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Abstract: In this review work, the passage of charged and neutral beams through dielectric capillary
guides is described from a uniform point of view of beams channeling in capillaries. The motion
of beams into the hollow channels formed by the inner walls of capillaries is mainly determined by
multiple small-angle scattering (reflection) and can be described in the approximation of surface
channeling. It is shown that the surface interaction potential in the case of micro- and nano-capillaries
is actually conditioned by the curvature of the reflecting surface. After presenting the analysis of
previously performed studies on X-rays propagation into capillaries, which is valid for thermal
neutrons, too, the surface channeling formalism is also developed for charged particle beams, in
particular, moving in curved cylindrical capillaries. Alternative theories explaining experimental
results on the beams passage through capillaries are based on simple thermodynamic estimates, on
various diffusion models, and on the results of direct numerical simulations as well. Our work is
the first attempt to explain the effective guiding of a charged beam by a capillary from the general
standpoint of quantum mechanics, which made it possible to analytically explore the interaction
potential for surface channeling. It is established that, depending on the characteristics of a projectile
and a dielectric forming the channel, the interaction potential can be either repulsive or attractive;
the limiting values of the potential function for the corresponding cases are determined. It has been
demonstrated that the surface channeling behaviour can help in explaining the efficient capillary
guiding for radiations and beams.

Keywords: capillary guiding; surface channeling; capillary optics

1. Introduction

Channeling is usually associated with the passage of beams of charged particles in
crystals oriented along the direction of particle motion (see in [1–8]), when the angle
between the particle momentum and selected axis (or plane) of the crystal does not exceed
a certain fixed value determined by the critical angle [9,10] (also known as Lindhard angle).
(To describe a deep penetration of charged particles into the crystals [11–14], J. Lindhard
first introduced and developed a continuous potential formalism based on multiple small-
angle scattering of charged particles by the axis (or plane) atoms of aligned crystals, defining
in such a way the phenomenology for crystal channeling [15]). This condition is necessarily to
fulfil in order to establish a special kind of the particle motion, typically an undulating one,
associated with the crystal lattice. In other words, under these conditions, the motion of a
particle in an aligned crystal can be described within the quantum-mechanical principles
in the form of a bound motion defined by a potential well [16,17]. The potential well, in
both shape and depth, is determined by the averaged potential of the crystal lattice in its
dependence on the crystal orientation, planar or axial. Historically, channeling is most often
associated with the passage of charged particles in crystals, where the ordered arrangement
of atoms in planes or axes forms dedicated channels for the associated movement of
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particles. In reality, the channels to trap charged and neutral particles can be of various
origins characterised by strong electromagnetic fields with a distinguished spatial structure
that determines the long narrow potential channel. Thus, the channeling formalism can
be applied to describe the motion of particles in various media, for instance, in laser and
plasma channels (see [18–22] and Refs. in the review paper [23]), as well as the propagation
of radiations in self-organised subsystems [24–27].

From a simple consideration, it becomes obvious that the possibility of manX-ray
radiationipulating particle beams in a wide spectrum of energies and impulses by means of
channeling gives rise to a whole class of applied problems exploiting the effect of particle
channeling in the external electromagnetic field. The first in this series that should be
mentioned is the possibility of effective deflection of a beam of charged particles in bent
crystals [28,29]. A beam of particles bound in the channeling mode moves along curved
channels, which makes it possible to deflect beams of high-energy particles at large angles,
which serves as the basis for creating crystal collimators and beam focusing systems, as
well as for extracting particles from storage rings [30,31]. Speaking about channeling of
charged particles in strong external electromagnetic fields, one cannot fail to also mention
the possibility of using this phenomenon to create a powerful source of electromagnetic
radiation in a wide frequency range, from soft X-ray to γ-gamma radiation, channeling
radiation [32,33]. The trajectory of a channeled particle represents a rapidly oscillating flight
pass with a small amplitude that induces the projectile to emit the photons of a certain
energy range [5,8,34–36].

Until now, controlling the beams of charged and neutral particles, which in fact
determines the development of technologies for accelerators, storage rings, and colliders,
as well as for novel powerful beam and radiation sources, remains relevant, directing us to
fundamental research on the interaction of beams and radiations in external electromagnetic
fields of various origins (for details see in the recent comprehensive review [37] and Refs.
therein). Usually, electromagnetic fields for beam optics are generated by special devices
known as dipoles, quadrupoles, solenoids, etc., including various types of magnets and
laser-plasma sources, which are characterised by a rather complex design [38,39]. Most
often, solids are used as simple collimators, scatterers, mirrors, and absorbers. However,
solids, or any dense media, are characterised by strong electromagnetic fields in the bulk
volume as well as in the immediate vicinity of their surfaces. The natural field gradients in
solids can be very high, going beyond the technical capabilities implemented in common
specialised scientific instruments. Strong fields generated by solid specimens of a certain
geometry can provide an additional tool to manipulate the beams and radiations, giving
them the required characteristics to be utilised in many types of fundamental and applied
research [40].

Recently, capillaries or capillary structures of various configurations have come to
be seen as one of the most promising techniques for the formation of particle or radiation
beams. Despite the difference in the physics of propagation processes of particles and
radiations in capillaries, a clear example is capillary X-ray optics (for the physics of X-
ray radiation propagation in capillaries, see [41]), which has grown from a beautiful
idea into a widely used tool to handle X-ray radiation [42–46]. In fact, even before the
development of capillary/polycapillary X-ray optics, the possibility for using curved
reflecting surfaces as an alternative practice to shape ion beams was proposed [47] and
successfully discussed [48,49] (see [50]). Based on the physics of charged particle channeling
in crystals, the interaction of an incident ion with a reflecting surface was described in
the approximation of a continuous atomic potential of the surface. (We have to note that
the term a surface channeling was introduced in the research on theoretical treatments of
ion scattering by solid crystalline surfaces in [51], and successfully on an experimental
proof of the phenomenon existence in [52]. However, these studies have examined the
projectile motion into the bulk surface region of the crystal as channeling along length
paths through the solid). Having confirmed very small angles of efficient ion reflection
from a smooth, flat surface, in order to increase the angles of beam deflection, the use of
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curved surfaces, in particular, dielectric capillaries, was proposed regardless of the change
in the beam charge characteristics (see [53] and Refs. therein). However, these studies were
not properly continued, while the further exploitation of capillaries (or capillary bundles)
is presently known in relation to the beams of X-rays and thermal neutrons [54–57].

On the contrary, since the first observations of propagation of atoms and ions into
dielectric capillaries [58,59], this topic has increasingly attracted the attention of physicists.
Analysing the ion motion in a hollow core of micro-capillary that involves various scattering
processes by the capillary inner-wall surface, it is shown that the main contribution to the
fraction of reflected particles is made by projectiles impinging on the surface at glancing
angles of incidence. Successfully, the effective transmission of the beams by the capillary is
explained by the fact that when the ion beam passes through the capillary, some fraction
of the beam first settles on the inner surface of the capillary and, accumulating there,
creates a repulsive potential, which becomes a channel-guiding potential for a charged
particle [59,60]. Apart from general mechanisms for electromagnetic interaction of charged
projectiles with the reflecting surface, as shown, guiding efficiency is strongly related to
the surface curvature (capillary diameter) [61]. A decrease in the guiding channel diameter
from micrometer sizes to nanometer ones makes the transport mechanism a bit different,
requesting strong non-linear features of scattering to be involved into consideration for
correct interpretation of the results of capillary guiding [62–65]. However, independently
of the surface curvature, the drift mechanism of ions-guiding has been recognised to be
supreme on the charge diffusion mechanism. Additionally, it has been demonstrated that
dielectric capillaries can transmit ion beams without any change in both the ion kinetic
energy and the ion charge [66]. Capillary guiding peculiarities have been also studied for
electron beams, revealing similar elastic and inelastic features of scattering by the inner
capillary surface, while a time evolution of transmitted intensity for electrons remains
essentially different from that of ions [67–77].

The undoubted interest in the development of new methods for shaping particle
beams based on capillary systems [78–83] has resulted in a wide spectrum of experimental
activities dedicated to this phenomenon, while theoretical works counts disproportionally
much less published articles ([84,85] and Refs. therein). Known theoretical studies mainly
aim at simulating the motion of charged particle beams inside capillary insulators using ei-
ther the Monte Carlo method or direct numerical calculations [60,64,65,86–90]. Alternative
theories on the motion of charged beams in both macro- and micro-capillaries are based on
simple thermodynamic estimates within common diffusion models.

Below, we present a brief introduction to the phenomenon of channeling, i.e., crystal
channeling, and to the concept of continuous potential, starting from which the mirror
grazing reflection mechanism is described within the theory of beams and radiations
channeling along a smooth amorphous surface, so-called surface channeling. Applied to the
dielectric capillary guides, the surface channeling phenomenon explains efficient grazing-
incident transmission as well as deflection or shaping of charged and neutral beams. In
this work, based on the physics of surface channeling along a curved surface, we, for the
first time, analytically describe the process of interaction of a charged particle with the
inner wall of a dielectric capillary on the basis of quantum mechanics. In combination with
the existing theories and models of transmission of particle beams by dielectric capillaries,
the developed theory of surface channeling of particles along strongly curved reflective
surfaces will serve as an additional factor for a more complete and complex description of
the capillary guiding phenomenon.

2. Surface Channeling: Basic Principles
2.1. Basics of Channeling

Channeling is generally known as a special type of charged particle motion in crystals,
when the particle momentum and one of the main crystallographic directions (defined
by unique Miller index) coincide within a very small angular deviation close to some
critical angle [10]. To describe this phenomenon, let us consider the interaction of a charged
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particle in a medium composed of the constituent atoms. The interaction of a charged
particle with a crystal atom is defined by the potential

Va(r) =
ZpZae2

r
φTF(r/a) , (1)

with the charges of the particle Zpe and the medium atom Zae (e is the electron charge), and
the Thomas–Fermi screening function φTF(r/a) with the screening parameter, for instance,
defined as aTF ∝ a0(Z2/3

p + Z2/3
a )−1/2 (a0'0.529 Å is the Bohr radius). The screening

function has been determined by many authors in various approchimations, while one of
the most applied is known as Moliere’s screening function [91,92]

φTF(r) =
3

∑
i=1

αi exp(βir/aTF) , (2)

where {αi} = {0.1; 0.55; 0.35}, {βi} = {6; 1.2; 0.3}, which have been below used for simple
analytical estimations.

Under the channeling conditions, a charged particle (the projectile) moves at very small
angle to one crystallographic axis (row), formed by many atoms in a chain, simultaneously
undergoing a small-angle multiple scattering by a huge number of the chain atoms (Figure 1,
left). In other words, the projectile interacts with a whole atomic chain that mathematically
can be expressed as “smearing out” the potential of one atom along the chain z

U(r⊥) ∝
∫ +∞

−∞
Va(z, r⊥)dz , (3)

from which it is seen that the potential U depends only on the distance of the projectile
from the axis r⊥. At the Moliere’s approximation for the screening function, this expression
determines the continuous axial potential (the atomic potential averaged along the axis)

Uax(r⊥) =
2ZpZae2

d

3

∑
i=1

αiK0(βir⊥/aTF) , (4)

where d is the interatomic distance for the crystal axis and K0(x) is the modified Bessel
function of the 2nd kind.

Figure 1. Scattering of a charged particle by a chain or a plane of crystal atoms. At grazing incidence,
the interaction can be described by the averaged over the chain or plane atomic potential, i.e., the
continuous axial or planar potential.

Obviously, similar considerations are valid when the crystal is oriented along one of
the crystallographic planes, which is also composed of the crystal atoms (Figure 1, right).
Averaging the atomic potential Va(r)over the plane atoms determines the corresponding
continuous planar potential

Upl(x) = 2πNadplZpZae2aTF

3

∑
i=1

(αi/βi) exp(−βix/aTF) , (5)
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Here, Na is the bulk atomic density of the crystal, and dpl is the interplanar distance
(the distance between the adjacent planes) for selected crystal orientation (∼1÷ 10 Å).
Simple analysis shows essential difference in the potential extreme values for the axial and
planar cases, slowly growing with the crystal nuclear charge Uax0/Upl0 ∝ Z1/3

a .
To perform correct calculations, for both cases of charged particles channeling in crys-

tals, the approximated expressions of the continuous potential should be modified, taking
into account the thermal vibrations of crystal atoms. Thus, the updated Formulas (4) and (5),
i.e., thermally averaged continuous potentials, depend on the amplitude of thermal vibra-
tions of atoms, which is, in turn, a function of Debay temperature (see in [93,94]). Moreover,
precise expressions for the continuous potentials of a crystal count the contribution of a
sufficient number of neighbour atomic planes or axes characterised by equivalent Miller
index (Figure 2) [95]. A set of continuous potentials for selected crystal orientation forms
a well emphasised periodic potential, which consists of successfully repeated potential
wells, the minima of which are situated either at the axis (plane) positions or between the
neighbour axes (planes). The positions of the potential well extremes are determined by
the channeled particle charge. Due to this feature, the opposite charged particles become
differently redistributed in the transverse plane. This is why negatively charged particles,
moving in the vicinity of atomic axes or planes, suffer much stronger scattering by crystal
atoms in comparison with positively charged particles, which are mostly distant from the
axes or planes. Obviously, the potential wells for a selected particle charge become the
potential barriers for the particles of an opposite charge.

Figure 2. Continuous potentials at axial and planar channeling of relativistic positrons in crystals.
(a) Axial channeling in diamond C<111> at a room temperature; (b) Planar channeling in diamond
C(110) at a room temperature. The parabolic approximation for a planar potential shown in red
reveals good enough fitting that may simplify the analytical analysis for rapid estimations. For both
cases the minima of the potential wells are formed in a less-atomic-dense space in the transverse
cross-section to the direction of channeling. Reproduced from [95].

As aforementioned, at channeling, the projectile will be trapped in a channeling
regime when the angle between its momentum and selected crystallographic direction is
smaller than the critical angle of channeling, Lindhard angle, ψL. This angle is defined by
the equality of the transverse energy of a channeled particle and the depth of potential
well, Eψ2

L/2'U0 (.1 mrad for relativistic light particles). Various regimes of a channeling
motion in a monocrystal are shown in Figure 3, from which we can see that each chan-
neling regime is characterised by well defined beam-to-crystal mutual orientation. The
requirements for crystal channeling are very strict according to the beam characteristics,
too; the beam divergence should preferably less than the critical angle (or comparable),
.ψL.
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Figure 3. Various channeling regimes for positively and negatively charged particles in crystals.
0—amorphous orientation; 1—planar orientation for a negative charge; 2—planar orientation for
a positive charge; 3 and 4—axial orientation for a negative charge; and 5—axial orientation for a
positive charge.

2.2. Small-Angle Multiple Scattering by Smooth Flat or Curved Surface

At the particle channeling in crystals, we deal with the conform interaction of a
charged particle with crystals atoms of either axis or plane, i.e., axial or planar channeling.
In first approximation, the interaction potential is formed by the atoms within one channel,
while remained atoms of the crystal bulk weakly contribute, mostly defining the periodicity
of continuous potential. On the contrary, when the particle is reflected by the crystal surface
(or amorphous smooth surface), in order to determine the interaction potential with an
amorphous medium, even at the small-angle scattering with respect to the medium surface
(grazing incidence), one should count the contribution by all medium atoms. In other
words, the scattering potential of a surface, i.e., the surface potential, can be defined in the
following form [96]

Vam(x) = Na

∫ ∞

x
Va(x1)dx1 , (6)

where the variables x and x1 define the distances perpendicular to the surface plane,
the first from the surface in the vacuum and the second into the medium. The volume
integration in the medium can be simplified by integrating many-sliced planar potentials
Va(x1) of Equation (5) over x1, where each plane is parallel to the reflecting surface. The
obtained interaction potential of the particle with the amorphous surface

Vam(x) = 2πNaZpZae2a2
TF

3

∑
i=1

(αi/β2
i ) exp(−βix/aTF) (7)

is similar to the continuous planar potential in the crystal but lower by the barrier height.
Reflection from a smooth surface can be used to deflect a beam at large angles through

multiple low-angle reflections. Since each reflection is specular at a small angle ψ < ψc,
the beam intensity remains practically unchanged. For effective deflection of a beam with
the transverse dimension d, the surface must be curved with the radius of curvature Rs
that satisfies the condition Rsψ2

c . 2d. This condition also determines the required surface
length for deflection at a certain angle.

Beam deflection can also be done using a channel formed by two curved surfaces.
However, in order to deflect a beam of the same transverse size over equal angle, we need
the length of the surfaces forming a channel-guide, which is comparable with the length
of a single surface reflector. However, the channel-guide, if the surface-formed samples
are thick enough, provides an advantage only in a beam collimation at the exit end of the
channel.

The situation may change significantly if capillary is used as a guide [50]. In this case,
the beam can be deflected through a fixed angle at a much shorter channel length, although
the condition for efficient transport remains unchanged, Rcapψ2

c /(2dcap) . 1 (Rcap and dcap
are the capillary bending radius and the capillary channel diameter, respectively). This is
due to the possibility of surface channeling of particles along various spiral-like trajectories
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(valid for some approximations); the radii of curvature Rcap,i are less than the bending
radius of the capillary, Rcap,i < Rcap (for extremely low limit we have (Rcap,i)min → dcap/2).

3. X-ray Surface Channeling in Capillaries

Transmission of X-rays by capillaries of various diameters has been intensively studied
in the last 35 years (see in the review paper [57]). These studies confirmed the predicted
high efficiency of the radiation transmission by the capillaries, which thus became very
promising new optics capable to deflect or bend intense X-ray beams. (As known, X-ray
reflection at grazing incidence permits efficient radiation deflection by a small angle, which
has been utilised in multiple X-ray reflection optical instruments for X-ray beam bending
over large angles (Figure 4). Applied to capillaries, it becomes decisive in designing
novel X-ray capillary optical elements). However, additionally to the development of
capillary/polycapillary optics, a single capillary of desired geometry exhibits a unique tool
for investigating the dispersion features of X-ray radiation by a surface [41,97–99].

Figure 4. Grazing small-angle reflection (a) applied for curved surfaces (b) permits radiation bending
over large angles via multiple small-angle reflections. This principle is even more efficient for bent
capillaries (c).

To describe the radiation propagation into capillaries, it must be noted that in widely
used capillary systems, the sizes of channels (micrometer-sizes) essentially exceeds the
effective wavelength of the radiation that is transmitted. It allows the radiation dispersion at
multiple-reflection propagation of the radiation down the capillary channel to be analysed
within the ray optics approximation, which, in turn, for very small grazing angles, exposes
the picture of whispering gallery modes (surface channeling modes) [100–105]. The modern
technology for manufacturing capillary optical systems enables extremely small channel
diameters (nanometer-sizes) to be reached at the drawing process [56,106]. Propagation of
radiation in such small guides is expressed in bulk channeling modes instead of surface
ones [107].

Generally, to explain all peculiarities recorded experimentally, we have to apply the
wave optics methods in description of the processes of radiation spreading down the
capillaries [108–111]. The characteristics of radiation scattering inside capillaries can be
evaluated from the solution of a wave propagation equation. Neglecting the roughness
correction at the radiation reflection from the capillary inner surface, the wave equation in
the transverse plane to the propagation direction is written as follows(

∇2
⊥ − 2k2δ + k2

⊥

)
E(r⊥) = 0 , (8)

in which the transverse part of the radiation field is defined from the equation E(r) =

E(r⊥)e
ik‖z, r ≡ (r⊥, z). Here, E is the electromagnetic field amplitude, which describes

the radiation; k ≡ (k‖, k⊥) is the radiation wave vector; and k = 2π/λ, ε = 1− δ0 + iβ0
is the dielectric permittivity (β0 = 0—no absorption). At grazing incidence ϑ � 1, we
get k⊥ ≈ kϑ for the transverse wave vector. Hence, the effective interaction potential
Ve f f (r⊥) = k2(2δ(r⊥)− ϑ2) is defined by the channel geometry

Ve f f =

{
−k2ϑ2 , guiding channel

k2(2δ0 − ϑ2) , cladding
(9)
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We can see that Ve f f = 0 at ϑ ≡ ϑc '
√

2δ0, which defines the critical angle for
total external reflection, so-called Fresnel’s angle. Moreover, we can generalise the wave
Equation (8), extending its application to a massive particle motion, the Schrödinger
equation, ∇2

⊥ ≡ p2/(2m) in a specified potential well Ve f f . Obviously, if the effective
potential of radiation interaction in a guide is determined by the guiding channel, the
description of radiation propagation down the channel is similar to the particle channel-
ing phenomenon [10]. Hence, applying the channeling theory to describe the radiation
propagation in a media with the potential (9), the wave Equation (8) can be solved for the
case of µ-channels as well as for n-guides. The only difference in description of radiation
channeling in µ- and n-capillaries is due to the origin of the interaction potential. The
bound radiation propagation in a µ-channel is related to the surface potential, which in
the case of a curved surface reveals a potential well. For n-channels, on the contrary, we
deal with the so-called bulk channeling, which is very similar to the crystal channeling of
charged particles.

At a curved reflecting surface, the effective potential reveals an additional contribution
strongly related to the surface curvature. To describe new expected features due to the
surface profile, we have to consider the fact that the reflection of an electromagnetic wave
occurs on an extended area defined by both the longitudinal part (∆d)‖min∼(4πc/ωp)

ϑ−1
c (c is the light velocity), which is much greater than the atomic distances, and the

transverse part, which is a layer of the electric field penetration (∆d)⊥∼2πc/ωp. Hence,
we can evaluate the radiation reflection by splitting the radiation scattering in the reflecting
surface area into coherent and incoherent parts. The first one describes a well known mirror
reflection, while the second is responsible for the radiation absorption in the reflecting
layer. However, if the reflecting surface is curved, a simple algebra in curved coordinates
brings us to the modified interaction potential [97,112]

Ve f f (r⊥) = k2
(

2δ(r⊥)− ϑ2 − 2
r⊥

rcurv

)
, (10)

in which we have an additional term absent in the effective potential expression for a plane
surface, −2k2r⊥/(rcurv). This term can be considered as a centrifugal potential energy of the
photon, i.e., as if the photon receives a certain angular momentum krcurv ϕ when reflected
from a curved surface. The presence of an additional term in the expression for the effective
potential replaces the step potential with a known barrier by an attractive potential with a
known potential well that is schematically represented in Figure 5.

Figure 5. The profiles of the effective potentials at the reflection of X-rays by plane and curved
surfaces (the scheme is reproduced from [41]). (A) The potential barrier for a plane surface; (B) Once
the reflecting surface is curved, the reflection potential reveals an additional potential energy; (C) The
potential barrier for a curved surface.

Further, we can estimate the limits when the wave peculiarities become important
in description of the radiation propagation in capillaries [97]. If we imagine the motion
of a photon inside a capillary through multiple grazing reflections from the inner wall
of the capillary, then the imaginary trajectory of a photon is a kind of spiral with two
limiting curvature values, from the inner radius of the capillary to the curvature radius
of entire capillary (defined by the capillary bending angle). Generally, for a photon with
the wave vector k propagating along a curved surface with the curvature radius rcurv
(ϑ < ϑc), we can define a longitudinal wave vector, k||, as well as a transverse wave vector
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k⊥, k⊥ ' kϑc (ϑc � 1) (Figure 6). Hence, the wave approximation can be applied to the
description of the radiation reflection for the part of radiation propagating at very sliding
angles within the above-surface layer ∼(rcurv)2

i θ/2 ≡ λ⊥, i.e.,

rcurvϑ3
c ' λ (11)

Figure 6. Illustration of the relativity for the case of grazing reflection from the curved surface. It
explains the surface channeling phenomenon as a modal regime of propagation along curved surface
(reproduced from [41]).

The relation (11) defines the condition for surface-bound propagation of X-rays—
surface channeling— along the curved surface of the inner capillary wall. This phenomenon
is known as whispering gallery one [41,113–115].

Since in the case of capillary systems the principal waveguide is a hollow cylindrical
tube (a circular guide), the interaction potential is determined by Equation (10) with the
radiation polarisability parameter δ0 ' ϑ2

c /2 (for simplicity, the absorption is considered to
be negligible β0 � 1). The solution of the wave equation

En(r) '∑
m

Cmum(ρ) ei(k‖z+nϕ) ,

um(ρ) ∝
{

Aim(ρ) , ρ > 0—guiding channel
αAi′m(0) eαρ , ρ < 0 (α > 0)—cladding

, (12)

demonstrates the wave-guiding character of radiation propagation in the channel (r⊥ ' r1,
|ρ| � r1) [99,116]. Here, Aim(x) is the Airy function, and α is the arbitrary unit characteris-
ing the capillary substance. Expression (12) describes the radiation modes in a capillary,
i.e., the surface channeling states, that propagate close to the waveguide wall. Figure 7
shows an example of the spatial radiation distribution for two different capillary radii.
This solution reveals that the wave functions are damped both inside the channel wall and
moving from the wall towards the center.

Figure 7. The radial distributions of main radiation mode for capillaries of various radii. The radius
decrease results in a shift of the maximum towards the capillary center. The wall surface position is
shown by the dotted line (reproduced from [99]).
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The characteristic radial size of the main grazing mode (m = 0) results in 2π2u3
0 '

λ2r1, and we can conclude that the typical radial size u0 may overcome the wavelength λ,
whereas the curvature radius r1 in the trajectory plane exceeds the inner channel radius, r0:
u0 � λ (for example, u0 & 0.1 µm for a capillary channel with the radius r0 = 10 µm).

We have to underline here that, as seen from the spatial distributions of surface
modes, the decrease in the capillary channel diameter, i.e., the increase in the reflecting
surface curvature, results in the “extrusion” of the surface bound modes to the center of
the waveguide. Hence, almost all radiation power is concentrated in a hollow channel
region, providing a small radiation power attenuation along the capillary waveguide wall.
However, being negligible for µ-guides, in case of n-guides, the tunneling phenomenon,
i.e., the radiation penetration deep into the cladding responsible for the radiation cross of
the guide wall, should be taken into account.

4. Charged Beam Surface Channeling
4.1. Charged Beam Guiding in Dielectric Capillary

Describing the interaction of a charged particle with the surface of a reflecting dielectric
is undoubtedly a complex task. The main reason for this is the necessity of taking into
account the contribution to the total scattering process by different components of dielectric
determined by both atomic and electronic subsystems [40,117].

Let us consider the electromagnetic field in a nonmagnetic substance of the permittivity
ε(ω) that occupies the infinite space with a cylindrical cavity of radius R0 inside (Figure 8).
Then, in absence of free currents and charges, based on Maxwell’s equations, the Fourier
components of the field scalar and vector potentials are defined by the following equation

Figure 8. Scheme of a cylindric cavity of radius R0 in the infinite dielectric, characterised by the
permittivity ε(ω), with a particle of the charge e moving inside the cavity. For the cavity, we choose
ε = 1.

(
∇2
⊥ +

∂2

∂z2 +
ω2

c2 ε(ω)

)(
ϕω

Aω

)
= 0 , (13)

where ∇2
⊥ is the part of the Laplace operator of the coordinates transverse to the Oz

axis, which coincides with the cavity longitudinal axis, and the field potentials satisfy the
following gauge relation

∇Aω − i
ω

c
ε(ω)ϕω = 0 (14)

To characterise the damping surface waves excited at the boundary cavity interface,
the condition of continuity of the electric and magnetic fields components tangential to the
interface has to be used, from which one can derive the complex dispersion law k(ω)

x2n2(ε− 1)2

α2(x2 − 1)(x2 − ε)
=

[√
x2 − 1

K′n(α
√

x2 − ε)

Kn(α
√

x2 − ε)
−
√

x2 − ε
I′n(α
√

x2 − 1)

In(α
√

x2 − 1)

][
ε
√

x2 − 1
K′n(α

√
x2 − ε)

Kn(α
√

x2 − ε)
−
√

x2 − ε
I′n(α
√

x2 − 1)

In(α
√

x2 − 1)

]
, (15)
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written in the notations x = kc/ω and α = R0ω/c, where Kn(ξ) and In(ξ) are the modified
Bessel functions and n is the integer.

To solve Equation (15) analytically is a rather routine procedure; therefore, let us
examine two physically significant limiting cases determined by the parameter α = R0/λs,
the ratio of the capillary radius R0 to the wavelength of surface excitations λs. For α� 1,
Equation (15) can be solved only at ε(ω) = −1, while at α � 1 the solution can be
presented in the form of a series expansion in powers of a small parameter (1/α). For large
α, i.e., for the wavelengths λs � R0, the dispersion relation k(ω) slightly differs from the
case of a flat reflecting plane [117]. Thus, if we neglect the wavelengths λs = c/ωs ∼ R0,
the frequency of surface excitations ωs is assumed to be constant, while the wave vector
varies within the range 0 ≤ k ≤ q0 with the cut-off frequency q0.

At these assumptions, the charged particle interaction with the cavity surface is
described by the scalar potential operator of surface excitations

Φ̂(r) = h̄ ∑
q,s

fs(qr)
(

gqs ĉqsei(qz+sφ) + g∗qs ĉ+qse−i(qz+sφ)
)

, (16)

where the excitation amplitudes gqs and fs(qr) are defined by the modified Bessel functions
in the hollow and the cladding parts of the capillary guide (ĉ is the boson-operator),
respectively. To get the amplitudes, we solve the electrostatic problem for a scalar potential
of a charge e inside an infinite cylindrical cavity

∇2 ϕ =

{
−4πeδ(r− r0), 0 ≤ r ≤ R0
0, R0 < r

, (17)

which is valid at the following interface matching conditions:

ϕR0+0 = ϕR0−0,
∂ϕ

∂r

∣∣∣∣
R0−0

= ε0
∂ϕ

∂r

∣∣∣∣
R0+0

,

where ε0 is the static dielectric constant, and the potential is presented as a sum ϕ =

∑
q,n

ϕ̃n(q, r)eiqz+inφ.

4.2. Interaction Potential at Surface Channeling of Charged Beams

Since we deal with a charge moving in a cylindrical cavity, the potential energy of
interaction with the atomic system of a dielectric can be calculated as the sum of Coulomb
potentials presented in a Fourier series split at the cut-off frequency q0 [94]

Uint(r) =
4π

Vg
∑
rj

(
∑

q>q0

epej

q2 eiq(rp−rj) + ∑
q<q0

epej

q2 eiq(rp−rj)

)
, (18)

where ep(j), rp(j) are, respectively, the charges and radius-vectors of the particle p and the
surface nuclei and electrons j, and Vg is the normalization volume. The 1st term describes
the interaction at small distances l < q−1

0 that does not allow the averaging at calculations
(for instance, for metals, q−1

0 is of the order of the atom size [118]), while the 2nd—at l > q−1
0 ,

i.e., the interaction with collective surface excitations, can be evaluated by averaging single
interaction features over all the system. As aforementioned, the latter is described by the
potential operator (16). The 1st term of Equation (18), in turn, is described as a sum of
potential energies V(rp) for the particle interaction with the screened surface atoms [119],
that, in view of the equation of motion for a particle, transforms into the averaged atomic
potential of the surface.

Generally, for a particle of charge e and mass m moving inside a cylindrical hollow
cavity formed by an infinite insulator, we can write the Hamiltonian in the form

Ĥ =
∫

ψ̂+(r, z)

(
− h̄2

2m
∇2 + V(r, z)

)
ψ̂(r, z)d2rdz + Ĥs +

∫
ψ̂+(r, z)Φ̂(r, z)ψ̂(r, z)d2rdz, (19)
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where r = (r, φ) is the radius-vector in the transverse plane xOy, while the Oz-axis co-
incides with the cavity longitudinal axis. Here, ψ̂ is the particle field operator (fermion-
operator) and Φ̂ is the operator describing the particle interaction with the surface ex-
citations (boson-operator). The potential energy of the atom-particle interaction V(r)
corresponds to the 1st term of Equation (18), while the operator Ĥs corresponds to the
energy of non-interacting surface excitations. The particle field operator ψ̂ is defined by
the sum over the quantum states of motion

ψ̂(r, z) = ∑
k,n,l

ϕknl(r, z)âknl , (20)

where âknl is the annihilation operator; k is the z-projection of the charged particle wave
vector; and n, l are the radial and azimuthal quantum numbers (n = (n, l)). Successfully,
the wave function ϕknl can be divided into longitudinal and transverse components

ϕknl(r, z) =
1√
L

unl(r)eikz (21)

with the cavity longitudinal size L.
In our case, the particle longitudinal energy is much greater than the transverse

one E‖ = h̄2k2/(2m) � h̄ωn,l
⊥ . Hence, following the calculation procedure presented in

the paper [120] but simplified for one-dimensional freedom, the effective Hamiltonian is
defined by the matrix element

Ĥe f f =
∫

ψ̂+(r)Φ(k, r)ψ̂(r)d2rdz , (22)

where

Φ(k, r) = ∑
q,s

h̄
∣∣gqs fqs(r)

∣∣2
4(k, q, s)

(23)

The real part of Equation (22) is responsible for elastic processes in a complex potential
energy, while its imaginary part is responsible for inelastic ones. The latter calculates the
energy loss of a particle, normalised by traveled distance, as a function of distance to the
cavity axis. The energy loss of a particle due to the interaction with surface plasmons
can be calculated in the form of asymptotic expansion of the Bessel functions [121,122]
(x/R0 � 1)

− dE
dz

= e2
(ωs

v

)2
K0

(
2

ωs

v
x
)

, (24)

where x = R0 − r is the particle-to-plane distance.
Using Equation (22), the equation of transverse motion inside a cavity can be written

in the following way(
− h̄2

2m
∇2
⊥ +

1
L

∫
V(r⊥, z)dz + Φ(k, r)

)
un(r⊥) = h̄ωn

⊥un(r⊥), (25)

which actually describes the channeled motion. Indeed, neglecting the change in the
particle longitudinal momentum results in averaging the atomic potential over the surface
plane. The surface potential is calculated by summing the potentials of individual atoms,
where the number of atoms per unit length along the cavity axis is much greater than unity
N = Na2πR0 � 1 (Na is the dielectric atomic density). After integration over the surface,
the 2nd term in Equation (25) becomes dependent only on the distance from the cavity axis
(1/L)

∫
V(r⊥, z)dz ≡ V̄(r).

When the equation for elastic processes is solved, we consider only the real part of
induced potential, while the potential imaginary part leads to a finite lifetime for each
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quantum state. Thus, the induced potential with the amplitude of surface excitations
gqn = gn(qR0) is defined by

Uind(r) ≡ Re[Φ(v, r)] =
L

2π

∞

∑
n=−∞

P
q0∫

0

h̄|gn(qR0)|2

vq−ωs
I2
n(qr)dq , (26)

where P means the principal value of the integral and v is the charge velocity.
Hence, the effective potential for a channeled particle inside a cylindrical cavity is

determined by the averaged and induced potentials, Ue f f (r) = V̄(r)+Uind(r). The 1st term
is evaluated as a continuous potential via known technique in channeling physics [10,93]
and does not result in any unexpected behaviours, while the 2nd one brings us to new
features.

Analysis of general induced potential for two extreme cases, ωsR0/v � 1 and
ωsR0/v � 1, has shown new, but expected, peculiarities in the interaction potential
of a charged projectile with a curved capillary surface [123]. At ωsR0/v� 1, the induced
potential is defined as follows

Uind(r) = −
e2ωs

2πv
ε0 − 1
(ε0 + 1)

× ln
(

q0v
ωs
− 1
)

ln

(
1− r2

R2
0

)
+ const , (27)

the graph dependence of which is shown in Figure 9. On the contrary, at ωsR0/v� 1 the
induced potential is evaluated by the expression at q0v� ωs

Uind(r) = −
e2ωs

4πv
ε0 − 1
(ε0 + 1)

G
(

3ωsR0

2v

(
1− r

R0

))
, (28)

where the function G(x) is characterised by some local maximum. It permits the potential
minimum position to be revealed at (r/R0)max ' 1− 0.4v/(ωsR0) with the minimum
value of the induced potential Umin

ind = −0.2(e2ωs/v)(ε0 − 1)/(ε0 + 1) (Figure 10). If we
define formally that the ratio (v/R0) is a certain “cyclotron frequency” ωc for a particle
flying in a capillary, then we can conclude that at the plasmon frequencies much lower than
the cyclotron one ωs/ωc � 1, the interaction potential of the particle with the surface is a
reflective barrier. On the contrary, when the plasmon frequencies of the dielectric surface
exceed the cyclotron frequency of the moving particle ωs/ωc � 1, the interaction potential
becomes attractive.

Moreover, it is notable that if the particle velocity increases, the potential minimum
position very slowly shifts closer to the cavity center, keeping the potential shape itself
practically unchanged. At the cavity surface, the induced potential logarithmically diverges
Uind(r → R0) ∼ ln (R0 − r), while at the cavity center it is equal to

Uind(0) ∝ − e2ωs

2v
ε0 − 1
(ε0 + 1)

e−2ωsR0/v (29)

In both cases considered, approaching the cavity surface, the induced potential in-
creases. However, the induced potential must be cut off for the distances R0 − r∼q−1

0 ;
therefore, assuming (ε0 − 1)/(ε0 + 1)∼1, the maximum value of the induced potential in
both limits can be estimated as

Umin
ind '

e2ωs

v
ln
(

q0v
ωs
− 1
)

ln
(

ωs

q0v

)
, (30)

in which the logarithms do not essentially contribute to the value of induced potential.
That allows us in further estimates to omit the logarithmic factors, i.e., Umin

ind ∼e2ωs/v.
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Figure 9. Dimensionless induced potential versus the distance from the cavity axis at the condition
ωsR0/v� 1, while a concrete plotting is for q0R0 = 103 and ωs = 1015 c−1, with the characteristic
value q0∼107 c−1 corresponding the cavity radius R0∼10−4 cm.

Figure 10. Dimensionless induced potential versus the distance from the cavity axis at the condition
ωsR0/v� 1. Two curves correspond different values of longitudinal velocity. As can be seen, at the
particle velocity increase the potential shape does not change, and the curve minimum tends to the
cavity center.

Equation (26) is obtained in view of smallness of the transverse energy in comparison
with the longitudinal one, E‖ � E⊥, which also imposes definite restrictions on the
particle longitudinal velocity v. Supposing the maximum of transverse energy E⊥ to be
equal to the maximum of induced potential, we can write the limitation for longitudinal
energy E‖ �

(
e2ωs
√

m
)2/3 as well as for normalised longitudinal speed of a particle

β ≡ v/c �
(
e2ωs/(mc3)

)1/3. For example, for a channeled electron moving inside a
cavity characterised by surface oscillations of a plasma frequency ωs∼1015 c−1, the reduced
potential is valid under the condition E‖ � 1 eV. In turn, it corresponds to the velocity
constraint 10−3 � β < 1, where the upper limit should be correlated with the applicability
of nonrelativistic description.

As follows from Equation (30), the maximum value of induced potential depends
mainly on the particle charge and its longitudinal velocity, resulting in the estimate
Umax

ind ∼β−1 meV for electron. Hence, the magnitude of the induced potential for one particle
is not large in comparison with the averaged atomic potential V̄max∼10 eV. However, it
might be essentially different for a beam (multi-particle) passing through the cavity.

The presented analysis leads to the important conclusion that surface channeling of
charged beams in capillaries demonstrates the same features as those at channeling of
radiation in capillaries. Namely, in addition to very similar definition of the interaction
potentials, a decrease in the capillary diameter at fixed beam parameters leads to the
ejection (expulsion) of particles towards the center of the guiding channel. This property
manifests itself in the case of a repulsive potential (Figure 9) as well as an attractive one
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(Figure 10). The latter can have a very important application since it will significantly
increase the efficiency of beam passage through capillaries.

5. Conclusions

Nowadays, the radiation waveguides are in a wide use to shape the electromagnetic
beams of a wide frequency range. This makes the radio and optical waveguides extremely
attractive for various applications. On the contrary, X-ray waveguides are still mainly in
the research stage of development.

As is known, generally, the solution of Maxwell equations describing propagation
of electromagnetic waves in media with a step-function index of refraction and results in
forming a discrete set of the modes [124]. Applied to capillary guides, our analysis of X-ray
radiation propagation into the guides of various shapes shows that all the observed features
can be described within the unified theory of X-ray channeling: surface channeling in µ-size
guides and bulk channeling in n-size guides [105]. The ratio between the transverse wavelength
of radiation and the effective size of a guide, i.e., λ⊥/d ≡ ϑd/ϑc, in other words, the ratio
between the diffraction and Fresnel angles, herein determines the main criterion defining
character of radiation propagation. If this ratio is small, the ray optics approximation is
valid, and we deal with the large number of bound states. In turn, at λ⊥ ' d, a few modes
will be formed in a quantum well of the interaction potential, along with just a single mode,
for λ⊥ � d. Solution of the wave equation of the radiation propagation in such guides,
moreover, demonstrates that at the center of a guide the flux peaking of x radiation, i.e., the
increase of the channeling state intensity in the center of a guide, should take place [125].
This feature is a proper channeling phenomenon [33] and can be explained only by the
modal regime of radiation propagation. The latter is of particular interest to researchers.

Obviously, all the considerations taken for X-rays should be valid for thermal neutrons.
Some of them have been already proved [41,126,127].

A similar problem of interaction of a charged particle with the inner surface of a
cylindrical cavity in an infinite insulator has been also analysed based on the Hamiltonian
formalism. We have succeeded in reducing the interaction potential for a charged particle
in the field of surface excitations. Neglecting excitations of the wavelengths comparable to
the cavity radius, the interaction potential has been explicitly written revealing its complex
nature. An imaginary part of the potential leads to a finite width of the energy levels and is
not examined in a general form. However, as an example, the energy losses of a particle
per unit of traveled distance are obtained at its interaction with surface plasmons. The
analysis of a real part of the potential, instead, has been carried out for two limiting cases.

We have shown for the first time that at the limit ωsR0/v� 1, the induced potential
of interaction of a charged particle with the cavity surface acts as a scattering potential
(forming a reflecting barrier), while at ωsR0/v � 1, it reveals a potential well near the
surface. The width of the potential well depends on the speed of the particle, i.e., the higher
the speed of the particle, the wider the well. In both cases considered, the real potential
logarithmically tends to plus infinity. The maximum value of the induced potential mainly
depends on the particle charge and its longitudinal velocity. The estimates performed show
that the averaged atomic potential is much higher than that induced for one particle, while
for a beam of many particles channeled in a capillary, the maximum value of the induced
potential is expected to be essentially different.

The theoretical results obtained for charged particles allow us to explain within
unique approach (model) different features of charged particles transmission by capillaries
of various diameters. These characteristics might be absolutely opposite to the results
obtained if described within simple thermodynamic principles for particle diffusion models.
The latter makes it necessary to use different models to describe the results of the same
experiment. The proposed theory, in our opinion, will help to circumvent these difficulties.

We hope that this work, in addition to known theories and models, will lead to a
better understanding of the physics of surface channeling of charged particles along curved
surfaces, will allow a better understanding of the process of effective transmission of
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particle beams by capillaries, and will contribute to the continuation of active research on
the formation of charged particle beams by capillary structures.
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