quantity of order O(N−3/2), which is beyond the Heisenberg resolution,
since the errors δϕ in the classical prior estimation are of order 1/

√
N.

In conclusion, we will discuss about two different features of this protocol. First, we
notice from Equation (56) that the network employed to transform the reflectivity ϕ of the
beam-splitters into phase-shifts inverts the sign of the parameter in the second channel. This
means that, if the portion of the probe which has been scattered into this network is injected
in its second port, it acquires a phase −ϕ. It is then possible to exploit this behaviour
to estimate a linear combination which admits negative weights for the reflectivities of
the beam-splitters, employing the same protocol described in this section with the only
precaution to invert the sign of the classical estimation ϕcl of this parameter. Second, it
is possible to further generalize the local networks in each mode of Ûϕ. In fact, we can
replace the networks in the panel of Figure 5 with a generic m-channel network V̂ and,
provided that the probe comes out of this local network from a single output channel—i.e.,
the network acts as a phase-shift on the probe— the same results found in this section
still apply. Not only, in Appendix G we show that it is not necessary that all the photons
come out from a single output port of each local network: instead, it suffices that a similar
refocusing condition to the one in Equation (29b) is satisfied locally by each V̂. It is thus
possible to conceive, for example, a scheme that allows to reach the Heisenberg limit in the
estimation of linear combination of parameters and functions of parameters, if we choose
as V̂ the whole network described in the example in Section 4.4.1.

5. Conclusions

The quantum metrological revolution is, at this moment in time, exciting and thrilling.
The recent advances in the field of quantum mechanics have been incessantly stimulating
the development of increasingly ingenious and innovative technologies which exploit the
laws and rules of the microscopic world. Ranging from computing to biology, medicine,
cosmology, imaging, sensing, cryptography and neural networks, quantum technologies
appear to consistently outperform their classical counterparts. In particular, the fields of
quantum sensing and quantum metrology propose schemes for the estimation of physical
properties, such as lengths, time intervals, temperatures, and more, achieving enhanced
levels of precision. In particular, the field of distributed Gaussian metrology, which studies
strategies employing Gaussian states for the estimation of unknown parameters distributed
arbitrarily on a passive and linear network, has recently witnessed some improvements
in overcoming the challenge of adaptivity of the network, usually found in Gaussian and,
more in general, quantum-enhanced schemes. In fact, as we briefly summarize in Section 2,
employing a single squeezed vacuum state and performing homodyne detection at a single
output port, it has been shown that it is possible to achieve the elusive Heisenberg-scaling
sensitivity by only adding a single auxiliary network, whose purpose is to refocus the
probe into the only observed channel. This auxiliary network, which introduced degrees of
freedom in the interferometer, can be engineered with only a classical prior knowledge on
the parameter.
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The main focus of this review was then put on discussing the role and the effect of
further degrees of freedom that can be added in the network, for example employing a
second, non-optimized auxiliary stage. We have shown in Section 3 that this auxiliary
stage leaves essentially unchanged the precision achieved by the setup, especially for
networks with a large number of channel, and we have discussed how this result allows us
to assume that the constant factor multiplying the Heisenberg scaling of the precision can
be controlled and is typically far from zero. In Section 4 we demonstrated that it is possible
to exploit this ability to manipulate how the information on multiple parameters encoded
in a passive and linear network. We have seen that this results in the possibility to estimate
functions of the unknown parameters which we can manipulate by acting on these further
degrees of freedom through the auxiliary stages. The advantage of estimating directly
functions of parameters lies in the fact that it allows us to save resources which would
otherwise be employed to estimate singularly and at a high precision each parameter. In
this way, both linear and non-linear functions can be estimated at the Heisenberg limit, and
two example have been proposed.

Funding: This work was partially supported by the Office of Naval Research Global (N62909-18-1-
2153). P.F. is partially supported by Istituto Nazionale di Fisica Nucleare (INFN) through the project
QUANTUM, and by the Italian National Group of Mathematical Physics (GNFM-INdAM).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank Giovanni Gramegna and Frank A. Narducci for useful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Typicality of Gaussian Metrology

In this appendix, we will derive the statistical results discussed in Section 3 regarding
the pre-factor f (U, Gϕ) appearing in the Fisher information in Equation (6). First, we
will obtain the average of the pre-factor shown in Equation (18), employing results of
computation of averages over the unitary group. Then, we will apply standard results on
concentration of measure to derive the result in Equation (20).

Appendix A.1. Derivation of the Average of the Pre-Factor

Denoting with P the Haar probability measure defined on the unitary group U(M)
of the M × M unitary matrices, it is possible to define the average of a given function
f : U(M)→ C

E[ f (U)] ≡ EP [ f (U)] =
∫

f (U)dP(U). (A1)

In order to derive the average E[ f (U, Gϕ)] in Equation (13)

f (U, Gϕ) = (U†GϕU)2
11, (A2)

we are interested only in the moments of the matrix elements Uij up to the fourth orders, i.e.,
the averages of powers of the matrix elements and their complex conjugates. For random
choices of the unitary matrix U ∈ U(M), the only non-vanishing moments up to the fourth
order of the elements Uij are given by [61]

E[
∣∣Uij

∣∣2] = 1
M

(1 ≤ i, j ≤ M), (A3a)

E[
∣∣Uij

∣∣4] = 2
M(M + 1)

(1 ≤ i, j ≤ M), (A3b)

E[
∣∣Uij

∣∣2∣∣∣Ukj

∣∣∣2] = 1
M(M + 1)

(i 6= k), (A3c)
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E[
∣∣Uij

∣∣2|Uil |2] =
1

M(M + 1)
(j 6= l), (A3d)

E[
∣∣Uij

∣∣2|Ukl |2] =
1

M2 − 1
(i 6= k, j 6= l), (A3e)

E[UijUklU∗ilU
∗
kj] = −

1
M(M2 − 1)

(i 6= k, j 6= l). (A3f)

The results shown in Equation (A3) can be conveniently expressed in two compact
formulas [62] as:

E[UijU∗kl ] =
δikδjl

M
(A4a)

E[UijUklU∗mnU∗pq] =
δimδjnδkpδlq + δipδjqδkmδln

M2 − 1

−
δimδjqδkpδln + δipδjnδkmδlq

M(M2 − 1)
(A4b)

Employing the formulas in Equations (A4), we are able to derive the averages in
the main text in Equations (18)–(19). In fact, given a generic M×M complex matrix A,
employing the result in Equation (A4a), we have

E[(U† AU)ij] = ∑
k,l

E[U†
ik AklUl j]

= ∑
k,l

AklE[U∗kiUl j]

= ∑
k,l

Akl
δklδij

M

=
Tr(A)

M
δij, (A5)

while employing the formula in Equation (A4), we have

E[(U† AU)2
ij] = ∑

k,l,m,n
E[U†

ik AklUl jU†
im AmnUnj]

= ∑
k,l,m,n

Akl AmnE[Ul jUnjU∗miU
∗
ki]

= [Tr
(

A2
)
+ Tr(A)2]

(
1

M2 − 1
− 1

M(M2 − 1)

)
δij

=
Tr
(

A2)+ Tr(A)2

M(M + 1)
δij (A6)

The expressions in Equations (A5) and (A6) reduce to the equalities in Equations (18) and (19)
for A = Gϕ and i = j = 1, respectively.

Appendix A.2. Derivation of the Typicality Results

To show how to derive the result in Equation (20), we start from a standard result on
concentration of measure in high-dimensional spaces known as Levy’s Lemma

Theorem A1. Let f : Sn−1 → R be a function defined over the unit euclidean sphere

Sn−1 =

{
x ∈ Rn

∣∣∣∣ n

∑
k=1

x2
k = 1

}
(A7)
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endowed with the uniform probability measure P . Denote with L the Lipschitz constant of the
function, such that

| f (x)− f (y)| ≤ L‖x− y‖2, (A8)

for all x, y ∈ Sn−1, where ‖x‖2 =
√

∑n
k=1 x2

k is the Euclidean norm. Then:

P(| f −E[ f ]| ≥ ε) ≤ 2e−
nε2

CL2 , (A9)

where C is some positive constant which can be taken to be C = 9π3 [63,64].

To prove the concentration result in Equation (20), we want to apply Theorem A1
to our case. Thus, we first need to compute the Lipschitz constant L associated with the
pre-factor in Equation (13). To do so, we first notice that f (U, Gϕ) can be thought as a
function defined on the real unit sphere Sn−1. In fact, it can be written as

f (U, Gϕ) =

(
M

∑
j=1

∣∣uj
∣∣2gj

)2

. (A10)

where u is the complex M-dimensional vector given by u = V†
ϕUe with e = (1, 0, . . . , 0)T ∈ CM,

as shown in Equation (15), with V†
ϕ being the matrix whose columns are the eigenvectors of

Gϕ. Since only the squared moduli
∣∣uj
∣∣2 of this complex vector appear in Equation (A10),

we can consider the pre-factor f (U, Gϕ) as a function of a real vector x ∈ R2M whose 2M
components are defined by

x2j−1 = Re uj, x2j = Im uj, j = 1, . . . , M. (A11)

The unitarity constraint ∑M
j=1
∣∣uj
∣∣2 = 1 translates into ∑2M

j=1 x2
j = 1, so that x ∈ S2M−1,

the unit sphere sitting inside R2M. We see then that the random factor in Equation (A10)
can be thought as a function defined over the unit sphere S2M−1:

f (U, Gϕ) =

(
M

∑
j=1

∣∣uj
∣∣2gj

)2

=

(
M

∑
j=1

(x2
2j−1 + x2

2j)gj

)2

(A12)

=
(

xTG̃x
)2

=: f (x), (A13)

where we have defined the diagonal matrix G̃ = diag(g̃)with g̃ = (g1, g1, . . . , gM, gM) ∈ R2M.
We can now estimate the Lipschitz constant L of the function f (x) to apply Theorem A1.
To this aim, we evaluate the gradient of f , which is given by:

∇ f (x) = 4(xTG̃x)G̃x. (A14)

The Lipschitz constant for f can be then obtained as

L = max
x∈S2M−1

‖∇ f (x)‖2 = 4
∥∥Gϕ

∥∥2, (A15)
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since

‖∇ f (x)‖2 =
√
[∇ f (x)]T [∇ f (x)]

= 4|xTG̃x|
√

xTG̃2x

≤ 4‖G̃‖2

= 4
∥∥Gϕ

∥∥2 (A16)

where we used the fact that |xTG̃x| ≤ ‖G̃‖ and xTG̃2x = ‖G̃x‖2 ≤ ‖G̃‖2, while in the last
equality we used the fact that ‖G̃‖ =

∥∥Gϕ

∥∥ = maxi gi. The value ‖∇ f (x)‖2 = 4
∥∥Gϕ

∥∥2 can
be obtained with x = ei, supposing that gi is the eigenvalue with highest absolute value.
The value of L = 4

∥∥Gϕ

∥∥2 in Equation (A15) can then be used when applying Theorem A1,
with n = 2M, to finally prove the result in Equation (20).

Appendix B. Probability Distributions from Homodyne Measurements

In this appendix, we will obtain the probability density functions which governs the
outcomes of homodyne detections performed on a single-mode squeezed state |r〉 = Ŝ(r)|vac〉
injected in the first port of a M-channel passive and linear network Û, with r = (r, 0, . . . , 0),
so that N = sinh2 r, with r > 0, and N = NS average number of photons. The state |r〉 is
a Gaussian state which is completely described, through its Wigner distribution [29–32],
by its covariance matrix Γ = diag(e2r, 1 . . . , 1, e−2r, 1 . . . , 1)/2. Moreover, passive and
linear networks preserve the Gaussian nature of |r〉 [29–32]. For this reason, we will
first obtain in generality the final covariance matrix ΓU of the state Û|r〉, which define
its Wigner distribution. Then, we will marginalize the Wigner distribution associated
with the first channel—since it is the only observed port—rotated by the symplectic and
orthogonal matrix

R(θ) =
(

cos θ sin θ
− sin θ cos θ

)
, (A17)

where θ is the local oscillator phase of the homodyne. In doing so, we will be able to obtain
the expression of the variance σϕ in Equation (23).

The covariance matrix ΓU of the state Û|r〉 is given by the transformation ΓU = RΓRT, with

R =

(
Re(U) − Im(U)
Im(U) Re(U)

)
, (A18)

orthogonal and symplectic matrix representing the rotation in the phase space generated
by the network Û [29–32]. A straightforward calculation shows that

ΓU = RΓRT =

(
∆X2 ∆XP

∆XPT ∆P2

)
. (A19)

where we have defined the M×M matrices

∆X2 ≡ 1
2

[
Re[U]e2R Re[U†]− Im[U]e−2R Im[U†]

]
=

1
2

[
Re[U cosh(2R)U†] + Re[U sinh(2R)UT]

]
, (A20a)

∆P2 ≡ 1
2

[
− Im[U]e2R Im[U†] + Re[U]e−2R Re[U†]

]
=

1
2

[
Re[U cosh(2R)U†]− Re[U sinh(2R)UT]

]
, (A20b)

∆XP ≡ 1
2

[
−Re[U]e2R Im[U†]− Im[U]e−2R Re[U†]

]
=

1
2

[
− Im[U cosh(2R)U†] + Im[U sinh(2R)UT]

]
. (A20c)
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The 2× 2 reduced covariance matrix Γ1
U of the first mode reads

Γ1
U =

((
∆X2)

11 (∆XP)11
(∆XP)11

(
∆P2)

11

)
. (A21)

Our final step is to recover the variance of the quadrature x̂θ . In order to do that, we
employ the orthogonal and symplectic matrix R(θ) in Equation (A17), representing the
action of a phase-shift e−iθ , namely a clock-wise rotation of an angle θ in the first mode
phase-space. The variance σ2

ϕ in (23) is finally obtained by a direct computation, by recalling
the parametrization (Uϕ)11 =

√
Pϕei f (ϕ) in Equation (21)

σ2
ϕ = (OθΓUOT

θ )11

=
1
2
+ Pϕ(sinh2(r) + cos(2 f (ϕ)− 2θ) cosh(r) sinh(r)). (A22)

recovering the expression in Equation (23).

Appendix C. Asymptotic Analysis of Gaussian Metrology

We here evaluate the asymptotic expressions of the Fisher information matrix in
Equation (30), showing that the conditions (29) yield the Heisenberg-scaling sensitivity for
the estimation of f (ϕ). As shown in Equations (26) and (27), the dependence of the variance

σ2
ϕ =

1− Pϕ

2
+

Pϕ

2
[
cosh(2r) + cos

(
2γϕ− 2θ

)
sinh(2r)

]
, (A23)

on the parameters ϕ only appears through the transition probability Pϕ and the acquired
complex phase γϕ

∇σ2
ϕ = (∂Pσ2

ϕ)∇Pϕ + (∂ f σ2
ϕ)∇ f (ϕ), (A24)

where ∂P and ∂ f represent the differentiation with respect of Pϕ and f (ϕ), and

∂Pσ2
ϕ =

1
2
(−1 + cosh(2r) + cos(2 f (ϕ)− 2θ) sinh(2r)) (A25a)

∂ f σ2
ϕ = −Pϕ sin(2 f (ϕ)− 2θ) sinh(2r). (A25b)

As discussed in Section 4.2, to achieve the HL, some conditions must be imposed so
that the variance in Equation (A23) does not grow with N. The only option to do that
without ruining the sensitivity of the setup is requesting that γϕ− θ ' π/2, as we can see
from Equation (A23). In particular, we impose condition (29a), and evaluate the variance
in (A23) and its gradient (A24) in the large N limit

σ2
ϕ =

1
2
+ NPϕ

(
1− cos

(
2k
N

)√
1 +

1
N

)

=
1
2
+ NPϕ

(
1−

(
1− 2k2

N2

)(
1 +

1
2N
− 1

8N2

))
+O

(
1

N2

)
=

1− Pϕ

2
+ Pϕ

(
2k2

N
+

1
8N

)
+O

(
1

N2

)
, (A26)

∇σ2
ϕ = N∇Pϕ

(
1− cos

(
2k
N

)√
1 +

1
N

)
+ 2NPϕ∇ f (ϕ) sin

(
2k
N

)√
1 +

1
N

= N∇Pϕ

(
1−

(
1 +

1
2N

))
+ 2NPϕ∇ f (ϕ)

2k
N

+O
(

1
N

)
= −1

2
∇Pϕ + 4kPϕ∇ f (ϕ) +O

(
1
N

)
. (A27)
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Then, by imposing condition (29b) on Pϕ, we get

σ2
ϕ =

(
2k2 +

1
8
+

`

2

)
1
N

+O
(

1
N2

)
, (A28a)

∇σ2
ϕ = 4k∇ f (ϕ) +O

(
1
N

)
. (A28b)

By substituting the expressions in Equations (A28) into the Fisher information matrix
in Equation (25), we can finally evaluate its asymptotic expression

F (ϕ) ∼ 8$(k, `)N2(∇ f (ϕ)
)(
∇ f (ϕ)

)T (A29)

with

$(k, `) =
(

8k
16k2 + 1 + 4`

)2
(A30)

a positive and N-independent pre-factor.

Appendix D. Maximum-Likelihood Estimators for Gaussian Distributions

In this Appendix we will find the solution which maximizes the Likelihood function
in Equations (34) and (35).

Due to the monotonicity of the logarithmic function, we can maximize the log-
likelihood function, and thus obtain

0 =
∂

∂ f
lnL(ϕ|~x)

∣∣∣
f= f̃MLE

=
∂

∂ f

ν

∑
j=1

ln p(xj|ϕ)
∣∣∣

f= f̃MLE

=
∂

∂ f

ν

∑
j=1

(
−1

2
ln σ2

ϕ−
x2

j

2σ2
ϕ

)∣∣∣∣∣
f= f̃MLE

=

(
∂σ2

ϕ

∂ f

ν

∑
j=1

(
− 1

2σ2
ϕ
+

x2
j

2σ4
ϕ

))∣∣∣∣∣
f= f̃MLE

. (A31)

By assuming that ∂σ2
ϕ/∂ f 6= 0 the solution is given by the value of f (ϕ) that solves

σ2
ϕ = σ2(~x) ≡ 1

ν

ν

∑
j=1

x2
j , (A32)

where σ2
ϕ is given by (23), with Pϕ given by (29b) and θ being phase of the local oscillator.

Thus the estimator is ultimately given by

f̃MLE(x) = θ +
1
2

(
2nπ ± arccos

((
2S(x)2 − 1

)
− 2Pϕ sinh2 r

2Pϕ sinh r cosh r

))
, (A33)

as shown in Equation (37).

Appendix E. Derivation of the Cramér-Rao Bound for Singular Fisher
Information Matrix

In this appendix we will show that the Fisher information matrix in Equation (30)

F (ϕ) = 8$(k, `)N2(∇ f (ϕ)
)(
∇ f (ϕ)

)T, (A34)



Photonics 2022, 9, 345 26 of 30

which, as discussed in Section 4.2, is a matrix of rank(F (ϕ)) = 1, whose only non-vanishing
eigenvalue is given by

λ = 8$(k, `)N2|∇ f (ϕ)|2, (A35)

yields the Cramér-Rao bound found in Equation (33) for the estimation of the function f (ϕ).
The Cramér-Rao bound associated with the estimation of f (ϕ) for non-invertible

matrices can be written in terms of the Moore-Penrose pseudo-inverse F (ϕ)+ through the
inequality [59]

Var[ f̃ ] >
1
ν

HF (ϕ)+HT, (A36)

where
H =

(
∇ f (ϕ)

)T ≡ |∇ f (ϕ)|vT, (A37)

is the gradient of the function f (ϕ) which can be estimated with finite variance, which
coincides with the eigenvector of F (ϕ) associated with the eigenvalue λ in Equation (A35),
while v is the eigenvector normalized to the unit length. Since v is the only (normalized)
eigenvector associated with λ, the pseudo-inverse F (ϕ)+ can be written as

F (ϕ)+ =
1
λ

v vT =
1

|∇ f (ϕ)|4
1

8$(k, `)N2

(
∇ f (ϕ)

)(
∇ f (ϕ)

)T. (A38)

We can thus evaluate the Cramér-Rao bound in Equation (A36)

Varϕ[ f̃ ] ≥ 1
ν
|∇ f (ϕ)|vT

(
1
λ

v vT
)
|∇ f (ϕ)|v =

1
ν

1
8$(k, `)N2 (A39)

as displayed in Equation (33).

Appendix F. Analysis of the Transition Amplitude

We will here show that the transition amplitude

(uϕ)11 = ei
(

α1+α3+
δϕ2+δϕ3

2

)(
cos
(

δϕ2 − δϕ3

2

)
sin 2ω cos ϕ1

+ cos
(

∆α− δϕ2 − δϕ3

2

)
cos 2ω sin ϕ1 + i sin

(
∆α− δϕ2 − δϕ3

2

)
sin ϕ1

)
, (A40)

shown in Equation (45) satisfies condition (29b) for the choices of ω satisfying Equation (43)

ω =
1
2

arctan
(

cos(ϕcl,1)

sin(ϕcl,1) cos ∆α

)
, (A41)

and that the complex phase of (uϕ)11 is the one given in Equations (46) and (47).
First, we notice that if condition (A41) holds, we can write

sin 2ω = ± cos(ϕcl,1)√
cos2(ϕcl,1) + sin2(ϕcl,1) cos2 ∆α

(A42a)

cos 2ω = ± sin(ϕcl,1) cos ∆α√
cos2(ϕcl,1) + sin2(ϕcl,1) cos2 ∆α

, (A42b)

where the signs of both the right-hand expressions must be the same. We will only per-
form the calculation with both signs being positive, but the same steps can be done for
the other case. In order to show that the probability of transition Pϕ =

∣∣(uϕ)11
∣∣2 satis-

fies condition (29b), we will evaluate Pϕ in the case of perfect prior knowledge on the
parameters—i.e., δϕi = ϕi − ϕcl,i = 0— and show that in this case Pϕ = 1. This is enough
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to show that condition (29b) is satisfied when the prior knowledge on the parameter is
classical – namely δϕi = O(N−1/2) – as discussed in Sec 4.3, since the first non-vanishing
order in δϕcl of Pϕ− 1 isO(δϕcl)

2. We thus employ the expressions in Equations (A42) with
ϕcl,1 = ϕ1 to evaluate∣∣(uϕ)11

∣∣2 = (sin 2ω cos ϕ1 + cos(∆α) cos 2ω sin ϕ1)
2 + sin2(∆α) sin2 ϕ1

=

(
cos2 ϕ1 + sin2 ϕ1 cos2(∆α)

) �2
(((

((((
((((cos2 ϕ1 + sin2 ϕ1 cos2 ∆α

+ sin2(∆α) sin2 ϕ1 = 1. (A43)

To evaluate the complex phase arg(uϕ)11 in Equation (46), and in particular to prove
the expression for Φ in Equation (47), we simply need to replace the condition on Equa-
tions (A42) into

Φ = arctan

 sin
(

∆α− δϕ2−δϕ3
2

)
sin ϕ1

cos
(

δϕ2−δϕ3
2

)
sin 2ω cos ϕ1 + cos

(
∆α− δϕ2−δϕ3

2

)
cos 2ω sin ϕ1

, (A44)

from which we easily verify Equation (47).

Appendix G. Generalized Setup

In this appendix we will show that it is possible to employ more generic multi-channel
local networks Ûi,ϕi within the overall network Ûϕ in Figure 5, and still reaching the HL in
the estimation of the linear combination

L(ϕ) = w ·ϕ (A45)

in Equation (55), if conditions (29) are satisfied. In particular, the parameters ϕ appearing in
Equation (A45) will be in this case the phases acquired by the portion of the probe injected
in each local network Ûi,ϕi . These phases can be in turn parameters distributed in each
local network, or functions of parameters, as in the setup shown in Figures 1 and 4. We
will show that the requirement that these local networks Ûi,ϕi must met, in order to satisfy
condition (29b), is

Pi ∼ 1− `i
N

, `i ≥ 0, i = 1, . . . , m2, (A46)

similar to the global condition (29b), where Pi is the transition probability, associated with
each local setup Ûi,ϕi , that a photon injected in the first channel of the i-th local network

comes out from its upper channel, – i.e., Pi =
∣∣Ui,ϕi

∣∣2
11. If conditions (A46) are satisfied, we

can generalize the global transition amplitude in Equation (61) to

χϕ = eiL(ϕcl)
M

∑
i=1

wi

√
1− `i

N
eiδϕi =

= eiL(ϕcl)

(
1 +

M

∑
i=1

iwiδϕi −
1
2

M

∑
i=1

wi

(
δϕ2

i +
`i
N

))
+O(N−3/2), (A47)

where we made use of condition (A46) to write the transition amplitudes associated with
each local network of Ûi,ϕi . Exploiting once again the requirement that prior estimations
are classical, i.e., that δϕi = O(N−1/2), we notice that the probability,

Pϕ =

∣∣∣∣∣eiL(ϕcl)
M

∑
i=1

wi

√
1− `i

N
eiδϕi

∣∣∣∣∣
2

=

= 1 +

(
M

∑
i=1

wiδϕi

)2

−
M

∑
i=1

wi

(
δϕ2

i +
`i
N

)
+O(N−3/2)
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≡ 1− `

N
+O(N−3/2) (A48)

still satisfies condition (29b). Thus, the HL in the estimation of the total acquired phase
shown in (A45) is still achieved for generic local networks satisfying the conditions (A46).
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58. Demkowicz-Dobrzanski, R.; Górecki, W.; Guţă, M. Multi-parameter estimation beyond quantum Fisher information. J. Phys. A

Math. Theor. 2020, 53, 363001. [CrossRef]
59. Stoica, P.; Marzetta, T.L. Parameter estimation problems with singular information matrices. IEEE Trans. Signal Process. 2001,

49, 87–90. [CrossRef]
60. Gross, J.A.; Caves, C.M. One from Many: Estimating a Function of Many Parameters; J. Phys. A: Math. Theor. 2021, 54, 014001 .

[CrossRef]
61. Hiai, F.; Petz, D. The Semicircle Law, Free Random Variables and Entropy; Number 77; American Mathematical Soc.: Providence, RI,

USA, 2000. [CrossRef]

http://dx.doi.org/10.1142/S1230161214400010
http://dx.doi.org/10.1002/9781119009719.ch5
http://dx.doi.org/10.22331/q-2020-07-09-292
http://dx.doi.org/10.1103/PhysRevResearch.1.032024
http://dx.doi.org/10.1088/1367-2630/abf67f
http://dx.doi.org/10.1103/PhysRevResearch.3.013152
http://dx.doi.org/10.1103/PhysRevA.104.062603
http://dx.doi.org/10.1140/epjp/s13360-021-02337-4
http://dx.doi.org/10.3390/s22072657
http://dx.doi.org/10.1103/PhysRevA.105.012607
http://dx.doi.org/10.1117/12.2618306
http://dx.doi.org/10.1103/PhysRevLett.120.080501
http://dx.doi.org/10.1103/PhysRevA.97.032329
http://dx.doi.org/10.1088/1367-2630/ab0604
http://dx.doi.org/10.1103/PhysRevA.100.042304
http://dx.doi.org/10.1038/s41567-019-0743-x
http://dx.doi.org/10.1103/PhysRevResearch.2.023030
http://dx.doi.org/10.1103/PhysRevResearch.3.033114
http://dx.doi.org/10.1103/PhysRevLett.89.133602
http://www.ncbi.nlm.nih.gov/pubmed/12225027
http://dx.doi.org/10.1103/PhysRevA.73.033821
http://dx.doi.org/10.1103/PhysRevA.79.033834
http://dx.doi.org/10.1038/nphoton.2015.139
http://dx.doi.org/10.1103/PhysRevApplied.14.034065
http://dx.doi.org/10.1515/ 9781400883868
http://dx.doi.org/10.2307/1968346
http://dx.doi.org/10.1103/PhysRevA.98.012114
http://dx.doi.org/10.1088/1751-8121/ab8ef3
http://dx.doi.org/10.1109/78.890346
http://dx.doi.org/10.1088/1751-8121/abb9ed
http://dx.doi.org/http://dx.doi.org/10.1090/surv/077


Photonics 2022, 9, 345 30 of 30

62. Puchała, Z.; Miszczak, J.A. Symbolic integration with respect to the Haar measure on the unitary groups. Bull. Pol. Acad. Sci.
Tech. Sci. 2017, 65, 21–27. [CrossRef]

63. Facchi, P.; Garnero, G. Quantum thermodynamics and canonical typicality. Int. J. Geom. Methods Mod. Phys. 2017, 14, 1740001.
[CrossRef]

64. Popescu, S.; Short, A.J.; Winter, A. Entanglement and the foundations of statistical mechanics. Nat. Phys. 2006, 2, 754. [CrossRef]

http://dx.doi.org/10.1515/bpasts-2017-0003
http://dx.doi.org/10.1142/S0219887817400011
http://dx.doi.org/10.1038/nphys444

	Introduction
	Distributed-Parameter Quantum-Enhanced Estimation
	Typicality of Quantum Enhanced Sensitivity
	The Role of the Generator G
	Typical Behaviour of the Pre-Factor in the Heisenberg Scaling

	Estimation of Functions of Parameters
	Setup
	Heisenberg Scaling
	On the Conditions for the Heisenberg Scaling
	Examples of Quantum-Enhanced Estimation of Functions
	Non-Linear Functions
	Linear Combinations of Arbitrary Parameters


	Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2

	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G
	References

