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Hydrodynamics and growth laws in lamellar ordering
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Abstract – Ordering of lamellar phases described by a free-energy functional with short-range
interactions is numerically investigated in two dimensions by means of a pseudo-spectral method.
The ordering process is found to depend on the fluid viscosity: it is arrested for large viscosity
values and proceeds as a power law for small ones, with a crossover regime for intermediate values.
At varying the free energy parameters, strong evidence has been found that the ordering law, unlike
binary mixtures, is not unique.
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Introduction. – In many complex fluids the compe-
tition between attractive and repulsive interactions
stabilizes pattern formation with modulated struc-
tures. Lamellar phases are a typical example observed,
e.g., in block copolymer melts [1], oil-water surfactant
mixtures [2], supercooled liquids [3] and charged colloidal
suspensions [4].
The formation of lamellar structures after a quench is

characterized by the presence of defects and frustration
on large scales [5]. The ordering process is thus typically
slower than in ordinary binary mixtures and, sometimes,
freezing is observed at late times. In simple binary
mixtures different regimes with power law growth for
the typical size of domains have been identified with
exponents depending on the physical mechanism active
during phase separation. In each regime universality of
growth exponents is accepted (for a review see [6]). In
lamellar systems the situation is far less clear and basic
questions remain to be clarified. Recently, relations with
the dynamics of structural glasses have been also pointed
out [3,4,7].
In this letter we focus on the effects of hydrodynamics

on lamellar ordering. In real systems indeed the velocity
field, inducing motion around local or extended defects, is
expected to play a relevant role on the ordering process.
In particular, we consider a model based on a Ginzburg-
Landau free-energy with short-range interactions, where
dynamics is described by convection-diffusion and
Navier-Stokes equations [8]. At equilibrium, this model

is used to describe di-block copolymers in the weak
segregation limit [9,10]. Simulations of this model for
small size systems have shown that the presence of
hydrodynamics is crucial to observe well-ordered lamellar
domains. In ref. [8] the scale separation between the
simulation box size and the lamellar period was of order
10. In more recent simulations with larger scale separation
(∼ 100) [11], for a limited set of free-energy parameters,
slow logarithmic evolution was found at late times, and
attributed to the formation of grain boundaries between
differently oriented lamellae domains. Power law growth
has been also found [12–19] for a variant of the model
here considered with the lamellar phase induced by
long-range interactions. This model, without hydrody-
namics, has been also studied in relation with pattern
formation in Raleight-Bénard cells above the convective
threshold [20,21].
The aim here is to explore more widely the parameter

space of the model studied in [8]. The main outcome of
this study is that different ordering laws can be found for
the same value of viscosity. This result indicates that in
lamellar systems, differently from binary mixtures, growth
properties depend on specific equilibrium characteristics of
the system.

Model and basic equations. – The mixture under
consideration is described by the free-energy [9]

F=

∫
dr
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]
, (1)
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ϕ being the order parameter that represents the concen-
tration difference between the two components of the
mixture. We take b, c > 0 to ensure stability. For a> 0
the fluid is disordered; for a< 0 and κ> 0 two homo-
geneous phases with ϕ=±√−a/b coexist, as in usual
binary mixtures [6]. A transition into a lamellar phase
occurs for κ< 0. In the simplest approximation, assuming
a profile A sink0x for the direction transverse to the lamel-
lae, one finds the transition (|a|= b) at a≈−1.11κ2/c
where k0 =

√−κ/2c and A2 = 4(−a+κ2/4cb)/3 [11].
The system dynamics is ruled by the coupled set of

equations

∂tuα+u ·∇uα = ν∇2uα−∂αp+ ∂αϕ(c∇4ϕ−κ∇2ϕ),
(2)

∂tϕ+u·∇ϕ=Γ∇2µ =Γ∇2(aϕ+ bϕ3−κ∇2ϕ+ c∇4ϕ) ,
(3)

where we assumed an incompressible fluid velocity field
u (i.e.∇ ·u= 0) with a constant density equal to 1,
and µ= δF/δϕ is the chemical potential. Notice that the
Laplacian in the r.h.s. of (3) ensures the conservation of
ϕ. In the Navier-Stokes equation (2), ν is the kinematic
viscosity; the pressure p includes all terms that can be
expressed as gradient of a scalar function. The last two
terms result from derivatives of the pressure tensor [8] or,
equivalently, from the thermodynamic force −ϕ∇µ (see,
e.g., refs. [22,23]). Equation (3) describes the advection of
the order parameter and Γ is a mobility coefficient that
sets the time scale of the interface diffusion.
We work on a two-dimensional square L×L domain

with periodic boundary conditions. Equations (2) and
(3) are integrated by using a standard pseudo-spectral
algorithm with a 2/3-dealiasing scheme that was derived
from a code used for simple binary mixtures [23] (see
ref. [24] for more details on pseudo-spectral methods).
Time integration is performed by a second-order Adam-
Bashforth scheme with exact integration of the linear
terms. The simulation grid consists of N ×N collocation
points (typically we usedN = 1024 and 2048). Preliminary
numerical tests were performed to establish the optimal
space-step ∆x=L/N in order to have the largest system
size with good resolution of the interface and of the
small scale velocity features. For small viscosity we found
that ∆x≈ 0.5 satisfies such requirements. We checked, in
systems of small size, that the equilibrium properties of
the lamellar system (1) were correctly reproduced. One
of the advantages of pseudospectral methods is that
stability properties are rather robust, which is useful while
varying the system parameters.
We performed a set of simulations varying ν and Γ.

As for the parameters of the functional (1), we fixed
−a= b= 1 while κ and c were varied while maintaining
the system in the lamellar phase. Table 1 summarizes the
simulation parameters used and labels the different runs
that are discussed in the sequel.

Kinetics of lamellar ordering. – Let us first give
a general picture of the ordering process of the lamellar

Table 1: Summary of simulations parameters:N2 is the number
of mesh points, ∆x=L/N the mesh step, ν the fluid viscosity,
Γ the mobility, and c, κ free-energy parameters (we fixed −a =
b = 1). The exponent α, explained in the text, is the growth
exponent obtained by a best fit. The symbol A denotes arrested
dynamics and N non-clear scaling (see text). When numbers
are given the values are obtained by a least square fit on a
time window variable from 1.5 to 2 decades, typically t ∈
[500 : 60000] in the center of the scaling region. Run 5 and
5b were done starting from different initial conditions.

Run N ∆x ν Γ c −κ α

0 1024 1 101 1 2 2.47 A
1 1024 1 100 1 2 2.47 A
2 1024 0.5 10−1 1 2 2.47 N
3 1024 0.5 0.075 1 2 2.47 N
4 1024 0.5 0.25 1 2 2.47 N
5 1024 0.5 10−2 1 2 2.47 0.12(1)
5b 1024 0.5 10−2 1 2 2.47 0.12(1)
6 1024 0.5 10−2 0.1 2 2.47 0.12(3)
7 1024 0.5 10−2 5 2 2.47 0.13(1)
8 1024 0.5 10−2 10 2 2.47 0.11(2)
9 2048 0.5 10−2 1 2 2.47 0.12(1)
10 2048 0.5 10−2 1 2 1.43 0.20(2)
11 1024 0.5 10−2 1 2 1.6 0.20(2)
12 1024 0.5 10−2 5 2 1.6 0.19(2)
13 1024 0.5 10−2 10 2 1.6 0.18(2)
14 2048 0.5 10−2 1 2 1.6 0.20(2)
15 1024 0.5 10−2 1 4 2.9 0.12(2)
16 2048 0.5 10−2 1 4 2.9 0.13(3)
17 1024 0.5 10−2 1 4 3.9 0.13(2)
18 1024 0.5 10−1 1 4 4.9 N
19 1024 0.5 10−2 1 4 4.9 0.19(2)
20 2048 0.5 10−2 1 4 4.9 0.20(2)

system here considered. Runs start with zero velocity
and a disordered configuration for the order parameter,
obtained by randomly choosing ϕ∈ [−0.1 : 0.1] at each grid
point. After the quench, for all values of the viscosity,
lamellae evolve until the equilibrium wavelength is locally
reached. At this stage the lamellae form a tangled pattern
with many local defects. Later on, the system continues
to order only at sufficiently low viscosity. An example
of this behavior is shown in fig. 1, where we compare
the time evolution of a low viscosity simulation (a) with
a high viscosity one (b), holding fixed all the other
parameters. As one can see, the patterns are very similar
until t∼ 100 while, as time goes on, ordering proceeds
with the formation of large domains of aligned lamellae
only for low viscosity. On the contrary, for large viscosity,
one observes almost frozen patterns of entangled lamellae
with persistent defects. This confirms the importance of
hydrodynamics for lamellar ordering as already described
in previous simulations performed with lattice Boltzmann
methods [8].
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(a) (b)

Fig. 1: (a) Snapshot of the order parameter for a portion 400× 400 at four different times t= 102, 103, 104, 105 for run 9 that is
c= 2, κ=−2.47 with ν = 0.01. (b) The same for run 1, i.e. c= 2, κ=−2.47 with ν = 1.0 (run 0 with ν = 10 presents the same
qualitative features).
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Fig. 2: (a) Order parameter structure factor S(k, t) at different times (see legend) for run 9. Inset: time evolution of the peak
position in the same run (this was evaluated as the peak position of the Lorentzian that best fits the structure factor). (b) The
same for run 1.

A more quantitative insight into the ordering process
can be obtained by looking at the evolution of the
spherically averaged structure factor

S(k, t) = 〈ϕ̂(k, t)ϕ̂(−k, t)〉, (4)

(where ϕ̂ denotes the Fourier transform of the order
parameter, and the brackets the average of a shell of
radius k), shown in fig. 2. In principle, in eq. (4), one
should also perform an ensemble average over different
initial conditions. However, for large system sizes as here, a
self-average property can be assumed and checked in some
cases (as in, e.g., runs 5 and 5b). For both value of ν, in the
early regime, S(k, t) develops a maximum at a momentum
kM decreasing with time as in phase separation of usual
binary mixtures. After kM stabilizes on the equilibrium

value k0, further evolution is signalled by the increasing
of the peak height together with a narrowing of its width,
which is only observed in the low viscous case. As shown
in the inset of fig. 2, the behavior of kM is slightly more
complex due to the presence of an undershoot before the
stabilization to k0. This undershoot seems to be origi-
nated by hydrodynamic effects, indeed it becomes less
and less evident by increasing ν, and disappears when
hydrodynamics is eliminated (not shown). A typical length
scale of the system can be obtained from the inverse of the
width of the structure factor, which can be estimated by
approximating S(k, t) as a squared Lorentzian [19]

S(k, t) =
A2(t)

[(k2− k2M (t))2+B2(t)]2
, (5)
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Fig. 3: (a) Inverse of the width of the structure factor, �, vs. time for the runs 1, 2, 3, 4, 5 (from bottom to top). The straight
solid line displays the power law �(t)∼ t0.12. Notice that for intermediate viscosities there is a crossover from arrested dynamics
to growth with the crossover point that shift to longer times as ν get larger. (b) �(t)/�∗ vs. t/t∗ for the runs 9, 10, 14, 16, 20 (see
table 1 for details). To compare the different runs we rescaled both � and t with two factors �∗ and t∗, which have been chosen
ad hoc to overlap the scaling ranges. At the first stage of the growth, a fair overlap of all curves is observed. At the late times
two different laws emerges compatible with power laws with exponents 0.12 and 0.20 (shown in solid lines). Inset: the same as
(b) for runs 7, 8, 9 in which all parameters are fixed but Γ, see table 1; the straight line as slope 0.12.

where the width at half maximum is given by

δk(t) =
√√
2− 1B(t)/k2M (t) and the peak height by

Sp(t) =A
2(t)/B4(t). The typical length scale is defined

as �(t) = 2π/δk(t). At large times we found that both
Sp(t) and �(t) behave in the same way with power law
Sp(t)∝ �(t)∝ tα in cases when lamellar ordering proceeds.
The values of α in the different runs are summarized
in table 1. As one can see we found two values α= 0.12
and α= 0.2. Data corresponding to α= 0.12 could be
also fitted with a logarithmic law. Previous simulations
and theoretical arguments [7,11,14] suggest that loga-
rithmic behaviour is related to the presence of extended
defects (grain boundaries) between domains of lamellae
differently oriented. However, our simulations do not
show such kind of defects. Moreover, in all simulations
interpreted with logarithmic behaviour as in [11], the
configurations were practically not evolving at late times,
which is not what we observe here. These considerations
strengthen our interpretation in terms of a power law
with α= 0.12 (see fig. 3), which is further supported by
the χ2 probability which for the power law fit is bigger
than in the case of the logarithmic fit.
The effects of viscosity on the ordering are summarized

in fig. 3(a) where the time evolution of �(t) is shown
for different values of ν. Initially, the growth is similar
for all values of ν. Later, for low viscosity (ν = 10−2),
the growth continues with power law (�(t)∼ t0.12 for the
particular choice of free-energy parameters of runs 0-9)
while, at the higher viscosity considered (ν = 1, 10), the
growth is practically arrested, and no further evolution
can be appreciated, as seen in fig. 1(b). Intermediate cases
(ν = 0.075, 0.1, 0.25) show a crossover between the two
behaviors: after an almost flat region l(t) starts to grow at

times which become longer as the viscosity becomes larger.
It is possible that asymptotic growth always occurs, but
that at very high viscosity it starts at times not reachable
in simulations.

Growth laws. – Before presenting our results for the
growth laws we recall that simulations for models with
long-range interactions and without thermal fluctuations
have suggested for the growth exponent the value α=
1/5 [12–14,16,17,19] 1. In the model under investigation,
we considered values of κ and c such that the lamellar
width λ= 2π/k0 is between 7 and 12 to test whether the
size of the lamellae can play a role in their ordering. We
fixed two values of c= 2, 4 and varied κ and, to some
extent, Γ as reported in table 1. Due to the computa-
tional costs, we could not explore more systematically the
parameter space.
As reported in the table and already discussed, for all

the explored values of the parameters we found at low
viscosity, when the ordering proceeds, two different expo-
nents α= 0.12 and α= 0.20. We did not find any clear
trend able to explain the physical mechanism (if any) for
the different exponents in relation with the lamellar thick-
ness or other parameters. In fig. 3(b) we summarize the
results for the largest runs. In particular we show the time
evolution of �(t) (the peak height Sp, not shown, provides
the same information and, in the scaling range, can
be superimposed to �(t) by an appropriate multiplica-
tive factor). The data obtained with different parameters
have been superimposed by rescaling both the time and

1In these models, due to long-range interactions, ordering can
also proceed without hydrodynamics; for a review see, e.g., [17].
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Fig. 4: Data collapse of the structure factor with the form S(k, t) = tαf [(k− k∗)/tα] for (a) run 9 and (b) run 14. Different
symbols (colors online) refer to different times. The exponents used for the collapse are α= 0.12 and 0.2 in the case (a) and (b),
respectively.

�(t) by multiplicative factors t∗ and �∗, respectively2. We
observed a fair overlap of all curves in the first stage of the
dynamics, while in the scaling regime two different laws
emerge as indicated by the two straight lines with expo-
nents 0.12 and 0.20. As shown in the inset of fig. 3(b), the
exponent does not seem to be sensitive to changes in the
mobility Γ.
Finally, as shown in fig. 4, we verify that the structure

factor satisfies the dynamical scaling relation [12]

S(k, t) = �(t)f [(k− k0)�(t)] , (6)

f(x) being a scaling function. Notice that, to make the
test even more severe, we did not use the measured �(t)
for collapsing the data but directly the power law behavior
�(t)∼ tα with the proper exponent α= 0.12 or 0.20 for run
9 and 14, respectively. As one can see the collapse is rather
convincing in both cases demonstrating the presence of
dynamical scaling triggered by different exponents.

Final remarks. – The above results show that, at
least in the framework of the free-energy here considered,
the lamellar ordering dynamics cannot be characterized in
terms of a unique exponent. Indeed, the evidence of two
different exponents is fairly clear. We conclude by stressing
the importance of hydrodynamics in the establishment of
the scaling regime, and that the viscosity seems to set
the length of a crossover from arrested evolution and the
scaling regime.
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