
Learning selective top-down control enhances
performance in a visual categorization task

Top-down control in learning a categorization task

Mario Pannunzi1, Guido Gigante2,5, Maurizio Mattia2, Gustavo

Deco1,3, Stefano Fusi4 and Paolo Del Giudice2,6

1Universitat Pompeu Fabra, Barcelona (Spain),
2Istituto Superiore di Sanitá, Rome (IT),
3Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona

(Spain),
4Center for theoretical neuroscience, Columbia university, NY (USA),
5Mperience s.r.l., Rome (IT),
6Istituto Nazionale di Fisica Nucleare, Rome (IT),

Corresponding author: Mario Pannunzi, DTIC-Universitat Pom-

peu Fabra (55.120) C/ Roc Boronat, 138, 08018 Barcelona, Spain;

mario.pannunzi@gmail.com

We thank Jochen Braun for a critical reading of the manuscript

Articles in PresS. J Neurophysiol (September 12, 2012). doi:10.1152/jn.00208.2012 

 Copyright © 2012 by the American Physiological Society.



Abstract

We model the putative neuronal and synaptic mechanisms involved in learning a visual cate-

gorization task, taking inspiration from single-cell recordings in inferior temporal cortex (ITC).

Our working hypothesis is that learning the categorization task involves both bottom-up, ITC

to pre-frontal cortex (PFC), and top-down (PFC to ITC) synaptic plasticity, and that the latter

enhances the selectivity of the ITC neurons encoding the task-relevant features of the stimuli,

thereby improving the signal-to-noise ratio. We test this hypothesis by modeling both areas and

their connections with spiking neurons and plastic synapses, ITC acting as a feature-selective

layer, and PFC as a category coding layer. This minimal model gives interesting clues as to

properties and function of the selective feedback signal from PFC to ITC which help solving a

categorization task. In particular, we show that, when the stimuli are very noisy because of a

large number of non-relevant features, the feedback structure helps getting better categorization

performance and decreasing the reaction time. It also affects the speed and stability of the

learning process and sharpens tuning curves of ITC neurons. Furthermore, the model predicts

a modulation of neural activities during error trials, by which the differential selectivity of ITC

neurons to task-relevant and task-irrelevant features diminishes or is even reversed, and modula-

tions in the time course of neural activities which appear when, after learning, corrupted versions

of the stimuli are input to the network.
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1 Introduction

A large body of knowledge has accumulated about the brain areas involved in categorization

across multiple sensory modalities auditory (Vallabha et al. (2007)), somatosensory (Romo and

Salinas (2001)), olfactory (Howard et al. (2009)) systems, categorization of visual stimuli being

the most studied (Knoblich et al. (2002)).

Several open questions remain as to the specific roles played by the areas participating in the

association between sensory stimuli and categories (Freedman and Assad (2011); Swaminathan

and Freedman (2012)), and the learning mechanisms involved. The neural correlates of the ac-

quired association carry multiple traces of category-related modulations (Freedman et al. (2001);

Sigala and Logothetis (2002); Freedman et al. (2003); De Baene et al. (2008); Meyers et al.

(2008)); however it is not always clear (especially for feature-encoding areas) whether such mod-

ulations are epiphenomenal reflections of category-specific neural signals generated elsewhere, or

they have an important computational role in the categorization process.

Among the brain areas involved in categorization, prefrontal cortex (PFC) plays a fundamen-

tal role, notably for learning novel associations and encoding abstract rules (Seger and Miller

(2010)). Neurons in PFC show sharp response properties across boundaries between categories

largely independent of stimulus similarity (Freedman et al. (2003)). However, category-related

actions/decisions involve multiple areas: premotor cortex for action planning (Boettiger and

D’Esposito (2005); Muhammad et al. (2006)); parietal cortex to implement visuospatial pro-

cessing linking perceptual information with potential responses; basal ganglia to gate selectively

cortical areas for choice of action (Humphries et al. (2006); Seger (2008)); hippocampus and me-

dial temporal lobe to encode and learn items to be categorized (Myers et al. (2003); Shohamy and

Wagner (2008)); the dopaminergic system and the associated plasticity of striatal and cortico-

striatal synapses, to support reward-modulated learning; inferotemporal cortex (ITC), where a

modular, feature-based representation has been observed (Tsunoda et al. (2001); Yamane et al.

(2006)), and where neurons with category-related tuning properties have been reported (Vogels

(1999); Freedman et al. (2003)).

A general plausible computational principle underlying the categorization process is that it

must rely on the selection of relevant features in a specific behavioural context, and neurophysi-

ological studies in ITC have indeed shown that the activity of neurons encoding sensory features

relevant for the task are maximally modulated (see Sigala and Logothetis (2002); De Baene et al.

(2008).
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Starting from this evidence, the basic assumption of the present modeling work is that a

mutual interaction between a feature-encoding (e.g. ITC) and a category-encoding (e.g. PFC)

brain areas is the fundamental neural substrate of categorization. We implement a learning

scenario for the acquisition of an association between stimuli and categories, and explore the

consequences of top-down selective modulation of sensory representations.

We take as a relevant testing ground of our model the results of Sigala and Logothetis

(2002); De Baene et al. (2008), extending the scope of our previous work Szabo et al. (2006) to

the domain of dynamic, online learning, and from this we address more general questions about

the computational role of learned selective feedback in a categorization task. As a significant

progress of Szabo et al. (2006) in the present work we face the full complexity of the ongoing

dynamic coupling between spiking activity induced by stimuli and the spike-driven, local synaptic

dynamics. Beyond the appeal in terms of biological plausibility this entails inter alia coping with

the finite-size effects which are important in determining learning histories (see Del Giudice et al.

(2003)), due to the distribution of firing rates and the consequent distribution of rates of synaptic

changes.

Based on simulations of a multi-modular architecture composed of spiking (integrate-and-fire)

neurons and plastic, spike-driven synapses, we will indeed show that successful learning histories

emerge naturally through a combination of Hebbian plasticity for correct trials and partially

anti-Hebbian plasticity for error trials. The learnt top-down synaptic structure produces better

performances and faster response. Besides reproducing, in correct trials, modulation of neural

activity in ITC modules, qualitatively similar to the one observed in Sigala and Logothetis (2002),

the model generates specific neurophysiological and behavioral predictions, including a different

and specific tuning during error trials: the selectivity of the task-relevant feature neurons is

diminished or even reversed.

2 Methods

2.1 Neuronal and synaptic dynamics

Our neural model is the single compartment linear integrate-and-fire (IF) neuron (Fusi and

Mattia (1999)). The subthreshold dynamics of the membrane potential of neuron i is: V̇i(t) =

−β+Ii(t), (assuming units such that the membrane capacitance C = 1) with a reflecting barrier

condition such that if Vi(t) is driven below 0, it stays 0. β is a constant leakage term. When the

membrane potential reaches the threshold Θ = 1 the neuron emits a spike and the membrane
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potential Vi is set and kept to a reset potential Vr for a refractory period τarp. Ii(t) is the total

synaptic current afferent to neuron i and it is the sum of the external excitatory current Iext, the

recurrent excitatory and inhibitory currents:Ii(t) =
∑

j Jij
∑

k δ(t− tkj −δj)+Iext. Jij represents

the amplitude of the instantaneous change of the postsynaptic potential (positive for excitatory

synapses, negative for inhibitory synapses). The sums are over all presynaptic neurons j, and

for each j over all the emitted spikes at times tkj , reaching the target neuron i with delay δj .

Delays are randomly sampled from a truncated exponential distribution with a minimum and a

maximum value, respectively δmj and δMj . Parameters are listed in Table 1.

Plastic synapses in the model are bistable and stochastic as motivated and described in

Fusi et al. (2000). The synaptic efficacy J takes one of two values — J− (depressed) and J+

(potentiated). Learning evolves as a sequence of random transitions between J− and J+, triggered

by the arrival of pre-synaptic spikes; the direction of the transition (potentiation or depression)

is determined by the instantaneous value of the post-synaptic potential (Fusi et al. (2000)), as

detailed in the following.

Each synapse has an internal dimensionless variable (‘synaptic potential’, XJ), ranging in the

interval [0; 1]. This range is split in two by a threshold ΘJ ; when XJ is above this threshold, the

synapse is in the potentiated state and XJ constantly moves toward 1, with a constant drift αX ;

below ΘJ , the synapse is depressed and XJ moves toward 0, with the same drift αX . Thanks to

the drift, in the absence of pre-synaptic spikes, the synaptic state (potentiated or depressed) never

changes (thus we have long-term potentiation, LTP, or long-term depression, LTD). Transitions

can happen only upon the arrival (at time tk) of a presynaptic spike (with index k), which causes

a sudden jump in XJ . If the postsynaptic potential is found above a threshold ΘV , the jump

will be positive and of size dX+, otherwise it will be negative and of size dX−. A positive jump

can take XJ above ΘJ , making thus the synapse switch to the potentiated state; conversely, a

negative jump can make the synapse switch to the depressed state. In formulae:

dX(t)

dt
= αX sign(X(t)−ΘJ) +

∑
k

[Θ(Vpost(tk)−ΘV ) dX+ −Θ(ΘV − Vpost(tk)) dX−]

LTP results from high pre-synaptic actitivy (high rate of triggering pre-synaptic spikes) and

high post-synaptic activity (which on average implies high values of post-synaptic membrane

potential). LTD occurs for highly active pre-synaptic neuron and poorly active post-synaptic

one.

Parameter values for the synaptic dynamics are listed in Table 3.
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2.2 Network architecture and stimuli

We set up a network with two layers, analogous to the one described in Szabo et al. (2006) (see

Fig. 1), meant to describe respectively a cortical area coding for the visual features defining each

stimulus, and a higher cortical area coding for the category assignment to stimuli according to

a rule to be learnt. Each layer includes 6000 neurons, divided into several selective populations

of excitatory neurons (see below), one non-selective excitatory ‘background’ population, and one

inhibitory population.

The first layer (‘ITC’) comprises NF + 1 feature-selective populations of 240 neurons each

(denoted with the letter D and O in Fig. 1, see section 2.3 for the role played by the different

populations). In the absence of stimuli, all the neurons in each population receive a background

(excitatory) Poissonian synaptic input of base-rate λ0. Each stimulus to ITC is defined by the

activation of one of the two values of each feature (e.g., small vs large distance between eyes in a

face, see Fig. 3); upon stimulation two disjoint subsets of 120 neurons for each ITC population

(D1-D2 and O1-O2: NF = 1 in Fig. 1) will receive a differential current (except for section

3.4 in which population D will be divided into four subsets of 120 neurons each, to code for

four values); the active (inactive) value corresponds to an input Poisson spike train with rate

λ + ∆λ (λ − ∆λ), with λ a reference value; λ ± ∆λ > λ0. The value of ∆λ can be varied,

(see Section 3.2). Corrupted stimuli are implemented (see Section 3.3) by reducing the size of

selective populations to a fraction x<1 of the original size, the remaining (1 − x) 240 neurons

being given a stimulus-independent current of rate λ0. NF too will be varied in the following, to

study the effects of a more or less complex feature space; NF = 16 unless otherwise specified.

Stimulation parameters are listed in Table 1.

The second layer (‘PFC’) has a winner-take-all structure, similar to the one described in

Wang (2002), in which two cooperating-competing populations (480 neurons each) encode the

two categories, C1 and C2; in the regime of interest, upon stimulation of the ITC populations, the

network dynamics always leads to a stable state where C1 is firing high and C2 is almost silent

or viceversa, signalling a decision of the network as to which category the presented stimulus is

assigned to.

All neurons have a probability c = 25% of being synaptically connected with any other neuron

in the network, with the exception that excitatory-to-inhibitory and inhibitory-to-excitatory

connections are restricted to each of the two layers (‘local’ inhibition).

C1 and C2, as well as the subsets in ITC, are self-excited and mutually excited; besides, they

5



are reciprocally connected with the excitatory background and inhibitory populations in the

corresponding layers (see Table 1 and Fig.1).

The bi-directional synaptic connections between the ITC and PFC layers, are the only plastic

synapses (see Section 2.1) and are thus shaped by learning (see Section 2.3).

Values chosen for the fixed synaptic efficacies are in Table 2.

(Figure 1 about here)

2.3 Task and learning

We define the task after Sigala and Logothetis (2002) and De Baene et al. (2008). In the

experiments, monkeys were shown schematic visual stimuli, defined by a fixed number of features,

and grouped in two categories, to which the monkey is trained to assign stimuli by trials and

errors. Only a subset of features were relevant for the categorization, and neurons in ITC selective

for those “diagnostic” features turned out to be maximally modulated depending on the feature

values.

We chose only one of the NF +1 features to be relevant (‘diagnostic’) for the categorization:

expect for section 3.4, the task the network has to learn is to associate stimuli with one of the two

values (e.g., distant eyes D1) of this one feature to category C1, and stimuli taking the other value

(e.g., close eyes D2) to C2, regardless of the values taken by the remaining NF non-diagnostic

features.

At the beginning of training, we generate a random pattern of activation λ±∆λ for each of

the NF + 1 ITC populations. If the answer of the network, as read from the pattern of activity

of C1 and C2 in the PFC layer, is correct (the correct classification being determined by the

value of the diagnostic feature), we go on generating a new stimuls encoded by a new random

choice of all NF +1 features for the subsequent trial. If not, in the subsequent trial the network

is presented with a new random stimulus belonging, however, to the same class as the preceding

(wrongly classified) one (NF random values for the non-diagnostic features). This is consistent

with the training strategy adopted in Sigala and Logothetis (2002) 1.

Each stimulus lasts for 2 sec. At 1.5 sec from stimulus onset, the network response is ‘read’ and

a signal Reward/No Reward is determined, which activates the appropriate synaptic plasticity

mode (see below), until the end of the stimulus.

Learning is semi-supervised and partially anti-Hebbian: the Hebbian synaptic dynamics (see

Section 2.1) is activated only upon the correct completion of a trial, that is just after the network
1N.Sigala, private communication
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has correctly classified a stimulus (‘Reward’ condition). When the network generates a wrong

classification (‘No Reward’ condition), synapses that would undergo a positive jump dX+ (up

regulated) are subject to a negative jump dX− (down regulated), while the ones that would

be down-regulated are left unchanged. This way, synapses that would be potentiated if the

classification provided was correct, will be depressed, while the other synapses are left unchanged.

Fig. 2 shows a cartoon of the average expected effect of learning on the synaptic structure

of the network, both upon correct and wrong classification. This suggests that the synaptic

connections between PFC and ITC, after learning, can be effectively described with 6 parameters

(see Fig. 1): JP , the average synaptic efficacy between D1 and C1, and D2 and C2 (correct

association); JD, the average synaptic efficacy between D2 and C1, and D1 and C2 (wrong

association); Jn, the average synaptic efficacy between category populations and non-diagnostic

features (C1/C2↔ O1/O2), in both directions.

As already noticed in Roelfsema et al. (2010), synaptic dynamics is required to change after an

erroneous answer, in order to prevent the impairment of what was learned contingently to correct

answers. Such strong assumptions are consistent with the experimentally observed reward-related

modulation of synaptic plasticity by the dopaminergic neurons (Schultz (1998); Schultz and

Dickinson (2000)).

(Figure 2 about here)

2.4 A rationale for a features-based representation in the ITC layer

The adopted model is certainly a gross oversimplification, both as to the type of neural represen-

tation in ITC and as to the areas involved. However, regarding the former, we emphasize that

evidence reported in the literature provides at least a rationale for adopting a neural representa-

tion in ITC which is based on feature-selective populations, and for assuming that the collection

of such segregated representations is what is forwarded in the first place to PFC for further pro-

cessing. To substantiate this statement, in Fig. 3 we propose a close analogy between our ITC

model and the results reported in Tsunoda et al. (2001). These authors explored extensively the

representation of visual objects in ITC, and how such representations are altered when simplified

versions of the same objects are presented (a simplified object being an object deprived of some

features). Fig. 3, panel A, shows the observed patchiness of the neural representations of an

object, and what those representations reduce to when some features are removed. It is seen

that there are patches uniquely associated to some features, others are overlapping to various

degrees. In the words of Tsunoda et al, “an object is represented by a combination of cortical
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columns, each of which represents a visual feature (feature column)” (other aspects of the results

from Tsunoda et al. will be commented on in the Discussion, in the light of the present model).

Fig. 3, panel B illustrates the assumed patchy representation in ITC that, by way of analogy, we

associate with the representation of the Brunswick faces used in the Sigala and Logothetis (2002)

work. The scheme is then mapped onto the model architecture described above in panel C, where

we suggest that the simplified representation we adopted could be imagined to be obtained from

a selection of recorded neurons based on their feature selectivity (as exemplified in panel D Fig.

3).

(Figure 3 about here)

All the results we present are from simulations in which both network and learning dynamics

run concurrently. We performed a preliminary exploration in the large parameter space by

resorting to dynamic mean-field equations (Amit and Brunel (1997); Del Giudice et al. (2003);

Fusi and Mattia (1999)).

The simulations have been carried out with a high-performance custom C program, imple-

menting the event-based approach described in Mattia and Del Giudice (2000). In order to

estimate instantaneous firing rates, the spikes from each neuronal population are sampled in a

10 ms sliding window.

3 Results

In the following we first illustrate the typical time course of a learning history, and describe the

way it is affected by the build up of a selective top-down synaptic structure. We then move to

illustrate how the network performance is affected by such top-down synaptic structure. Finally

we study the network behaviour for corrupted versions of the training stimuli, and the time

course of the neural activities in error trials, and formulate testable predictions in both cases.

3.1 Neural correlate of categorization

Fig. 4, panels A-B-C, shows the evolution of the network performance and synaptic configuration

as learning proceeds. Before stimulation, all populations in the network are in a stable asyn-

chronous state of low firing rate (few Hz). Upon stimulation, one of the two category populations

in the PFC layer is in the end brought to an ‘up state’ (≈ 40Hz), resulting from winning the

competition with the other category, which settles into a ‘down state’ ≈ 0Hz.

Depending on whether the winning category is the correct one according to the defined

8



categorization rule, the plastic synapses are allowed to change following an Hebbian rule (for

correct outcome) or a partially anti-Hebbian rule (for incorrect outcome), as described in Fig. 2

and in the Methods. We recall here that we repeat the stimulus after a wrong answer. In the

figure, panel A shows the time course of the performance on the categorization task, i.e. the

fraction of correct outcomes averaged over a non-overlapping sliding window of 30 trials, for the

case in which only the bottom-up (ITC to PFC) synapses are plastic (‘TD-off’, black) and when

both bottom-up and top-down synapses are plastic (‘TD-on’, grey). Performance is moderately

affected by the presence of plastic top-down synapses: learning is seen to be slightly faster and

more stable. As seen from Fig. 4, worse performance for the TD-off case is accompanied by

larger fluctuations, as expected.

Moreover the differences between the bottom-up structures suggest that there is a better

signal-to-noise ratio for the TD-on case even if the performances are similar for TD-on and TD-

off, mainly due to the high stimulus contrast, that is the difference of stimulation to the two

diagnostic population subsets ∆λ =0.3 Hz, used in these simulations. We will see in the following

that as the stimulus contrast gets lower the top-down selective synaptic structure also entails

differences in the performance and in the time needed for the categorization.

Panels B-C show the corresponding evolution of the fraction of potentiated synapses for

the different bottom-up (B panel) and top-down (C panel) synapses, grouped according to the

feature/category populations they connect. Only a representative subset of synapse groups is

shown in the figure.

Panel D of Fig. 4, the three checkerboards, illustrate the final synaptic configurations, for

both plastic and non-plastic top-down synapses. Each square represents the fraction of potenti-

ated synapses at the end of the learning period. The synaptic weights connecting a diagnostic

feature population with its (anti-) correlated category were (depressed) potentiated. For the

synapse groups involving non-diagnostic features, the case shown is the computationally ad-

vantageous one in which the final bottom-up synapses are slightly depressed (which helps in

obtaining a stable learning trajectory), and the top-down ones are markedly depressed (which

results in a sort of ‘selective amplification’ of the relevant information, improving the categoriza-

tion performance, see Fig. 6 and discussion below). The final synaptic configuration is consistent

with the expectations explained in Fig. 1.

(Figure 4 about here)

We show the neural correlate of the categorization process in Fig. 5. The first three panels on

the left show, for three successive stages during learning, the time course of the firing activity of
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five populations, averaged over 20 correct trials (outcome C1). In each panel we plot the activity

for the two category populations, (C1, C2 respectively requested and non-requested class), the

population encoding the active value of the diagnostic feature (∆λ = 0.3Hz), one non-stimulated

population and one of the stimulated populations coding for the non-diagnostic features.

Here it is seen that, as learning proceeds, the activities of diagnostic populations stimulated

and not-stimulated (cyan and orange) split, consistent with the experimental observations of

Sigala and Logothetis (2002), and with theoretical results obtained by Szabo et al. (2006) in a

simpler context. The last panel in Fig. 5 shows the time course of the average activities for the

same populations at the end of learning, but with non plastic top-down synapses, and confirms

that the splitting observed for the TD-on case is an exquisite effect of a selective top-down

synaptic structure.

(Figure 5 about here)

3.2 Influence of selective top-down synapses on network performances

We showed in Fig. 4 that the implemented plasticity in the top-down synapses: 1) sharpens

the selectivity of the Bottom-Up synaptic structure, 2) moderately affects the time course of the

learning dynamics. We also found (Fig. 5) that the selective top-down synaptic structure entails

breaking the symmetry between the neural activity encoding stimulated diagnostic and non-

diagnostic features, consistent with the results of Sigala and Logothetis (2002). One can still ask

to what extent the above results also imply important effects on the computational performance

of the network, thereby helping formulating informed guesses about the mechanisms underlying

the corresponding experimental findings.

To understand this, it is important first to remark that our system is a noisy one and in fact it is

subject to two very different main sources of noise, one ‘exogenous’ and the other ‘endogenous’.

The first depends on the dimensionality of the feature space in which the stimuli to be categorized

are defined. The very definition of diagnostic vs non-diagnostic features implies that during

learning the former are consistently associated with the defined categories, trial after trial, while

the latter implement a random category labeling for each trial. Consequently, the higher the

number of non-diagnostic features, the larger the associated component of the total input to

PFC, that would overwhelm the one from diagnostic features in the absence of plasticity in

Top-Down synapses, which realizes an effective amplification of this signal-to-noise ratio (which

is then to be understood as the ratio between the inputs coming from diagnostic and non-

diagnostic features). The other, ‘endogenous’ noise source is due to stochastic nature of the
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neuronal network dynamics. The network has sparse connectivity, a different realization of which

is generated for each simulation. This quenched noise, together with the finite-size effects due to

the finite number of neurons in each population and the consequent distribution of firing rates,

affects both the dynamics of decision (through the firing rate fluctuations) and the dynamics of

learning (since, as explained in the Methods, the dynamics of synaptic plasticity, though rate-

dependent on average, is stochastic, to the extent that the neural activities are). This endogenous

noise, besides being a realistic ingredient of any finite and sparse system, contributes to expand

the dynamic repertoire of the network (e.g. the range of decision times). Of course, an additional

‘fast ’ noise component is due to the Poisson spike trains implementing the stimuli.

In the following we quantify the effect of a selective top-down synaptic structure in diminishing

the effect of the ‘exogenous’ noise, thus improving learning performance. We also investigate how

the top-down synaptic structure affects the dynamics and characteristic times of the classification

process.

At the end of learning (obtained with ∆λ = 0.3Hz, NF = 16), we freeze the synaptic

structure and then apply new stimuli with different levels of contrast ∆λ = 0.05; 0.1; 0.2 Hz

(λ = 4.2 Hz), and different numbers of stimulated non-diagnostic features (NF = 4, 8 and 16),

and test the performance. For each ∆λ and NF we also test the performance of the network

in which we substitute the learned, selective top-down synaptic structure with a uniform set of

synapses (JFB
P = JFB

D = JFB
n ) whose efficacies are drawn from the same probability distribution,

with an average such as to match the top-down synaptic efficacy averaged over each post-synaptic

population of the structured TD-on case.

Fig. 6, panel A, shows the network performance (percentage of correct classification) for

different numbers NF of non-diagnostic features, and for three values of stimulus contrast ∆λ,

with selective and uniform top-down synaptic structure.

(Fig. 6 about here.)

For the same number of non-diagnostic features, performance increases with ∆λ, as expected;

the most relevant result is that, for given ∆λ, the network with structured top-down synapses

retains high performance even for a large number of non-diagnostic features. The effective

signal-to-noise ratio which drives the competitive mechanism in the PFC layer is made almost

independent from the number of ‘distracting’ non-diagnostic features, as a result of the depressed

top-down synapses pointing to non-diagnostic features. In other words, if we call S and S +∆S

the total input to the two category populations, the structured top-down synapses determine a

higher ∆S/S ratio: as the number of stimulated non-diagnostic features increases, the common
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input S would be dominated by the activity of non-diagnostic populations, were it not for the

combined effects of top-down depression of JFB
n synapses, and the sharpened differentiation of

(JFF
D vs JFF

P ) and (JFB
D vs JFB

P ) (see panel D of Fig. 6).

On the other hand we remark that the selective top-down synaptic structure does not increase

the signal ∆S since, until the competition in the category layer sets in and a decision is taken, the

diagnostic features populations receive equal feedback. This is consistent with the observation

that, for low numbers of non-diagnostic features, the performance is essentially the same for

structured and unstructured top-down synapses.

Fig. 6, panels B-D, illustrate the relationship between performance and decision times for

the same values of NF and ∆λ as in panel A, for both selective and uniform top-down synaptic

structure. We defined the decision time (DT) as the instant when the absolute difference between

the firing rates of the two category populations, divided by their sum, exceeds a given threshold D

(we set D = 0.7 as in Marti et al. (2008)). The typical speed-vs-performance curve derived from

psychophysics experiments is monotonically decreasing (as it derives from increasing the stimulus

control parameter – ∆λ in our case – which entails increasing performance and decreasing decision

time). The selective network (gray lines) is always faster than the uniform one (black lines) at

equal performance. Thus the structured feedback not only favors better performance for the

same input (panel A), but also makes the network more prompt to respond if the input current

is adjusted to match the performance. In the case with uniform top-down, for given NF , C1 and

C2 receive greater symmetric input S, and are therefore less sensitive to the relative variations

of their activities, such that they spend more time in a symmetric, ‘undecided’ state. The higher

NF , the greater the comparative advantage of the selective network (panel B to panel D). The

DT gap between selective and uniform case for high performance is seen to be mostly due to a

marked flattening of the DT vs performance curves for the uniform network: for the selective

top-down network, DT preserves higher sensitivity to the selective input strength ∆λ, and the

expected DT vs performance fall-off is observed even for the highest NF . The above observation

can be understood again in terms of the larger increase of the symmetric input component S

to C1 and C2 for the uniform network. As S increases with NF , the dynamics spends longer

and longer times around a state with almost equally high firing rates for both C1 and C2; ∆λ

has little influence on this time, yet it still determines the performance of the network; taken

together, these two effects explain the observed flattening of the RT vs performance curves.

Indeed, an almost symmetric fixed point of the dynamics with high firing rates for C1 and C2 is

expected to develop as S increases, around which the dynamics of decision is strongly distorted
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and where the network stays for longer times.

Fig. 7 illustrates the different neural dynamics during the decision process for the selective and

uniform networks, for NF = 16 and ∆λ = 0.5Hz, which underlie the behaviour described above.

Panels A and B show the time course of firing rates of C1 and C2 (black and grey curves,

respectively) during the fastest (thicker curves) and the slowest (thinner curves) trials. It is

seen that the spread in decision times is much larger larger for the uniform case (see also the

distributions of decision times in panels C and D). One possible interpretation, consistent with

known phenomenology of cooperative-competitive models of decision making, can be obtained if

we picture the network dynamics as the motion on an ‘energy landscape’, with each point being

identified by the ‘energy’ level and the average firing rates of C1 and C2. The stable decision

states of the network, induced by a stimulus, are identified by two asymmetric minima of the

landscape (high firing of C1, low firing of C2, and viceversa). The diagnostic component of the

stimulus determines a force driving the dynamics from the initial saddle the systems starts from

(almost equal firing for C1 and C2) towards one of the two decision states, and it is expected

to be maximally effective for the selective case, in which the component related to diagnostic

features is amplified; for the uniform case the strong common component of the input to C1

and C2 makes the system roll on a flatter saddle, the departure from which, towards one of the

asymmetric minima, take more time on average.

(Fig. 7 about here.)

Of course the chosen value of uniform top-down synapses affects the characteristic times of

the decision dynamics; by varying this value between 0 (no feedback) and 2JFB (beyond which

the state of spontaneous activity of the network with no external stimuli is disrupted) we checked

that: 1) performance is only slightly affected (< 6%); 2) the qualitative features of the lines in

Fig. 6 B-D are preserved, though the exact values of DT obviously change.

3.3 Corrupting learned stimuli: a footprint of categorization in ITC

The multi-population model system is a complex recurrent network, with local intra-modules

feedback and inter-modules PFC-ITC feedback. One might then ask whether certain character-

istic properties of recurrent networks could play a role in the situation under study, such as the

pattern completion ability of attractor networks.

Starting from a network configuration obtained at the end of successful learning, we went

on to stimulate the network with corrupted versions of the stimuli, i.e. stimuli for which only

a fraction x of the neurons in the currently activated diagnostic population receive the usual
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increased external current, as explained in the Methods Section 2.

In this situation, we studied the time course of the neural activities of the stimulated and

non-stimulated neurons in the diagnostic population defining the current stimulus, and how it

is affected by the learned, selective synaptic top-down structure. The expectation is that, as

the decision process in the PFC matures, the unstimulated neurons belonging to the activated

diagnostic feature would be recruited as a result of the combined effect of the selective top-down

input and the recurrent interaction with the stimulated neurons in the same population.

Fig. 8 illustrates example results, obtained for low value of ∆λ = 0.05Hz (where we expect

the recurrent synaptic structure to play a comparatively greater role), and x = 0.75. Neural

activities are reported for three trials which happen to have (for the same network configuration

and stimulation parameters) different decision times DT. Firstly we note that, as expected, as

the decision process matures the unstimulated population gets recruited (green trace). Secondly,

and interestingly, the recruitment occurs with a latency determined by the time it takes for the

decision process to complete (compare the three panels in Figure 8). This latter observation is

interesting because it constitutes a specific reflection of the time course of the decision process

developing in PFC, in a time-dependent modulation occurring in the unstimulated neurons in

ITC, at the single trial level.

(Fig. 8 about here.)

The same reasoning would also apply to a situation in which each stimulus is defined by

multiple diagnostic features, in which case corrupting a stimulus might mean excluding one or

more diagnostic features from the ones the stimulus is supposed to activate.

In other words, assuming the feature selectivity of ITC neurons is experimentally well char-

acterized, so that one can identify the ‘unstimulated’ diagnostic neurons that correspond to a

specific corruption of the stimuli, the point in time when those neurons would start to sharply

increase their firing activity during the trial would signal the completion of the decision process,

in the absence of simultaneous recording from PFC.

We remark that the observed recruitment of non-stimulated neurons coding for a diagnostic

feature would not be observed in the absence of a category-related top-down information flow,

which is consistent with the data reproduced in Fig. 3 where (for the anesthetized animals

which do not perform decisions and hence top-down projection would be unavailable and pat-

tern completion should not occur) an impoverished stimulus makes the corresponding feature

representations disappear.
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3.4 Selective Top-Down synapses sharpen tuning curve

For all the numerical experiment described so far we adopted a minimum feature representation

(one diagnostic feature, with two values). It is known that feature-selective neurons in the

temporal lobe exhibit a variety of tuning curves, see e.g. Freiwald et al. (2009). As already

noted, we do not aim at reproducing specific aspects of the activity in the infero-temporal

cortex; however, studying the implications of tuning curves in our ‘ITC’ layer is relevant from the

computational point of view that concerns us here. Therefore we adopted a simple generically

plausible shape of tuning curves and explore how they are affected by learning. We report

results obtained for a network in which the diagnostic feature possesses four values (therefore

four populations D1, ..., D4 code for it in the ITC layer); furthermore each stimulus is encoded

by a profile of activation of the four diagnostic populations, with the maximal activation for

the active value of the feature for that stimulus (as before we have NF non-diagnostic features

with two values each). In this way we implement a crude representation of tuning curves in this

feature layer. Stimuli with maximal activation of D1 and D2 are to be mapped to class C1, D3

and D4 to C2. Stimuli with maximal activation of D1 and D4, for which the activation profiles

of the four diagnostic populations has the smallest overlap, are ‘easier’ to classify with respect

to D2 and D3; we will therefore label them as ‘easy’ and ‘difficult’ stimuli. One can expect that

the build-up of the selective top-down synaptic structure could affect the activation profile of the

diagnostic populations. In fact we observed (see Fig. 9) a marked sharpening of the tuning curves

for both easy and difficult stimuli (compared panels A and B vs C and D), for which however we

obtained slightly different final performances (see percentages of correct responses reported on

the right panels of Fig. 9). The results shown in this figure constitute a further evidence of the

computational consequence of a learned selective top-down synaptic structure and establish a

specific experimental prediction. We remark that in our model the sharpening develops after the

decision is taken, which suggests that if one could monitor the tuning curves in successive time

intervals during trials, depending on when their sharpening occurs with respect to the decision

time, one could get an indication about their origin being in a task-specific top-down signal.

(Fig. 9 about here.)

3.5 Counter-modulation in error trials

In Fig. 10 we show how network activities are differently modulated according to the correct

(upper panel) or wrong (lower panel) outcome of the trial. Solid lines are the average activities
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of the relevant populations over 5 consecutive trials approximately at an intermediate point of

the learning process. The upper panel shows the expected (see Fig. 5) ranking of the stimu-

lated diagnostic vs non-diagnostic features, which is destroyed for the wrong trials. Notice in

particular the non-stimulated diagnostic feature value (orange trace), which as expected shows

and increase of activity, being tightly correlated to the wrong decision state. This is because

in the former case the stimulated diagnostic population receives, in addition to the stimulation,

a coherent reinforcement from the correctly winning PFC population, with which learning has

already formed strengthened synapses, while in the latter case the wrongly winning PFC popula-

tion feeds back on it through synapses which have been weakened by learning. This observation

suggests that the operation of a task-related selective feedback could be tested in in-vivo exper-

iments, by comparing the modulation of the activities of neurons with different selectivities in

correct and wrong trials. A hint that such a strategy could be viable and informative is provided

in Mirabella et al. (2007), where evidence is provided that the activity of neurons in V4 during

a visual selection task involving attention is differently modulated depending on the trial being

correct or wrong.

(Fig. 10 about here.)

(Table 1, 2 and 3 about here)

4 Discussion

The idea that perceptual learning, visual categorization and/or selective attention, involve an ef-

fective suppression of irrelevant sensory input is not new (i.e. see Riesenhuber and Poggio (1999);

Bar (2003); Spratling and Johnson (2004); Roelfsema and van Ooyen (2005)). For the specific

case of visual categorization, even if experimental evidence is still inconclusive as to whether

top-down control by PFC is needed to accomplish it (see Minamimoto et al. (2010); Buckley

and Sigala (2010)), several reported results suggest a role of ITC-PFC mutual interaction in the

arbitrary stimulus-category association. In the present work we put this idea in a specific context

and address a general computational issue, i.e. the implication of learned, selective top-down

projections between a category-aware area and a sensory-coding one, taking visual classification

as a relevant case in point. With a simplified ITC-PFC model designed to account for the key

results shown in Sigala and Logothetis (2002) and in De Baene et al. (2008), we showed that a

semi-anti-Hebbian, spike-driven learning mechanism generates a selective amplification of task-

relevant neural representations in ITC and, because of this, enhanced classification performance
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and faster response. In the present work we adopted the simplest choice for the feature space

defining the stimuli, i.e. just one diagnostic feature with two possible values. We remark, and

checked in simulation in a few cases, that as long as the classification problem remains linearly

separable, enlarging the dimension of our one-dimensional ’diagnostic sub-space‘ (as in the case

of the two-dimensional sub-space of Sigala and Logothetis (2002)) does not spoil the classification

ability of the network (it acts in fact as a Perceptron, Rosenblatt (1958)), nor the mechanism of

selective amplification of diagnostic information. However, for the higher-dimensional case the

synaptic configuration generated by on-line learning does depend on the choice of the training

stimuli, on the presentation sequence and on the initial condition (as it is the case for the Per-

ceptron). This work is one of the few so far addressing dynamic learning effected by the ongoing

spike-driven synaptic dynamics of LTP and LTD, coupled in closed loop with the stimulus-driven

spiking activity in a multi-modular network. We showed how robust learning histories lead the

global network to perform well in the face of the many sources of instabilities that affect dy-

namic learning (see Del Giudice and Mattia (2001); Del Giudice et al. (2003); Amit and Mongillo

(2003)). In particular, finite-size effects are important, and bring about deviations from the the

predictions of the mean field theory which guide simpler approaches like the one we adopted in

Szabo et al. (2006). For a finite number of synaptic connections per neuron each population has

a distribution of emission rates. We remind that our synapses are stochastic, as long as neural

activities are (see Methods). Considering for example the synapses connecting populations of

neurons stimulated by the same stimulus, and therefore supposed to get potentiated, the high-

and low-rate tails of the actual frequency distribution corrupt the homogeneity of the pattern of

synaptic transition probabilities, such that in the same synaptic group some synapses will have

too high LTP probability, while others will be unexpectedly unchanged. Similarly, finite-size ef-

fects can provoke unwanted synaptic transitions where they are not expected and harmful (such

as a potentiation of synapses involving post-synaptic background neurons, which can become the

seed of instability for the spontaneous state). One ingredient which makes finite-size effects more

or less harmful is the character of the ‘synaptic transfer function’, meaning the function giving

the LTP/LTD transition probabilities as functions of the pre- and postsynaptic emission rates.

The sensitivity of this function in the critical region where the rate distributions involved overlap

is an important factor in determining how serious finite-size effects are going to be. These and

other effects make online learning with realistic, spike-driven synaptic dynamics a major chal-

lenge that we faced in this work which, besides the value of the new results and predictions we

provide, hopefully contributes to advance a domain of modeling studies that needs progress. The
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assumed plasticity for the top-down (PFC-to-ITC) synapses turns out to ensure slightly faster,

and significantly more robust, learning histories (Fig. 4).

The value of a model lies of course in its ability to generate testable predictions. We list in the

following some speculative implications of our model. The learned selective top-down synaptic

structure essentially lowers the effect of the ‘noise’ associated with the non-diagnostic features, by

amplifying the ‘signal’ component associated with the diagnostic features; it is therefore expected

to matter more as the number NF of such features increases. This is indeed what we showed in

Fig. 6, where it is seen how the improvement in the classification performance increases markedly

with NF . Note that, because of the non-linearity of network responses, the additive top-down

feedback can in fact produce essentially multiplicative effects, as it has been shown in the context

of attention modeling in Deco and Rolls (2005).

We expect the predicted task-specific modulation not to depend much on the details of

the chosen model, and to be shared by any model based on selective amplification of task-

relevant sensory information. We can then speculate that, if the global neural activity induced

by a stimulus in ITC is measured, for instance by the BOLD signal, it would be more evenly

distributed in the naive subject, before learning the task, and more concentrated in the well

trained subject: before learning, the patchy ITC representation would generate signal spots

of comparable intensity, while after learning the signals associated with the amplified, task-

relevant features would pop up. Also, one can predict that turning a non-diagnostic feature

into a diagnostic one in a previously learned set of stimuli would result in an expansion of the

dominant signal spots.

Previous works (Op De Beeck et al. (2006); Gillebert et al. (2009)) studied the FMRi correlate

of learning categorization, showing that the BOLD signal associated with categorized images is

enhanced after learning. Our results are compatible with those findings, in that the global

activity in our feature layer after learning is indeed higher. However our results together with

the electrophysiological results of Sigala and Logothetis (2002); De Baene et al. (2008), suggest

the above prediction which goes beyond these findings, i.e. the spatial variability of the BOLD

signal should reflect the differential activation corresponding to diagnostic and non-diagnostic

features.

Our results shown in Fig.9 suggest that if the proposed mechanism of selective amplification

of diagnostic features representation operates, learning the categorization task would result in

sharpen tuning curves for diagnostic features. This effect is qualitatively compatible with the

differential category-tuning reported by De Baene et al. (2008).
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We showed in Fig. 10 that error trials entail a qualitatively different modulation of neural

activities. This generates a testable prediction, in line with previous suggestions like Mirabella

et al. (2007), in which evidence is provided that the activity of neurons in V4 during a visual

selection task (involving attention) is modulated depending on the trial being correct or wrong.

It is clear that such an option would be viable only for a version of the task allowing for a non

negligible error rate even in well trained subjects.

Results shown in Fig. 6 B-D suggest that some of the direct implications of the selective

feedback synaptic structure envisaged in the model might be amenable to investigation in psy-

chophysics. Indeed, both the relevant parameters ∆λ and NF playing a role in shaping the plots

of Fig. 6 B-D can be experimentally varied (for NF various choices are available in principle,

including adding new features or making pre-existing non-diagnostic features variable among

stimuli). The non-trivial, and interesting, experimental question relates to the interplay between

∆λ and NF : ∆λ has the dual role of biasing the decision dynamics and also (when feedback is

present and not yet selective) to cause an increase in the activity induced by non-diagnostic fea-

tures. Therefore, by looking at the changes in the DT vs performance plots while the subject is

“learning” to ignore one more non-diagnostic feature one could qualitatively check the prediction

implied by a selective feedback buildup.

More in general, one can easily imagine a situation (frequently explored both in psychophysics

and in electrophysiology) where a pair of features are consistently associated with the same

category, or where stimuli are presented in different sensory modalities. In such situations, after

training, a generic and testable prediction is that the presentation of one member of the pair, or

the presentation of one sensory modality, would entail the partial activation of the other member

of the pair, or the representation pertaining to the other sensory modality, respectively.

In Fig. 3 we suggested that the chosen architecture of our simplified model is consistent with

reported evidence concerning visual objects representations in ITC. In Tsunoda et al. (2001),

besides reporting the patchiness of object representation in IT cortex that we referred to in

the Methods, the authors also notice that, as the visual appearance of objects is deprived of

features that, though ‘small’, are key for its interpretation, not only the corresponding activity

patches disappear, but also new ones appear. The authors suggest that the distributed object

representation would result from the activation, and active suppression, of a constellation of

(possibly overlapping) feature-specific neural populations. Based on our modeling results, we can

speculate that the task-dependent modulation of selectivity induced by learning might reshape

such regions of overlapping representations (see Fig. 3). Specifically, if a IT neuron, before
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learning, has a mixed selectivity for two (values of) features, if the latter are mapped by the rule

to the same category, the changes induced by learning in the synapses linking that neuron to the

PFC category populations are consistent, and this will end up boosting the activities in the mixed

selectivity neurons. On the other hand, if the mixed selectivity relates to features belonging to

different categories, we can expect that the original differences in the neural responses to those

features get amplified. If neurons in the overlapping patches have a nontrivial distribution of firing

rates for the two features, learning would result in shrinking the overlapping regions. While the

details will depend on several factors (such as the initial tuning curves for the involved features,

the frequency of presentation of different stimuli, the nonlinearities in the dependence of synaptic

changes on neural activity), we suggest that a task-dependent modulation of the overlaps in the

patchy ITC representation would be expected. With reference to the categorization problem in

Sigala and Logothetis (2002), in which the category boundary is linear in the two-dimensional

diagnostic space, the proposed effect can be seen as a modulation of the classifier margin. Also,

the differential modulation of diagnostic and non-diagnostic feature representations could in

principle account for the appearance of previously suppressed features when key elements of

the visual object are removed (observed in Tsunoda et al. (2001)), via the mutual inhibitory

interactions in the ITC layer.

Finally, the experiments performed with corrupted stimuli, besides confirming expectations

based on the recurrent network architecture, suggest that (thanks to the learned selective top-

down synaptic structure) a specific neural correlate of the decision process being completed would

be available in a feature-encoding area.
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Figure 1: Model architecture and expected learned synaptic structure The dark gray

rectangles labeled D and O represent the feature-selective populations in ITC (NF = 1). Light

gray blobs represent subsets coding for feature values in ITC and category-coding populations

in PFC. Black blobs are the inhibitory populations, white blobs are the excitatory background,

non-selective populations. D1, D2 and O1, O2 denote the two values of the ‘diagnostic’ and

‘non-diagnostic’ features respectively (see text); C1 and C2 denote the categories to be associated

with stimuli. Category and feature populations are bi-directionally connected only by excitatory

synapses JFF
P , JFF

D , JFF
n , and JFB

P , JFB
D , JFB

n which are the only plastic synapses in the network

(FF/FB: ITC to/from PFC). The figure illustrates the expected synaptic structure reciprocally

linking ITC and PFC layers as a result of learning the classification task: strong connections

between D1/D2 and C1/C2 – high JFF
P , JFB

P ; weak connections between D1/D2 and C2/C1

– low JFF
D , JFB

D . Synapses from/to non-diagnostic populations (JFF
n , JFB

n ) will take on values

intermediate between the corresponding JP and JD.

Figure 2: Learning mechanism The dynamics of the plastic synapses follows the model pro-

posed in Fusi et al. (2000). The synapses connecting ITC and PFC neurons have two values of

synaptic efficacies, which are determined by the state of an internal synaptic variable (see text).

Synaptic changes occur in the final stage of each trial, when the winner-take-all mechanism has

selected one of the two category-selective populations, which constitute the ’behavioural’ out-

come of the trial. Changes in the synaptic state variable are triggered by presynaptic spikes and

the sign of the change (up- or down-regulation) is determined in a semi-supervised fashion by a

threshold condition on the postsynaptic depolarization, and the outcome of the trial. If the ‘right’

or ‘wrong’ category was selected, the sign of synaptic changes is determined by an Hebbian or

partially anti-Hebbian mechanism, respectively (in the latter case the synapses connecting active

pre- and post-synaptic neurons are down-regulated, and no changes occur otherwise).
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Figure 3: Features-based representation in ITC Panel A shows the observed patchiness of

the neural representations of increasingly simplified versions of a visual object in ITC, as shown

in Tsunoda et al. (2001). Panel B illustrates the assumed analogous patchy representation in ITC

for the representation of the Brunswick faces used in Sigala and Logothetis (2002). The scheme is

then mapped onto the model architecture described in panel C and in Fig. 1. Panel D illustrates

the expected firing patterns of neurons belonging to non overlapping (blue or red) or overlapping

(purple) patches of panel B, to illustrate the concept that a selection of recorded neurons based

on their feature selectivity can be thought to give rise to the segregated representation in panel

C.

Figure 4: Performances on the categorization task and evolution of ITC-PFC synaptic

connectivity during learning. Panel A shows the time course of the performances on the

categorization task, i.e. the fraction of correct outcomes averaged over a sliding window of 30

trials with a step of 30 trials, for the case in which only the bottom-up (ITC to PFC) synapses are

plastic (‘TD-off’, black) and when both bottom-up and top-down synapses are plastic (‘TD-on’,

gray). The vertical dashed line marks the moment after which the difference between average

black and grey curves becomes stastically significant (two standard errors). Panels B-C show

the corresponding evolution of the fraction of potentiated synapses for the different bottom-up

(center panel) and top-down (bottom panel) synapses, grouped according to the feature/category

populations they connect. Only a representative subset of synapse groups are shown in the

figure, even if the learning stimuli are composed of 16 non-diagnostic features. Panel D, the

three checkerboards, illustrates the final synaptic configurations, for both plastic and non-plastic

top-down synapses.

Figure 5: Sample time course of neuronal firing rates for different populations in the

network. The figure shows, for three stages during learning (initial, intermediate and final from

left to right), the time course of the firing activity during a correct trial (outcome C1), averaged

over 20 trials. The shading is the s.e.m.. In each panel we plot the activity for the two category

populations, (C1 or requested class, C2 or non-requested class), the population of the stimulated

diagnostic feature value (∆λ = 0.3Hz), non-stimulated diagnostic feature value and , one of the

stimulated non-diagnostic feature value out of 16 non diagnostic features in total respectively in

blue, red, cyan, orange and black.
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Figure 6: The structure of top-down synapses influences performance and DTs. Panel

A shows the categorization performances vs number of non-diagnostic features, for different

stimulus contrasts (∆λ = .05; .1; .2 Hz; λ = 4.2 Hz). Solid-gray/dashed-black lines are for

selective/uniform Top-Down synapses. Different markers indicate the stimulus contrast ∆λ.

Panels B-D illustrate the behaviour of decision time (DT) vs performances for the same values

of NF and ∆λ as in panel A, for both selective and uniform Top-Down synaptic structure; for

panel D we used ∆λ = .05; .1; .2; .3; .5 Hz. We recall that DT is defined as the instant when

the difference in the firing rates of the two category populations, divided by their sum, exceeds

a given threshold D (we put D = 0.7 as in Marti et al. (2008)).

Figure 7: Examples of different neural dynamics for the selective and uniform Top-

Down networks, for NF = 16 and ∆λ = 0.5Hz. Panels A and B show the time course of firing

rates of C1 and C2 (black and grey curves, respectively) during the fastest (thicker curves) and

the slowest (thinner curves) trials. Panels C and D provide respectively the distribution of DT

for the selective and uniform Top-Down networks.

Figure 8: Time course of the network activity with corrupted versions of learned

stimuli The three panels show for low value of ∆λ = 0.05Hz the neural activities during

three trials having different decision times DT, when the network is presented with a corrupted

stimulus. In the cases shown the activated feature value is D1 and the fraction of activated

neurons is x = 0.75. In each plot is reported the approximate value of DT. From left to right

DT increases.

Figure 9: Tuning curves in ITC before and after learning. Each panel shows the activation

profile of four value-selective subsets in ITC before (A, C) and after (B, D) learning, averaged over

five trials (error bars are standard errors). We also report in panels B and D the final performance

after learning. Panels A,B (C,D) show the activation profile following the presentation of a

stimulus identified by the value D2 (D1) of the diagnostic feature. D2 corresponds to a difficult

stimulus, D1 to an easy one (see text).

Figure 10: Time course of the network activity in correct and wrong trials. Time course

of the network activity is plotted for correct trials (top) and wrong trials (bottom). Solid lines

are averages over 5 trials, shaded strips are the standard errors of the mean. The plot refer to

an intermediate stage of learning (when the rate of errors is still appreciable).
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Single neuron parameters Value

θ - Spike emission threshold 1.0 ua

Vr - Reset Potential 0.0 ua

τarp - Absolute refractory period 2.0 ms

βE - Decay coefficient of excitatory neurons (ITC ) 453 ua/ms

βI - Decay coefficient of inhibitory neurons (ITC ) 40 ua/ms

βE - Decay coefficient of excitatory neurons (PFC ) 54 ua/ms

βI - Decay coefficient of inhibitory neurons (PFC ) 20 ua/ms

Frequency of external stimulation Value [Hz]

ν ext - Extern neurons activity (PFC) 2.0

λ0 - Extern neurons activity (ITC) 3.5

λ - Extern neurons activity (ITC, stimulus) 4.2

∆λ - Extern neurons activity (ITC, extra-stimulus) 0.3

Net Parameter Value

NEx - Extern excitatory neurons 1200

NE - Excitatory neurons of the layer PFC 4800

NE - Excitatory neurons of the layer ITC 4800

NI - Inhibitory neurons of ITC and PFC 1200

Ncategory - PFC selective excitatory neurons 480

Nfeature - ITC selective excitatory neurons 120

NF - Non-diagnostic features 16

cin - Internal connectivity (intra-layer) 0.25

cex - Extern connectivity (inter-layer) 0.25

δmE - Minimum delay excitatory neurons 2 ms

δME - Maximum delay excitatory neurons 80 ms

δmI - Minimum delay inhibitory neurons 0 ms

δMI - Maximum delay inhibitory neurons 4 ms

Table 1: Neuron parameters
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Synaptic parameters layer PFC Value [θ − Vr]

JPFC
E ext - Synaptic efficacy ext → E 0.022

JPFC
I ext - Synaptic efficacy ext → I 0.015

JPFC
EE - Synaptic efficacy Bg → x, with x ∈ (Bg,C1, C2) 0.005

JPFC
IE - Synaptic efficacy I → E 0.010

JPFC
EI - Synaptic efficacy E → I -0.012

JPFC
II - Synaptic efficacy I → I -0.028

JPFC
rec - Potentiated synaptic efficacy x→ x, with x ∈ (C1, C2) 0.011

JPFC
BE - Synaptic efficacy x→ Bg, with x ∈ (C1, C2) 0.040

JPFC
ME - Synaptic efficacy x→ y, with x, y ∈ (C1, C2) 0.0015

Synaptic parameters layer ITC Value [θ − Vr]

J ITC
E ext - Synaptic efficacy ext → E 0.087

J ITC
I ext - Synaptic efficacy ext → I 0.015

J ITC
EE - Synaptic efficacy E → E 0.011

J ITC
IE - Synaptic efficacy I → E 0.010

J ITC
EI - Synaptic efficacy E → I -0.070

J ITC
II - Synaptic efficacy I → I -0.031

J ITC
rec - Potentiated synaptic efficacy x→ x, with x ∈ (C1, C2) 0.015

J ITC
BE - Synaptic efficacy x→ Bg, with x ∈ (C1, C2) 0.040

J ITC
ME - Synaptic efficacy x→ y, with x, y ∈ (C1, C2) 0.0015

Synaptic parameters ITC ↔ PFC Value [θ − Vr]

JFF
+ - Potentiated synaptic efficacy ITC → PFC 0.007

JFB
+ - Potentiated synaptic efficacy ITC ← PFC 0.03

JFF
− - Depressed synaptic efficacy ITC → PFC 0.003

JFB
− - Depressed synaptic efficacy ITC ← PFC 0

Table 2: Synaptic efficacies
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Internal synaptic variable parameters, ITC → PFC Value [θ − Vr]

dX− - Reward synaptic negative jump 0.085

dX+ - Reward synaptic positive jump 0.080

dX− - No-Reward synaptic negative jump 0.108

dX+ - No-Reward synaptic positive jump 0.082

αX - Synaptic positive/negative drift 0.0003

ΘV - Threshold 0.245

ΘJ - Threshold 0.5

Internal synaptic variable parameters, PFC → ITC Value [θ − Vr]

dX− - Reward synaptic negative jump 0.095

dX+ - Reward synaptic positive jump 0.096

dX− - No-Reward synaptic negative jump 0.093

dX+ - No-Reward synaptic positive jump 0.052

αX - Synaptic positive/negative drift 0.002

ΘV - Threshold 0.115

ΘJ - Threshold 0.5

Table 3: Parameters for synaptic dynamics
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