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Four-wave mixing in wavelength-division-multiplexed soliton
systems: damping and amplification
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Four-wave mixing in wavelength-division-multiplexed soliton systems with damping and amplification is
studied. An analytical model is introduced that explains the dramatic growth of the four-wave terms. The
model yields a resonance condition relating the soliton frequency and the amplifier distance. It correctly
predicts all essential features regarding the resonant growth of the four-wave contributions.  1996 Optical
Society of America
In realistic long-distance fiber-optic communication
systems damping effects are signif icant. Use of
erbium-doped fiber amplif iers to overcome damping
has made soliton communication systems feasible.
The problem that we consider here is wavelength-
division-multiplexed soliton systems in the presence
of both damping and amplification. This case dif-
fers from that of the ideal f iber, in which it can be
demonstrated analytically1 that four-wave interaction
terms grow from a vanishing background, become
nonnegligible for a period of time, and then decay.

The practical relevance of the growth of four-wave
mixing (FWM) in fiber-optic soliton systems was dis-
cussed in Ref. 2 mainly through numerical simulations.
In this Letter we develop a suitable analytical model
to explain this growth. The model predicts reso-
nance at frequency locations that are commensurate
with a given amplif ier spacing. We discuss a number
of different situations: (i) In the general case we
solve the model both analytically and numerically and
obtain the growth and saturation of the FWM terms.
(ii) As a special case we discuss the pure resonance
situation, in which we assume that the solitons pro-
vide a slowly varying background. This yields reso-
nant amplifier distances consistent with maximum
values of the amplitude of the FWM terms, in
agreement with the values discussed in Ref. 2.
(iii) We show that the analytical results of the model
are in complete agreement with direct numerical
simulations of the full system. It is clear that FWM
phenomena in soliton systems (even beyond those
considered in f iber optics) are extremely important.
In fiber-optic systems the resonant growth of FWM
terms can cause interference jitter, thereby increasing
bit-error rates. This Letter clarif ies the interplay
between two building blocks associated with nonlinear
0146-9592/96/201646-03$10.00/0
systems: solitons and FWM3,4 in the presence of
amplification and damping.

The relevant wave equation is the nonlinear
Schrödinger (NLS) equation with damping and peri-
odic amplif ication:
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where G is the normalized loss coeff icient, za is the
normalized characteristic amplifier spacing, and z
and t are the normalized propagation distance and
the normalized retarded time, respectively, expressed
in the usual nondimensional units. We take into
account5,6 the loss and amplif ication cycles by looking
for a solution of the form qsz, td ­ Aszdusz, td, with A
real. Taking A to satisfy
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we show that Eq. (1) becomes
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where gszd ­ A2szd ­ a0
2 expf22Gsz 2 nzadg for

nza # z , sn 1 1dza, n $ 0 and a0 ­ h2Gzay
f1 2 exps22Gzadgj1/2, so that k gszdl ­ 1 over each
amplification period.

In the ideal case f gszd ; 1g1 it is possible to write
u ­ us 1 uFWM 1 Ose3d, where e, defined below, is
a small parameter corresponding to widely spaced
wavelength-division-multiplexed channel frequencies;
us represents the Os1d soliton contributions [possibly
 1996 Optical Society of America



October 15, 1996 / Vol. 21, No. 20 / OPTICS LETTERS 1647
corrected by the Osed frequency shift during the colli-
sion], and uFWM , Ose2d represents the FWM terms.
When N ­ 2 we have simply us ­ u1 1 u2, where u1
and u2 are localized in frequency around V1 and V2.
In this case the four-wave contribution uFWM consists of
two separate terms localized around the FWM frequen-
cies V112 ­ 2V1 2 V2 and V221 ­ 2V2 ­ V1. That is,
we decompose uFWM as uFWM ­ u112 1 u221.

Figure 1 shows a numerical simulation of a typi-
cal two-soliton collision with G ­ 10, za ­ 0.2, and
V1 ­ 2V2 ­ 23, and Fig. 2 displays the corresponding
frequency spectrum. It is evident that the amplifica-
tion process induces instability and growth of the FWM
terms whose amplitude is an order of magnitude larger
than that in the unperturbed case (see also Ref. 2), and
the process saturates after the collision is completed.
Also, the interplay between the four-wave components
and the amplif ication process produces a rich structure
of secondary maxima in the frequency spectrum.

The resonant growth of the four-wave products can
be analytically explained by the same basic decompo-
sition as that of the ideal case. That is, we substitute
u , uS 1 uFWM into Eq. (3) and look only for terms that
are located in frequency near, say, V221 (that is, we dis-
card terms located near the frequency channels of the
solitons and the remaining FWM term). In this way,
neglecting small terms, we obtain a model equation for
the growth of FWM terms (or, more explicitly, u221) in
the presence of damping and amplification:

iuz 1
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utt 1 gszdu2
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p ­ 0 , (4)

where for simplicity u221 is now called u. To the
leading order we replace u1 and u2 with the one-
soliton solution of the NLS equation: uj sz, td ­ Aj
expfixj sz, tdgsech Sj sz, td, where Sj sz, td ­ Ast 2 Tj 2

Vj zd and xj sz, td ­ Vj t 2 sVj
2 2 Aj

2dzy2. We con-
sider the physically relevant case A1 ­ A2 ­ 1 and
V2 ­ 2V1 ; Vy2 . 0, so that V is the frequency-
channel separation and e ­ 2yV. Also, we set T1 ­
T2 ­ 0 so that the collision between the two solitons
is located at z ­ 0 [in an improved model we also use
the Osed corrections to the soliton channels; cf. Eq. (4)
of Ref. 7].

It is convenient to write the 221 FWM term as
usz, td ­ F sz, tdexpf2isk4z 2 v4tdg, where k4 and v4
are the characteristic parameters of the FWM con-
tribution: v4 ; V221 ­ 2V2 2 V1 ­ 3Vy2 and k4 ;
s2V2

2 2 V1
2dy2 ­ 1/8V2. Introducing the above ansatz

into Eq. (4) yields
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As a first approximation we neglect all derivatives
in Eq. (5), which corresponds to assuming that F sz, td
is a slowly varying envelope of usz, td. In the ideal
case [if gszd ; 1] this allows us to obtain immediately
the result that F sz, td ­ u2

2sz, tdu1
psz, tdyV2, which

reproduces the four-wave contributions coming from
the asymptotic expansion of the two-soliton solution of
the NLS equation.1
If gszd is not constant F does indeed have significant
spatial modulations, and, in the slowly varying enve-
lope approximation, we have
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(6)

The essence of the ordinary differential equation (6)
is represented by the relation between the frequency
of free oscillations, v4

2y2, and the frequency of the
forced oscillations that are due to the presence of
gszdu2

2u1
p expfisk4z 2 v4tdg. In particular, a reso-

nance is reached whenever the frequency of the
forcing terms coincides with V2 (i.e., when there is
phase matching). More precisely, we expand gszd
in Fourier series: gszd ­

P1`
n­2` gn exps2inkazd,

where ka ­ 2pyza. The oscillations of u2
2u1

p are
almost exactly canceled by expfisk4z 2 v4tdg, since
argfu2

2u1
pg ­ 2x2 2 x1 ­ v4t 2 sk4 2 1/2dz. Hence the

resonance condition is verif ied when nka 2 1/2 ­ V2.
For a fixed value of V the previous condition deter-
mines the values of the amplif ier distance that produce
resonance:

Fig. 1. Two-soliton collision in the presence of damping
and periodic amplif ication. G ­ 10, za ­ 0.2, V1 ­ 2V2 ­
23, A1 ­ A2 ­ 1, and T1 ­ 2T2 ­ 5.

Fig. 2. Fourier spectrum relative to the collision shown in
Fig. 1.
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za ­ 4npys2V2 1 1d . (7)

Equation (7) is essentially the resonance condition that
appears in Ref. 2 and agrees with the results obtained
by numerical simulations, which are discussed below.

Now we turn our attention to the full model.
Equation (5) can be solved exactly by use of Fourier
transforms. We define F̂ sz, vd ; FvfF sz, tdg ­R1`

2` dt exps2ivtdF sz, td, so that
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The Fourier coefficients of gszd are given by gn ­
a0

2za
21

Rza
0 dz expsinkaz 2 2Gzd ­ GzaysGza 2 npid.

Also, we use Fvfsech2 t sechst 1 Ddg ­ p sechspvy2d
3 I sD, vd, where I sD, vd ­ fcosh D 1 iv sinh D 2

exp ivDgysinh2 D, and solve Eq. (8) to obtain (after the
change of variable z ­ Vz)
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where gnsvd ­ sv2 1 2Vv 1 2V2 2 2nka 1 1dy2V.
As z ! `, for large V we expect the major contri-

bution to F̂ to come from the vicinity of vn where
vn denotes the zeros of gnsvd: vn

6 ­ 2V 6 s2nka 2

V2 2 1d1/2. In fact this condition (which is the general
phase-matching condition) gives a good approximation
of the location of the maxima and their dependence on
the amplifier distance.

Because of the sechspvy2d in front of the integral,
we expect the value of jF̂ j to be exponentially small un-
less vn

6 . 0, which implies that the only relevant root
is vn

1. Conversely, if ka and V are such that vn
1 ­ 0

this approach reproduces the resonance condition pre-
viously obtained in the slowly varying amplitude ap-
proximation [Eq. (7)]. The resonance is reached when
the maximum of jF̂ j is located at v ø 0, that is, when
the carrier frequency of u221 coincides asymptotically
with the frequency of the unperturbed case (i.e., V221).

When vn
6 fi 0 the actual maximum of F̂ is slightly

displaced from vn
6, as a result of the role played

by the sechspvy2d. To compute this deviation we
must analyze the structure of F̂ . When z ! ` the
integral on the right-hand side of Eq. (9) is equivalent
to a Fourier transform. In fact, such a trans-
form can also be calculated exactly: FafI sz , vdg ­
psa 1 vdcoshstvy2dysinhfpsa 1 vdy2gcoshspay2d.
Equation (9) then yields

F̂ sz, vd ,
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.

(10)

Given V and ka, we use expression (10) to look
for the maxima of jF̂ j and their frequency location.
The corresponding predictions for V ­ 12 are com-
pared in Fig. 3 with the results coming from numerical
Fig. 3. Amplitude and frequency of the secondary maxima
of jq̂j for V ­ 12 as a function of the amplifier distance.
Solid curves, numerical results from Eq. (1); dashed curves,
theoretical predictions from expression (10).

integration of the full NLS equation with damping and
amplification [Eq. (1)]. The agreement between the
predicted amplitudes and frequencies of the maxima
and the values computed numerically is remarkable.

The phenomenon of resonant growth of FWM terms
in the presence of periodic amplification raises a num-
ber of important questions. For example, how are mul-
tisoliton interactions affected by FWM? Preliminary
numerical results of three-soliton collisions indicate
that the presence of nonnegligible FWM in the same
frequency channel as a soliton can cause significant in-
terference problems. Also, investigations of collisions
between solitons and the resonant FWM products must
be undertaken, and in particular whether these colli-
sions can significantly modify relevant soliton parame-
ters needs to be studied. Finally, it is not clear a priori
what the resulting effect of introducing filters in the
system is and how the presence of filters modif ies the
production and the growth of FWM terms. We plan to
investigate these problems.
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