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ABSTRACT Recent years have seen increasing utilization of deep learning methods to analyze large
collections of medical data and signals effectively in the Internet of Medical Things (IoMT) environment.
Application of these methods to medical signals and images can help caregivers form proper decision-
making. One of the important [oMT medical application areas includes aggressive driving behaviors to
mitigate road incidents and crashes. Various loMT-enabled body sensors or camera sensors can be utilized for
real-time monitoring and detection of drivers’ bio-signal status such as heart rate, blood pressure, and drivers’
behaviors. However, it requires a lightweight detection module and a powerful training module with real-
time storing and analysis of drivers’ behaviors data from these medical devices to detect driving behaviors
and provides instant feedback by the administrator for safety, gas emissions, and energy/fuel consumption.
Therefore, in this paper, we propose a bio-signal-based system for real-time detection of aggressive driving
behaviors using a deep convolutional neural network (DCNN) model with edge and cloud technologies.
More precisely, the system consists of three modules, which are the driving behaviors detection module
implemented on edge devices in the vehicle, the training module implemented in the cloud platform, and the
analyzing module placed in the monitoring environment connected with a telecommunication network. The
DCNN model of the proposed system is evaluated using a holdout test set of 30% on two different processed
bio-signal datasets. These two processed bio-signal datasets are generated from our collected bio-signal
dataset by using two different time windows and two different time steps. The experimental results show that
the proposed DCNN model achieves 73.02% of validation accuracy on the processed dataset 1 and 79.15%
of validation accuracy on the processed dataset 2. The results confirm the appropriateness and applicability
of the proposed deep learning model for detecting driving aggressive behaviors using bio-signal data.

INDEX TERMS Internet of Medical Things (IoMT), bio-signal, aggressive driving behaviors, deep convo-
lutional neural networks (DCNNs), cloud computing, Raspberry Pi.

I. INTRODUCTION

It has been established that the behavior of drivers
determines road safety to a great extent [1]. Moreover, many
road accidents have been attributed to the driver’s behavior
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in various places in the world [2]. A survey on road safety
has revealed that every year 1.3 million fatalities are recorded
worldwide, as well as 50 million recorded injuries [3]. Road
accidents have also been ranked as the leading cause of
death among young people between 15 and 29 years of
age [4]. In worrying estimates, the World Health Organi-
zation (WHO) reported that traffic accidents will account
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for the third leading killer after cardiovascular and mental
illnesses. This has not only affected many lives and taken
others but has also increased the economic burden. For exam-
ple, the United States alone recorded medical costs used
in the treatment of accident fatalities as about $99 billion
in 2010 [5]. Besides reducing the number of accidents and
consequently the amount of money spent in treating road
accident fatalities, targeted behavior change by drivers while
using the road will lower the amount of fuel consumed and
the level of gas emitted. This is in addition to improving road
safety [6]. Therefore, the goal of driver behavior profiling is
to analyze and enhance the behavior of the driver and create
an environment where energy is efficiently consumed. This
goal can be achieved through the utilization of a safe and
energy-aware approach to driving.

In analyzing and categorizing the aggressive behavior of
the driver, a certain set of data is collected. This includes
the speed of the vehicle, the acceleration, the braking, steer-
ing, and the location [7]. The information is then passed
through computer application models to give the final score
on safety for the driver. This whole process is technically
known as Driver Monitoring and Analysis. It is also called
Driver Behavior Profiling [8]. These data can be collected
through the use of several devices. First, sensors mounted on
smartphones can be used to collect the data. Second, special-
ized devices such as monitoring cameras, sensors wearable
on the body, or telematics can be used. Previously published
work [9]-[11] reveals that data collected from wearable sen-
sors are critical in monitoring the behavior of drivers. Hence,
they offer a suitable option for sensors that can collect accu-
rate data necessary for behavior profiling.

The significance of analyzing the behavior of drivers has
increased in the recent years, the key reasons including the
growing popularity of insurance use in the field of telematics.
It has been established that the cost of car insurance has
reduced significantly with the advent of such insurance poli-
cies as Usage-Based Insurance and Pay-How-You-Drive [12].
These policies have been extensively used in rewarding
drivers whose safety scores are high. Hence, behavior profil-
ing has become more useful than just the use of age and other
statistics, such as gender and marital status of the drivers. The
analysis of the driver’s behavior, as analyzed on a real-time
basis, has been used extensively in freight management. The
owners of freight businesses have been able to understand
the behavior of their drivers. Therefore, they can start useful
campaigns for safe usage of roads. This has resulted in safer
roads and lowered consumption of fuel, besides decreased
emission of gas to the environment. In addition, such systems
as notifications from smartphone apps can inform the driver
when accidents are about to occur as a result of reckless and
unsafe driving, hence allowing the driver to take control of
the situation.

Authors of many published studies detailing the behavior
of drivers [13]-[16] have collected their data using sensors
based on smartphones to establish aggressive situations in
driving that include high speeding and sudden braking as
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the primary factors for calculating the driver’s safety score.
A different study [17] involved use of a vehicle sensor to
communicate driving tips besides evaluating the use of fuel
to include the data while profiling the driver. Most of the
researchers made use of machine learning (ML) algorithms,
which are ultimately based on diverse dynamic time warping.
Yet, other methods that have been applied are voice recogni-
tion and the recurrent neural network (RNN) [18].

In this paper, we propose a bio-signal-based system for
real-time detection of aggressive driving behaviors using
a deep convolutional neural network (DCNN) model with
edge and cloud technologies. This main goal of the paper is
achieved with the following contributions:

1) As a result of a lack of public bio-signal datasets of
driving behaviors, we provide a public bio-signal dataset for
researchers and developers to evaluate their driving behaviors
detection methods and models.

2) We propose an effective structure of DCNN model
as a feature extractor of bio-signal data instances. The
DCNN model is used in the proposed system architecture
because it has an ability to represent the features with
high dimensions and has a good speed for real-time detec-
tion because its convolution layers are not fully connected
layers.

3) We evaluate the proposed DCNN model on two different
processed bio-signal datasets, generated from the original
collected dataset by using two different time windows and
two different time steps.

4) We analyze the efficiency and effectiveness of different
DCNN models to detect aggressive driving behaviors using
the two processed bio-signal datasets.

5) We compare the proposed DCNN model with the
traditional ML models using the two different processed
bio-signal datasets to show its superiority and effectiveness.

The rest of this paper is structured as follows: Section II
presents the related works. Section III provides a summary of
the analyses of the driver’s behavior and also introduces the
DCNN techniques. Section I'V outlines and describes the data
collection and preprocessing procedure. Section V shows
the experimental analysis as well as the results obtained
from the experiment. The final Section VI concludes our
work and identifies gaps upon which future researchers can
focus.

Il. RELATED WORK

Research on the behaviors of drivers continues to be pub-
lished to date. Various studies have been conducted with
the use of such data as the status of the vehicle and in
the application of both ML and deep learning algorithms.
Lee and Jang [19] used data from acceleration and the speed
of the vehicle to categorize the behavior of the driver. This
included the applications of ML methodologies that included
the auto-encoder as well as self-organizing map. Out of the
32 styles of driving used in this study, some of the driving
behaviors were found to be dangerous. Chen et al. [20] made
use of the sensor known as an inertial measuring unit (IMU)
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FIGURE 1. Proposed driving behavior monitoring system architecture.

to analyze the behavior of the driver while turning left and
turning right. The scholar observed given characteristics to
identify the driver during the moment of turning. The data
collected for the driver’s behavior classification included
the following: the acceleration of the vehicle at the end-
of-turn axis and the deviation of the given acceleration of
the vehicle along the end-of-turn axis. Additionally, data
on the raw rate of yaw deviation was used in devising the
features used in creating a classifier known as Naive Bayes.
The number of drivers who had their behavior recorded and
were monitored throughout the course of the study stood
at 12. The monitoring was done using IMU sensors fixed on
smartphones that were used by the drivers. The technology
used to collect and analyze data to establish the behavior of
the driver performed most accurately as regards collecting
data along a longitudinal direction. However, it was found to
fall short of accuracy when collecting data along the lateral
direction.

The data on the vehicle operation that shows how the
vehicle was affected as a result of the driver’s behavior was
challenging to collect [21]. These data were gathered from
an on-board diagnostic system (OBD-II), which would then
relay the same information to the driver on board through
communication by a Bluetooth Low Energy system. Other
parameters that have been found useful in data collection,
hence aiding the analysis of the driver’s behavior, include
the status of the vehicle and the information on its operation,
as suggested by Martinelli ef al. [22]. This kind of data was
obtained from the OBD-II system. Itincluded 51 categories of
information. The categories include the fuel consumption, the
position of the accelerating pedal, the steering wheel’s angle,
the steering speed, and the speed. Information on nine drivers
was also analyzed by the use of principal component analysis
with the sole aim of deducing their behavior. This addressed
the research gap that was posed by the use of the already
existing systems that used the information, including the
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vehicle’s status, because it could not communicate real-time
data for analysis.

In another work [23], the authors had the primary objective
of detecting risky road situations that could potentially lead to
accidents. The experiment took into account 36 drivers whose
data was collected using simulators that had diverse road
conditions such as obstacles with the possibility of causing
an accident. A similar approach involved a simulator being
used to help drivers avoid accident-causing situations [24].
In this work, the researchers devised a system that used
statistical modeling in the prediction of accident risks and
consequently informed the driver. Scenarios that the authors
in [25] considered included corners and sharp bends on the
road and slippery surfaces. They used data collected from
nine drivers.

Authors in [26] investigated novice drivers to determine
the factors that influenced the behavior of drivers in the first
year of road use. They collected data on 62 drivers who
were novices as well as their parents’ data in real time. They
identified 20 scenarios that they then classified into four
categories as follows: braking and accelerating category, turn-
ing category, lane handling category, and speeding category,
in relation to their level of risk. The authors concluded that the
risk of causing accidents was reduced when the novice drivers
were supervised by their parents and when they received
feedback regarding the level of risk while on the road.

IIl. AGGRESSIVE DRIVING BEHAVIORS DETECTION
SYSTEM

A. SYSTEM ARCHITECTURE

This system is designed to detect dangerous behaviors that
increase the risk of accidents. Such behaviors noted include
high acceleration, sudden braking, sudden change of lanes
to the right, and sudden change of lanes to the left, all on a
real-time basis. In Figure 1, the architecture of the proposed
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FIGURE 2. The structure of proposed DCNN model.

system is shown. The architecture consists of three main
modules: the detection module, the training and validation
module, and the monitoring and analysis module. In the
detection module, the data are obtained and collected from
wearable SHIMMERV.3 sensors. The driver wears the sensor
on the right foot. All signals are transferred through Wi-Fi
signals to a Raspberry Pi 3 equipped with a SIM card.

In the data aggregation module, drivers’ aggressive data
are aggregated prior to transmitting and offloading to the
cloud. This task is conducted through the use of Raspberry
Pi devices equipped with a SIM card. To enhance the trans-
mission speed, the aggregation module uses a threshold level
for reducing congestion of the network. More precisely, nor-
mal driving data of the driver are aggregated based on the
selected threshold value, while the data classified as aggres-
sive are sent immediately with no delay. The following algo-
rithm elaborates the steps of the aggregation module:

Raspberry Pi device receives the gyroscope and accelera-
tion signals from the SHIMMER sensors.

1. ML module to classify the signal based on the trained

model.

2. Ifrecords are classified as aggressive driving, then flag
the data as high priority and offload the data to the
cloud.

3. If records are classified as normal driving, then aggre-
gate the collected data and offload them to the cloud
based on the network connectivity.

B. PRPOSED DEEP LEARNING MODEL

Figure 2 represents the proposed deep convolutional neural
network (DCNN) architecture, which is used in our cloud
computing environment. To make the model applicable in
limited IoT devices such as Raspberry Pi, the proposed
DCNN architecture is designed to be lightweight. It consists
mainly of two blocks for feature representation and classifica-
tion. The first block receives an input shape of 2400 attributes.
It includes two convolution layers of 1-D inputs with ReLU
activation function. The number of convolution kernels of
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the two convolution layers is 64, and the filter length is 3.
These two convolution layers are followed by a 1-D max
pooling layer of pool size 2. After the max pooling layer, the
model contains a flatten layer, a dense layer of 128 neurons
with ReLU activation function, a dropout layer of drop
rate (0.5, and a dense fully connected layer of 5 neurons with
a softmax activation function. The number of neurons of this
dense layer matches the number of classes. All convolutional
layers deploy a Rectified Linear Unit (ReLU) as an activation
function. ReLU is a highly simple and non-liner function
that is known to be fast in training large networks, while the
dropout layer can handle the overfitting issue by regulating
the network.

The proposed DCNN model is designed to have a low cost
as a result of the limited number of learnable parameters that
are fit for our system. The third component of our system is
a module for monitoring and analysis, where the overall data
of drivers’ behaviors are analyzed and profiled for monitoring
by the vehicles companies.

IV. DATA COLLECTION AND PREPROCESSING

For the purpose of this study, real-world driving behavior data
were gathered from bio-sensor data on specific driving behav-
iors. The body sensor was used in recording and collecting
data, while the drivers were involved in a particular behavior
of driving. We made a note of both the starting and ending
times of the driving behaviors with the sole aim of obtaining
accurate data for the experiments. In the section that follows,
the details of the data collection are given, with an explanation
of how data pre-processing are performed.

A. DATA COLLECTION

Our collected aggressive driving behaviors (ADBs) dataset!
involves three different car trips that averaged 70 minutes.
The tools and settings used for collecting the dataset were
as follows: (I) The vehicle used was the Hyundai Elantra

1 https://github.com/abdugumaei/ADBs-Dataset
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Model of 2020; (II) The Shimmer Version 3 wearable body
sensors were used; (III) The body sensors were worn by the
driver on the right and left wrists, left arm, and right foot;
IV) The rate of sampling of the sensors used stood at 100 HZ;
(V) The drivers involved in the data collection each had
driving experience of 10 years; and finally, (VI) The roads
on which the driving behaviors were tested were dry and had
asphalt for pavement, and the weather in which the experi-
ment took place was sunny. The kinds of driving behaviors
used in this data collection are the most critical behaviors
that can lead to serious accidents for drivers. Our primary
goal was to come up with a representation of real-world
driving behaviors: aggressive braking, aggressive increased
acceleration, aggressive turning, and changing lanes.

The driving class names, numbers, and labels of behaviors
are shown in Table 1. The number of samples for each driv-
ing behavior and the total number of samples of the ADBs
dataset are listed in Table 2. An example of ADBs dataset
samples is shown in Table 3. The wearable sensor is used in
measuring speed in meters per unit second squared (m/s?)

TABLE 1. The driving behavior classes with numbers, names and labels.

Behavior Class Behavior Class

Behavior Class Name

Number Label
0 Non-aggressive NonAgr
1 Aggressive breaking AgrBrk
2 Aggressive acceleration AgrAce
3 Aggressive left lane change AgrLefLanCha
4 Aggressive right lane change AgrRigLanCha

TABLE 2. ADBs dataset total samples.

Behavior Class Label Number of Samples

NonAgr 24000
AgrBrk 24000
AgrAce 24000
AgrLefLanCha 24000
AgrRiglLanCha 24000
Total 120000
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that is applied on the vehicle with the inclusion of gravita-
tional force. Besides, the accelerometer sensors offer a 3-axis
(x, ¥, z) of the temporal series that has the precision of
a nanosecond in the sensor coordinate standard system in
relation to the device used. The example of the data from a
gyroscope is given in Figure 3, while Figure 4 represents an
example of acceleration data.

B. DATA PRE-PROCESSING

These data are then conveyed to the training and validation
module in the cloud. To convert the data points of each
behavior into signal patterns, we preprocessed these data
points by two configurations, the first configuration having
a window size of 400 (4 seconds) and a time step of size 40
(0.4 seconds). In this configuration, the collected dataset
of 120,000 data samples with six attributes are processed
to generate (120,000/20) — (200/20) instances x (200 x 6)
attributes = 5,990 instances x 1,200 attributes. The second
configuration has a window size of 200 (2 seconds) and a
time step of size 20 (0.2 seconds). Consequently, the col-
lected dataset of 120,000 data points and six attributes is
processed to have (120,000/40) — (400/40) instances X
(400 x 6) attributes = 2,990 instances x 2,400 attributes.
By these two configurations, the ADBs dataset is processed to
generate two processed datasets: processed dataset 1, which
consists of 5,990 instances, and processed dataset 2, which
has 2,990 instances. The number of instances per class of
processed datasets 1 and 2 is given in Table 4.

V. EXPERIMENTS AND DISCUSSION

In this section, a set of experiments are conducted on our
collected ADBs dataset. The results of these experiments
are computed based on different performance evaluation
measures, such as accuracy, Fl-score, recall, precision, and
confusion matrices. Confusion matrices are tables used to
compute the results of other performance measures in the
experimental evaluation of the models. The other perfor-
mance evaluation measures are calculated using the true
positive (TP), true negative (TN), false positive (FP), and
false negative (FN) of the instances resulting in the confusion
matrices.
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TABLE 3. Some data samples of ADBs dataset.

Timestamp Accel X Accel Y Accel Z Gyro X Gyro Y Gyro Z Class_Number
1.00E+00 -2.13043 5.880435 8.956522 0.229008 2 -1.17557 0
2.00E+00 -2.01087 2.217391 10.03261 1.068702 0.610687 -1.26718 0
3.00E+00 -1.84783 1.934783 10.07609 2.748092 1.099237 -1.32824 0
4.00E+00 -1.86957 2.217391 9.956522 3.022901 1.572519 -0.79389 0
5.00E+00 -1.97826 2.434783 9.902174 1.251908 1.251908 -0.61069 0
2.40E+04 -1.01087 2.815217 10.25 -2.50382 0.564885 -1.49618 1
2.40E+04 -0.93478 2.76087 10.30435 -4.06107 0.824427 -1.63359 1
2.40E+04 -1.01087 2.586957 10.3913 -3.72519 0.656489 -1.1145 1
2.40E+04 -0.97826 2.532609 10.33696 -2.82443 0.885496 -1.52672 1
2.40E+04 -0.97826 2.521739 10.29348 -2.15267 1.160305 -2.06107 1
4.80E+04 -4.48913 4.815217 6.869565 3.770992 -4.48855 -0.06107 2
4.80E+04 -4.55435 5 6.717391 2.70229 -5.17557 -0.24427 2
4.80E+04 -4.56522 5.217391 6.956522 2.641221 -5.38931 -1.22137 2
4.80E+04 -4.78261 5.413043 7.293478 2.503817 -4.0458 -1.60305 2
4.80E+04 -4.88043 5.478261 7.369565 4.931298 -1.46565 -0.27481 2
7.20E+04 -3.91304 4.423913 8.23913 2.096947 -2.89359 0.329771 3
7.20E+04 -4.06522 4.630435 8.26087 0.921374 -2.81725 0.116031 3
7.20E+04 -4 4.48913 8.217391 -0.3916 -2.46611 -0.25038 3
7.20E+04 -3.8913 4315217 8.130435 -1.42977 -1.22947 0.207634 3
7.20E+04 -4.02174 4315217 8.152174 -1.58244 0.114046 0.482443 3
9.60E+04 -3.77174 0.467391 8.423913 0.132824 0.149466 -0.67069 4
9.60E+04 -4.03261 0.423913 8.423913 -0.01969 -0.72214 0.454351 4
9.60E+04 -3.84783 0.51087 8.434783 0.458473 -0.78122 1.145038 4
9.60E+04 -3.76087 0.456522 8.434783 1.135878 0.720153 0.812824 4
9.60E+04 -4 0.5 8.445652 0.538321 -0.11649 0.641985 4
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FIGURE 4. Example of a time series of three axis accelerometer recorded data for (a) aggressive acceleration (b) aggressive braking

(c) aggressive right lane change and (d) aggressive change lane left.

The equations used for computing these evaluation mea-
sures are written as follows.

(TP +TN)
Accuracy = (1)
(TP 4+ TN + FP 4+ FN)
Precision = TP/(TP + FP) 2)
Recall = TP/(TP + FN) 3)
2 x (Precision x Recall)
F1 — measure = — “®
(Precision + Recall)

In all experiments, the parameters of the DCNN model are
set to have the values described in the system architecture.
The effects of using different numbers of layers and different
dropout rates will be given in a subsection after presenting
the experimental results of the proposed model.

135042

To organize the experiments of the work, two groups of
the experiments are presented according to the configura-
tions used for processing the dataset. The first group is the
experiments conducted on the processed dataset 1 that is
generated with a 0.2-second time step (20 data samples of
overlapping between window segments of behaviors signals)
and 2-second window time segment (200 data samples that
represent each instance of each behavior). In addition, the
second group of the experiments are performed on pro-
cessed dataset 2, which is also generated with a 0.4-second
time step (40 data samples) and 4-second window time
segment (400 data samples). In both groups, the processed
datasets are divided arbitrarily based on the holdout tech-
nique, in which 70% is used for training and 30% is applied
for validation and testing the models. The two groups of the

VOLUME 8, 2020
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TABLE 4. Number of instances for both processed datasets 1and 2.

Behavior Class Label Processed dataset 1 Processed dataset 2

NonAgr 1201 601
AgrBrk 1200 600
AgrAce 1200 600
AgrLefLanCha 1194 594
AgrRigLanCha 1195 595
Total 5990 2990

experiments are explained and discussed in the following
subsections.

A. EXPERIMENTS ON PROCESSED DATASET 1

This subsection introduces the evaluation results on valida-
tion and test sets of processed dataset 1. In the first experi-
ment, 4,193 instances (70%) are used for training the model,
and 1,797 instances (30%) are applied for validating and
testing the model. The distribution of instances in training
and test sets is given in Table 5. Each instance has 1,200 data
values as attributes.

TABLE 5. Distribution of instances in training and test sets of processed
dataset 1.

Behavior Class Label ~ Train Instances Test Instances Total

NonAgr 840 361 1201
AgrBrk 823 377 1200
AgrAce 834 366 1200
AgrLefLanCha 850 344 1194
AgrRigLanCha 846 349 1195
Total 4193 1797 5990

Figures 5 and 6 show the results of accuracy and loss for
the training and validation sets during the 100 epochs of
training phase. The confusion matrix that contains the num-
ber of corrected classified instances of maximum validation
accuracy of the model is given in Figure 7. The results of other
evaluation measures can be computed from the confusion
matrix and are shown in Table 6.

From Table 6, we can see that the DCNN model achieves
77.57% of maximum accuracy on the validation set of pro-
cessed dataset 1. In addition, we can notice that the maximum
number of correctly classified instances is for aggressive
breaking behavior (313 from 366) and aggressive right lane
change behavior (313 from 349).

This means that these two behaviors are distinguish-
able from other behaviors. The minimum number of cor-
rectly classified instances is for nonaggressive behavior
(212 from 361) because the data points of these behaviors
are overlapped with the data points of the other behaviors.

The second experiment selects 839 instances as a valida-
tion set from the 4,193 instances of the training set, to result
in 3,354 instances (50%) for the training set, 839 instances
(20%) for the validation set, and 1,797 instances for the
test set (20%) to evaluate the model as unseen examples.
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FIGURE 6. Train loss vs. validation loss of first experiment on processed
dataset 1.

TABLE 6. Evaluation results of accuracy, F1-score, precision, and recall of
validation set for processed dataset 1.

Behavior Class

Label Precision Recall Fl-score Accuracy
NonAgr 0.739 0.634 0.683

AgrBrk 0.707 0.830 0.763

AgrAce 0.749 0.749 0.749
AgrLefLanCha 0.796 0.770 0.783 7757
AgrRigLanCha 0.907 0.897 0.902 '
Micro avg. 0.776 0.776 0.776

Macro avg. 0.779 0.776 0.776

Weighted avg. 0.778 0.776 0.775

Figures 8 and 9 illustrate the training and validation accuracy
and loss in the training process of the 100 epochs.

From Figures 8 and 9, we see that accuracy and loss of
the validation set are still in a specific range. The validation
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FIGURE 7. Confusion matrix of first experiment on processed dataset 1.
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FIGURE 8. Training accuracy vs. validation accuracy of second experiment
on processed dataset 1.

accuracy is in a range more than 70% and less than 80%.
In addition, the validation loss is less than 0.2 in most epochs.
Figure 10 shows the confusion matrix of the test set for the
model that has the maximum validation accuracy in the train-
ing phase. Table 7 presents the results of the other evaluation
measures obtained from the confusion matrix.

In Table 7, the DCNN model achieves 71.95% of accuracy
and 71.4% of Fl-score on the unseen instances of the test set
for processed dataset 1.

In addition, the confusion matrix in Figure 10 shows that
the maximum number of correctly classified instances is for
aggressive breaking behavior (283 from 366) and aggres-
sive right lane change behavior (321 from 349). This con-
firms that these two behaviors can be distinguishable from
other behaviors. In contrast, the Non-aggressive behavior
has a minimum number of correctly classified instances
(173 from 361).
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FIGURE 9. Training loss vs. validation loss of second experiment on
processed dataset 1.
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FIGURE 10. Confusion matrix of second experiment on processed
dataset 1.

TABLE 7. Evaluation results of accuracy, F1-score, precision, and recall of
test set for processed dataset 1.

Behavior Class

Label Precision Recall Fl-score  Accuracy
NonAgr 0.650 0.479 0.552

AgrBrk 0.684 0.751 0.716

AgrAce 0.665 0.765 0.712
AgrLefLanCha 0.749 0.686 0.716
AgrRigLanCha 0.843 0.920 0.879 71.95%
Micro avg. 0.720 0.720 0.720

Macro avg. 0.718 0.720 0.715

Weighted avg. 0.717 0.720 0.714

B. EXPERIMENTS ON PROCESSED DATASET 2
In this group of experiments, we evaluate the proposed model
on processed dataset 2. This dataset is divided randomly
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into two sets: 70% training set and 30% test set. In the first
experiment of this group, 2,093 instances are used for training
the model and 897 instances are utilized for validating and
testing the model. The distribution of instances in the training
and test sets is shown in Table 8. Each instance has 2,400 data
values as attributes.

TABLE 8. Distribution of instances in training and test sets of processed
dataset 2.

Behavior Class Label Train Instances Test Instances ~ Total
NonAgr 425 176 601
AgrBrk 414 186 600
AgrAce 415 185 600
AgrLefLanCha 419 175 594
AgrRigLanCha 420 175 595
Total 2093 897 2990

Figures 11 and 12 show the results of accuracy and loss
for the training and validation sets during the 100 epochs
of the training phase. The confusion matrix that contains
the number of correctly classified instances of maximum
validation accuracy of the model is given in Figure 13. The
results of other evaluation measures can be computed from
the confusion matrix and are shown in Table 9.

TABLE 9. Evaluation results of accuracy, F1-score, precision, and recall of
validation set for processed dataset 2.

Behavior Class

Label Precision Recall Fl-score  Accuracy
NonAgr 0.685 0.705 0.695

AgrBrk 0.763 0.726 0.744

AgrAce 0.814 0.805 0.810
AgrLefLanCha 0.815 0.829 0.822
AgrRigLanCha 0.882 0.897 0.890 79.15%
Micro avg. 0.792 0.792 0.792

Macro avg. 0.792 0.792 0.792

Weighted avg. 0.792 0.792 0.791

From the results in Figures 11 and 12, we can see that
the gaps between accuracy and loss between the training and
validation sets are reduced. Moreover, from Table 9, we can
observe that the DCNN model achieves 79.15% of accuracy
and 79.2% of F1-score micro and micro averages when using
the testing set to validate the model.

In the second experiments of this group, processed
dataset 2 is divided into three sets: the training set con-
tains 1,674 instances (50%), the validation set consists
of 419 instances (20%), and the test set has 897 instances
(30%). Here, we train and validate the DCNN model on
the training set validation sets, then the trained model is
evaluated on unseen instances of test set. Figures 14 and 15
show the progress of accuracy and loss for train and vali-
dation sets through the 100 epochs of the training process.
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TABLE 10. Evaluation results of accuracy, F1-score, precision, and recall
of Test set for processed dataset 2.

Behavior Class

Label Precision Recall Fl-score  Accuracy
NonAgr 0.572 0.631 0.600
AgrBrk 0.685 0.667 0.676
AgrAce 0.735 0.719 0.727
AgrLefLanCha 0.779 0.766 0.772 73.00%
AgrRigLanCha 0.905 0.874 0.890 e
Micro avg. 0.730 0.730 0.730
Macro avg. 0.735 0.731 0.733
Weighted avg. 0.734 0.730 0.732
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FIGURE 11. Training accuracy vs. validation accuracy of first experiment
on processed dataset 2.
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FIGURE 12. Training loss vs. validation loss of first experiment on
processed dataset 2.

Figure 16 presents the confusion matrix, and Table 10 gives
the results of evaluation measures on the test set.

From the results of the first and second experiments on
processed dataset 1 and 2, we notice that DCNN mode works
better on the signals of driver aggressive behaviors that are
processed with window size 400 and time step 40 than the
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TABLE 11. The results of validation accuracy and averaged classification time of different DCNN models on processed dataset 2.

Number of

. Number of N Averaged
Model conl;/;l;rlzlon Convolution Kernels Drop Rate Validation Accuracy Classification Time
Model 1 (Proposed Model) 2 64, 64 0.5 79.15% 4.473
Model 2 3 64, 64, 64 0.5 78.15% 11.188
Model 3 4 64, 64, 64, 64 0.5 65.89% 6.548
Model 4 4 64, 64,128, 128 0.5 72.80% 20.786
Model 5 2 64, 64 0.25 75.14% 4.557
Model 6 2 64, 64 0.15 73.36% 4.545
Model 7 2 128, 128 0.5 76.48% 10.297
Model 8 2 32,32 0.5 77.26% 2.141
Model 9 2 16, 16 0.5 74.25% 1.170
TABLE 13. Comparison results of test accuracy and averaged
classification time for the proposed DCNN model against the
NonAgr 140 traditional ML modes on processed dataset 2.
120 Model Test Aver_aged_Classiﬁcation
Accuracy Time (in seconds)
AgrBrk
100 AdaBoostClassifier 53.40% 0.187
E SVM 59.31% 4.495
2 AgrAce - 80 KNN 45.60% 8.475
2 RF 65.66% 0.039
[ &0 XGB 67.89% 0.097
AgrLefLanCha DT 42.59% 0.01
- 40
GaussianNB 49.61% 0.337
0,
AgrRigLanCha 2 Proposed DCNN 73.02% 4357
o‘g 8’(4- && QC‘& Q(}& Train Accuracy vs. Validation Accuracy
&® © ¥ NP 10
& &
R
Predicted label 09
FIGURE 13. Confusion matrix of first experiment on processed dataset 2.
08
oy
TABLE 12. Comparison results of test accuracy and averaged g
classification time for the proposed DCNN model against the 2 o7
traditional ML modes on processed dataset 1. 4
Test A d Classificati o8
es veraged Classification
Model Accuracy Time (in seconds)
AdaBoostClassifier 50.53% 0.203 05 ~—— Train
SVM 58.49% 9.139 Validation
KNN 55.04% 19.190 0 2 4 60 8 100
RF 66.33% 0.078 Number of Epochs
XGB 64.83% 0.141 FIGURE 14. Training accuracy vs. validation accuracy of second
DT 44.91% 0.02 experiment on processed dataset 2.
GaussianNB 41.57% 0.422
Proposed DCNN 71.95% 4.513 C. RESULTS ANALYSIS OF MODEL SELECTION

signals that are processed with window size 200 and time
step 40. The reason for this improvement is that window
size 400 is able to represent the aggressive behaviors better
than window size 200, and time step 40 better represents the
overlap between signals’ behaviors.
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In this subsection, we conduct some experiments on the
model using different numbers of layers and different values
of dropout rate. The experiments are performed on processed
dataset 2, which is divided into two sets: 70% as training set
and 30% as test set. The test set is used to validate the model
in the training phase. Different configurations and settings
of the proposed model are investigated to justify the selected
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FIGURE 15. Training loss vs. validation loss of second experiment on
processed dataset 2.
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FIGURE 16. Confusion matrix of second experiment on processed
dataset 2.

architecture of the proposed model. From the proposed model
(model 1), a different set of models is created using different
numbers of convolution layers with different convolution
kernels and using different drop rates of dropout layer. Then,
these models are evaluated based on the results of validation
accuracy and averaged classification time. Table 11 shows
the results of validation accuracy and averaged classification
time of different DCNN models on processed dataset 2.
From the results of Table 11, we can see clearly that the
proposed model (model 1) achieves the highest validation
accuracy results with acceptable averaged classification time
compared to the other deep learning models of different
configurations. This justifies the effectiveness of the selected
structure and parameters’ values of the proposed model.

D. COMPARISON OF ACCURACY RESULTS

This section compares the performance of the proposed
model against the traditional ML modes, such as AdaBoost-
Classifier, support vector machine, K-nearest neighbors, ran-
dom forest, extreme gradient boosting, decision tree, and
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Gaussian Naive Bayes. In this comparison, the results of test
accuracy and averaged classification time are computed using
processed dataset 1 and processed dataset 2. Tables 12 and 13
list the performance results of the DCNN model against the
traditional ML modes.

From the results of Tables 12 and 13, we can see clearly
that the DCNN model outperforms the traditional ML modes
in terms of test accuracy. We can notice also that the aver-
aged classification time for the proposed DCNN model is
acceptable to be applied for real-time detection of drivers’
aggressive behaviors.

VI. CONCLUSIONS

Detecting aggressive driving behavior through a monitoring
system can play a vital role in reducing road accidents. The
goal is to analyze the driver behavior while driving and
to enhance the behavior of the driver to create a healthy
driving environment. In this paper, we presented a real-time
aggressive driving behaviors detection and monitoring sys-
tem using body sensors. We collected real-time bio-signal-
based aggressive driving behavior data and made it public
for researchers and developers. We used a DCNN model
with edge and cloud technologies to analyze the collected
driving behavior data. The proposed DCNN model was able
to represent the features with high dimensions and showed
better performance for real-time driving behavior detection
as compared to traditional ML models. In the future work,
we plan to use other deep learning models with the regular-
ization technique to improve the performance of the proposed
driving behaviors monitoring system.
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