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Abstract. - We study numerically the four-dimensional f J Ising spin-glass at nonzero external 
magnetic field, We find numerical evidence of the existence of the Almeida-Thouless critical line. 
The critical exponents differ from those found at  zero external magnetic field. 

Nowadays there is great interest in understanding the physical properties of short-range 
spin glasses. There are two main approaches in order to understand what the nature of the 
phase transition is and how to describe the spin-glass phase. The frst one is the replica 
approach[l] successfully applied for the SK model[2] and the second one is the 
phenomenological droplet approach [3]. Their predictions are substantially different. One of 
the most striking differences between both approaches concerns what the nature of the spin 
glass phase is. If the replica approach admits the possibility of a spin glass phase with the 
same features as in the SK model (existence of a lot of thermodynamic phases hierarchically 
organized and differing in O(1) total free energy) the droplet theory takes as a basic 
assumption the existence of a unique thermodynamic state. 

Quite recently [4], the hypothesis of a unique thermodynamic state has been tested in the 
4d Ising spin glass with a continuous distribution of Gaussian couplings. Using Monte Carlo 
numerical simulation it was found that the probability P(0) to have overlap q = 0 between 
two different replicas is nearly constant with the size L of the lattice. This cannot be 
explained within the droplet approach. Another prediction of the droplet approach concerns 
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the transition line in the field-temperature (h, 7')-plane (the so-called Almeida-Thouless (AT) 
line in mean-field theory[5]). It has been argued that the spin glass phase cannot survive 
under application of an external magnetic field. 

During the past, the numerical research has been mainly concentrated in the 
determination of a phase transition at  zero external magnetic field. Even though there is no 
doubt on the existence of a phase transition in the four-dimensional Ising spin glass [6], the 
situation is less clear in the three-dimensional case [7-91. Very recently some results have 
been obtained on the existence of the AT line in 3d Ising spin glass [lo, 111. The stability of 
the ordered phase when applying a magnetic field has been investigated and the results 
suggest that there is no AT line. 

In this letter we address the question about the existence of the AT line in the 4d & J Ising 
spin glass using Monte Carlo numerical simulation. We have found evidence of a phase transition 
far from the critical point in the (h, 7')-plane which suggests that there is a irreversibility line 
along which the spin glass susceptibility diverges. The model is defined by 

and the J ,  couple nearest neighbours in a four-dimensional lattice with periodic boundary 
conditions. The J ,  are quenched variables which take the discrete values & 1 with equal 
probability. The spins oi also take the discrete values ? 1. Monte Carlo simulations make use 
of the heat bath algorithm. In order to enlarge statistics, 8 identical systems run in parallel 
each one with the same realization for the disorder. 

The overlap among two different replicas with the same realization of the disorder has 
been computed at each time t: 

where {Q:; j = 1, 2) denotes spins oi belonging to replica j .  Once the system 
thermalized, one calculates the probability distribution of overlaps P(q)  from 
obtained during an interval of to Monte Carlo steps: 

(2) 

has been 
statistics 

(3) 

where (...) means average over the quenched disorder. From this distribution its different 
moments can be obtained: 

- 1  

We define the spin glass susceptibility 

All the information being in the function P(q) ,  the transition temperature and the critical 
exponents can be found using finite-size scaling as shown in [6]. Near the critical temperature 
the spin glass susceptibility follows the scaling law 

xsc = L ~ - T ~ $ L ~ / Y ( T  - Tc )> * (6)  
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At zero external magnetic field the phase transition can be found using the scaling function g, 

which scales like 

g = g(L ''' (T - T,  )) . (8) 

We have studied the system at zero external magnetic field for the sizes L = 3,4,5 and a 
number of samples 2500, 2500, 1200, respectively. In each case a set of 10 different 
temperatures have been simulated ranging from T = 1.5 up to T = 2.8. At zero field we have 
not used any special cooling procedure, since the samples seemed to thermalize relatively 
easily near the transition temperature. In general, 15 000 Monte Carlo steps where enough to  
thermalize the system in the range of temperatures and sizes studied. 

In fig. 1 we show the g-function equation (7) plotted vus. the temperature. From the scaling 
equation (8) we obtain T, = 2.06 rt 0.02 and v = 0.7 -t. 0.2. In fig. 2 we determine the 
exponent q using the scaling behaviour of the spin glass susceptibility given in eq. (6). We 
obtain = - 0.25 rt 0.01 and from the scaling relation y = (2 - q ) v  we obtain y = 1.6 -t. 0.4. 
Our results are in good agreement with those obtained from high-temperature expan- 
sions [12] which give T,  = 2.02 & 0.06 and y = 2.0 rt 0.4. The exponents are also similar (but 
not equal) to  those found in the 4d Ising spin glass with Gaussian couplings. 

We now present the results for finite applied magnetic field. Using the renormalization 
group expansion near six dimensions there is no reason why the criterium of universality for 
the critical exponents should apply in short-range spin glasses[l3]. Then, if there is a 
divergence in the spin glass susceptibility, there are not strong arguments that the critical 
exponents will be the same as those at zero external field. We have simulated eq. (1) with 
h = 0.6. This is a relatively strong magnetic field. Within mean-field theory and for an 
applied magnetic field h one would expect to find a phase transition at a temperature given by 
= TAT(h/fi), where c is the connectivity and TAT(h) is the AT line in the SK model. In our 
case, the transition should be approximately at T = 1.4. With such an applied magnetic field 
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Fig. 1. - Function g at zero magnetic field as defined in eq. (7) plotted vs. temperature for three sizes 
L = 3,4,5. The symbols are: 0 L = 3, A L = 4, 0 L = 5. 
Fig. 2. - Finite-size scaling for the spin glass susceptibility at zero magnetic field according to eq. (6). 
The same symbols as in fig. 1. 
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Fig. 3. - Log-log plot of the spin glass susceptibility in magnetic field h = 0.6 defined in eq. (9) vs. size 
for 8 different temperatures. The symbols are: 0 T = 2.5, n T = 2.25, 0 T = 2.0, x T = 1.75, 
+ T = 1.5, T = 1.25, T = 1.0. 

Fig. 4. - Finite-size scaling for the spin glass susceptibility in magnetic field h = 0.6 defined in eq. (9) for 
different sizes and temperatures. The symbols are: 0 L = 3, A L = 4, 0 L = 5,  x L = 6,  
+ L = 7 .  

the thermalization becomes very painful because the magnetic field slows the flipping of the 
spins. In order to be sure we have thermalized the system, we have used a simulated 
annealing scheme [14]. We considered that we reached full thermalization when the order 
parameters ( q 2 )  and ( q 4 )  did not experience variation to further increases of Monte Carlo 
steps in all the steps during the cooling procedure. Five sizes L = 3,4 ,5 ,6 ,7  have been 
studied. The number of samples ranges from 192 for L = 3,4,5,6 up to 64 in case L = 7. For 
all sizes the samples are thermalized at  T = 2.5 and the temperature is progressively 
decreased down to T = 1.0 in 12 temperature steps of size 6T = 0.25. The different numbers 
of Monte Carlo steps which the samples stay at  each temperature in the annealing process 
are the following: for L = 3 ,4  the system stays 10 000 Monte Carlo steps a t  T = 2.5 up to 
75 000 at  T = 1.0, for L = 4,5 the system stays 10000 Monte Carlo steps at T = 2.5 up to 
120 000 at  T = 1.0 and for L = 7 the system evolves over 20 000 Monte Carlo steps a t  T = 2.5 . 
up to 120 000 at  T = 1.0. Furthermore, a t  each temperature statistics is collected over 10 000 
Monte Carlo steps. For the largest size L = 7, the system has evolved over approximately 
half a million Monte Carlo steps until reaching T = 1.0. 

In order to obtain the spin glass susceptibility equation (5), we have calculated P(q)  from 
eq. (3). Since we are far from T,  and we have a finite size, there is an important contribution 
to the tail of P(q)  corresponding to negative values of the overlap. This effect of the tail would 
violate the scaling relation equation (6) obtained under the assumption of a unique 
thermodynamic solution. To suppress this undesirable finite-size effect (which disappears 
only for very large sizes) we have calculated 

Figure 3 shows the spin-glass susceptibility equation (9) a t  different temperatures and 
sizes. For T = 1.1, xSG seems to diverge approximately like L2.7. This gives 7: - - 0.7( t 0.2) 
which is different from the exponent 7 found at  zero magnetic field. Figure 4 shows the 
scaling relation equation (6) for the spin-glass susceptibility equation (9). Data for L = 3 show 
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a slight deviation from the scaling behaviour possibly because the size is too small or because 
we have reached temperatures too far from the scaling region (i .e.  the largest one, T = 2.5, is 
more than two times the estimated critical temperature). A divergence appears a t  
T = 1.1( 2 0.2) and v - OB(? 0.2) and the critical exponents seem to differ from those 
previously found at  h = 0. The magnitude of this temperature is close to that found within 
mean-field theory. In this case (and also in the previous one with zero magnetic field), errors 
are being estimated by looking at  the range of exponents and critical temperatures for which 
the scaling equation (6) is reasonably satisfied, These procedures give a qualitative estimate. 

In summary, we have looked for the AT line in the 4d Ising spin glass. At zero external 
field we find the phase transition and we then obtain critical exponents which are similar to 
those obtained in the case of Gaussian couplings [6] and are in agreement with those obtained 
making high-temperature expansions [12]. At h = 0.6 we are far from the critical point a t  
zero field and we have found numerical evidence of a divergence of the spin-glass 
susceptibility defined in eq. (9). In this case, thermalization is very slow but we have been 
able to equilibrate samples using a simulated annealing procedure. Our results suggest the 
existence of a phase transition at  T = 1.1 near the critical temperature predicted within 
mean-field theory. Our estimates for the critical exponents are different to those found at  
zero magnetic field. The existence of this transition is an important result, since it contradicts 
one of the most important consequences of the droplet approach. After completing this work, 
we have known about a different numerical approach to this problem which supports our 
main conclusion on the existence of the AT line [15]. 

The simulations described here were performed in a Transputer machine of 64 nodes 
(T805) with a peak performance of 100M flops. 
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