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This study investigates the possibility of using an Artificial Neural Network (ANN) for
reconstructing Positron Emission Tomography (PET) images. The network is trained
with simulated data which include physical effects such as attenuation and scattering.
Once the training ends, the weights of the network are held constant. The network is
able to reconstruct every type of source distribution contained inside the area mapped
during the learning. The reconstruction of a simulated brain phantom in a noiseless
case shows an improvement if compared with Filtered Back-Projection reconstruction
(FBP). In noisy cases there is still an improvement, even if we do not compensate for
noise fluctuations. These results show that it is possible to reconstruct PET images
using ANNs. Initially we used a Dec Alpha; then, due to the high data parallelism
of this reconstruction problem, we ported the learning on a Quadrics (SIMD) machine,
suited for the realization of a small medical dedicated system. These results encourage us
to continue in further studies that will make possible reconstruction of images of bigger
dimension than those used in the present work (32× 32 pixels).

Keywords: PET; Artificial Neural Networks; Image Reconstruction; Massively Parallel
Computers.

1. Introduction

Positron Emission Tomography (PET) is a tomographic method that allows imaging

of parts of any body through the quantitation of the radiopharmaceutical distribu-

tion within the body itself. PET imaging essentially consists of two steps: first of

all it is necessary to obtain the number of photons detected by each pair of counters

and then by means of these counts we have to reconstruct the related image.
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This study gives a solution to the PET image reconstruction problem. Forward

photon transport for PET may be represented as:

Pj =

Ns∑

i=1

TijSi , (1)

where Pj are the counts of the pair of detectors labeled ‘j’, Tij is the contribution

of the source voxel (volume element) ‘i’ to the counts of pair ‘j’, Si is the activity

at source voxel ‘i’ and Ns is the total number of the source elements. Tij relates

projections of every pair of counters with all source elements. Tij can be found,

as we will see, by both analytic and Monte Carlo techniques.1 Using (1) we can

represent the reconstruction problem as:

Si =

Np∑

j=1

(Tij)
−1
Pj , (2)

where Np is the total number of pairs and other symbols have the same meaning

they had in (1).

Techniques based on reconstruction from projections are used to recover the

tracer distribution. The aim of every reconstruction algorithm is to obtain coef-

ficients of the inverse of Tij . The most common image reconstruction technique

is filtered back-projection (FBP).2,3 Briefly, the FBP method performs the follow-

ing sequence of operations: the projections are Fourier transformed, multiplied by a

suitable filter in the frequency domain, anti-transformed and back-projected. Other

reconstruction techniques (e.g., Maximum Likelihood4) find the radioactive distri-

bution giving an iterative estimate of the solution of a set of proper linear equations

by means of mathematical methods.5

We propose an approach that uses an Artificial Neural Network (ANN) to learn

iteratively an approximate inverse of Tij . The ANN is used in two separate phases:

learning, which occurs only once and reconstruction, which occurs each time we

want to reconstruct an image. During the learning we know both the activity of

the source voxels and the corresponding projection counts. In this way the ANN

can reproduce the connections between pairs of counters and source elements. Once

these connections are found (i.e., the inverse is determined), the reconstruction of

an arbitrary source distribution is a single step process. It has been shown that

an ANN can reconstruct Single Photon Emission Computed Tomography (SPECT)

images.6,7 We investigate the possibility of reconstructing PET images by ANNs as

well.

First we focus our attention on the reconstruction of ideal images (i.e., without

introducing any physical effects like attenuation or scattering). Finally we concen-

trate on simulating through Monte Carlo techniques a PET process including all

physical aspects and we try to reconstruct images so generated.
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2. Methods

2.1. Image Reconstruction Problem

The ANN used is a form of Multiple Adaptive Linear Element (MADALINE)

network.8 It is a feed-forward network which consists of one input and one out-

put layer (i.e., it does not include any hidden layer). The basic structure of the

ANN is showed in Fig. 1.

Fig. 1. The basic structure of the PET reconstruction by ANN.

Each output is connected to all the input cells. The outputs of the ANN are

calculated by:

Oi =
nin∑

j=1

xjwij , (3)

where Oi is the value of each output neuron (i = 1, . . . , nout), xj is the value of the

neuron ‘j’ of the input layer, wij is the value of the weight connecting input neuron

‘j’ and output neuron ‘i’ and nin and nout are the number of neurons of input and

output layer respectively.

The ANN has a linear output because the reconstruction of a PET image, as

we have seen in (2), is a linear process. By Eqs. (2) and (3) we can see that there

is a strong connection between the ANN topology and the reconstruction process.

Indeed if we associate the output layer with the images to be reconstructed and

the input layer with the projection counts, we can say that each output neuron

represents one pixel (or voxel) of the reconstructed image and each input cell rep-

resents one pair of counters. In this way nout is equal to the number of the pixels

(in our case for 32 × 32 squared images there are 1024 pixels) and nin is equal
to the number of the pairs of detectors (for Nriv counters total possible pairs are

Nriv(Nriv − 1)/2); we really see that nin is usually less than Nriv(Nriv − 1)/2,
because some pairs of counters do not give any contribution to the reconstruction
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of the image and we can therefore neglect them. To reconstruct 32 × 32 images
we use Nriv = 156 detectors and nin = 5331 pairs. The value of the weights wij
are the coefficients of the inverse matrix (i.e., the contribution of the pair ‘j’ to the

reconstruction of pixel ‘i’).

There are two separate phases to this approach: training (or learning) and re-

construction. During the training, examples, where both images and corresponding

projection counts are known, are presented to the network (projections are pre-

sented to the inputs and images to the outputs). In this way the ANN iteratively

learns to approximate the inverse matrix. The training examples (patterns) consist

of a set of ideal images like in Fig. 2 and their corresponding projections.

Fig. 2. Ideal images of the training set for 4 × 4 images (total of 16 images). This paradigm is
valid also for N ×N images (with a total of N2 training images).

With those images, we show to the ANN the behavior it must have to reconstruct

each single pixel of the image. To do this we can choose this kind of image because

PET is a linear process and so we can use the “superposition principle”: we can so

represent every source distribution as a set of elementary point sources such as in

Fig. 2. With this set of learning patterns the ANN is able to generalize and once

trained it can reconstruct every type of images we want.

As a training paradigm we use the generalized delta rule for supervised learning.

Application of the delta rule to our problem gives the formulae:

∆wij(n+ 1) =
∑

k

εδikPjk + α∆wij(n) , (4)

wij(n+ 1) = wij(n) + ∆wij(n+ 1) , (5)

where wij(n) is the value of the weight before adjustment (at iteration ‘n’), while

wij(n+ 1) is its value after adjustment (at iteration ‘n+ 1’). The values of adjust-

ments for each weight are calculated by (4). The first term in (4) is the sum over the

number of patterns of δik (error in source element Si in pattern ‘k’) multiplied by

corresponding projection of pair ‘j’ and by ε (learning rate). ε allows control of the

average weight change and it is adjusted to obtain the fastest stable convergence.

The value for δik is found by determining the difference between ideal and actual

outputs. The second term in (4) is the momentum term,8 which reduces oscillations

during convergence (α is fixed to 0.95).

We use a gradient steepest descent mechanism (codified in (4) and (5)) in order

to minimize the Mean Squared Error (MSE) between ANN–reconstructed and ideal
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images. MSE can be written as:

MSE =

npatt∑

k=1

nout∑

i=1

nin∑

j=1

(xjwij − Iik)2

nout npatt
, (6)

where npatt is the number of learning patterns (N2 for N × N images) and Iik is
the value of the element ‘i’ of the ideal image of the pattern ‘k’. Training steps are

illustrated in Fig. 3.

Fig. 3. The training phase of an iteration step PET reconstruction by ANN.

First of all we present to the ANN the training pairs which consist of a set

of npatt ideal images and their corresponding projections. Then we initialize the

network weights and we calculate the reconstructed ANN images through (3) and

the pixel-by-pixel difference error δik for all the images of the set. This done, we

find the MSE between reconstructed and ideal images. If this value is acceptable

we stop the learning, otherwise we will update the weights through (4) and (5)

and then we shall perform other iteration steps until the MSE has converged to an

acceptable value. In the first step we initialized the weights with random values

included from 0 to 1.
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MSE is a real function that depends both on ANN weights and how training

patterns are made. With the delta rule algorithm, in each learning iteration, we

move in MSE surface of a step equal to ε following the gradient of MSE itself. The

aim of the training phase is to find the minimum of MSE. The value of this minimum

depends on the number of detectors used. If the minimum value reached during

training is not sufficient to perform an acceptable reconstruction, it is necessary

to increase the number of detectors. Actually, for each kind of the whole system

geometry (area of mapped images, dimension of detectors ring), we must have at

least a certain number of detectors, if we want a good reconstruction. This fact is

correlated with the discretization due to finite sampling by the acquisition system.

Once training is ended, weights are kept constant and they are accepted as

elements of the inverse matrix. Now we are ready to reconstruct every type of

image we want. Reconstruction, as we can see in Fig. 4, is a single step process.

The only thing we have to do is to present the projections of the image to be

reconstructed to the ANN inputs and perform a forward step like in (3). Images

are formed by calculating the dot product between inverse matrix and projection

data. Obviously geometries to be reconstructed must be contained inside the area

mapped during the learning (area of the images of training set).

Fig. 4. The reconstruction phase of the PET reconstruction by ANN.

In this section we have illustrated how an ANN can learn to reconstruct a PET

image from projection counts. In next section we will see how to simulate the

projections of a PET process.
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2.2. Types of Simulation Techniques Used

Projection counts are the only data we really know when we have to reconstruct

a PET image. Indeed the tomograph provides us with the counts of the photons

detected by each pair of counters; from these counts we have to reconstruct the

density distribution of the radioactive source. Therefore it is important to set up a

simulation system that gives us projections of every kind of image we want to recon-

struct. We need projection counts both during training phase (each training pair

consists of 〈image ‘k’, projections of image ‘k’〉) and when we want to reconstruct
a known image to test the goodness of the ANN reconstruction.

We use two types of simulations: in the first one we calculate projections through

geometric methods neglecting all physical effects, while in the second one we use

Monte Carlo techniques which includes all aspects such as attenuation, scattering

and so on. This way we are able to see the quality of the reconstruction in the

absence or presence of physical effects.

In a geometric simulation we calculate projections of each pair by means of

formula (1).

Pixels that intersect the line joining two detectors give a contribution to counts

of that pair proportional to the length of the intersecting line included in the pixels

themselves (l34 in Fig. 5). lij are elements of the matrix T (lij = Tij). Other pixels

Fig. 5. Acquisition process: Projections for a pair of counters are calculated through line joining
the centers of the two detectors.
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(not intersecting the joining line) do not give any contribution to that pair. This

way we can find elements Tij by the analytic (or geometric) technique. Projections

for each pair are calculated by summing contributions of each intersecting pixel

multiplied by the activity inside the pixel itself.

For the second type of simulation we adopt a Monte Carlo simulator based

on the EGS4 code (Electron-Gamma-Shower).1 This code allows the transport of

particles in every material and in every kind of geometry by means of Monte Carlo

techniques. We set up a system such as the one shown in Fig. 6.

Fig. 6. PET system simulated.

The area to be mapped (i.e., the image to be reconstructed) is contained in a

body of 3.2 × 3.2 cm2 and height Z = 1.3 mm. The volume of the body is filled
with water to simulate in a reasonable way the human body tissues. Detectors

lie in a ring of radius equal to 3.2 cm; each one of the 156 detectors consists of a

0.15×0.15 cm2 squared base parallelepiped made of Yttrium Aluminium Perovskite
(YAP).9 The remaining volume of the space between the body and the detectors

ring is filled with air.

Starting from emissions of positrons of 700 keV, we simulate the whole PET

process (thermalization, annihilation, photons transport in mediums and finally

detection of photons). The number of positrons emitted from each pixel is equal to

the desired activity inside that pixel. In order to reduce statistical fluctuations we

use training patterns such as in Fig. 2, but we simulate 100 000 emissions from each

pixel. Then we properly scale values of projection counts. These scaled counts,

corresponding to each pattern of the training set, represent the elements of the

matrix Tij . Therefore we can see that these coefficients can be found also by Monte

Carlo methods.

3. Results and Discussion

The first type of simulation technique used is, as we have seen, the geometric sim-

ulation. We perform it by an analytic projector primarily to investigate the possi-

bility for an ANN to reconstruct a PET image and secondly to choose the value of
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parameters to be used. We thus empirically find that to reconstruct a 32 × 32
squared image with the side equal to the radius of the detectors ring, we need a

number of sampled angles (equal to the number of detectors) greater than 110. If

we use a number of detectors much greater than this value, reconstruction is still

good, but the resources required for training increase. We also fixed the momentum

term to 0.95: this value gives a more rapid convergence during the training. The

choice of the optimal learning rate is strongly connected with the projection values

of the training set.

Once the minimum number of detectors, required for a good reconstruction,

and the momentum term are fixed, we perform the simulation by the Monte Carlo

projector. The geometry of the simulated system is the same as in the previous

case.

3.1. Training

Training is the most critical phase of the ANN algorithm, indeed it requires a lot of

resources (both CPU and memory). With a serial architecture it is not possible to

perform training for images bigger than 32× 32 in an acceptable time, so we inves-
tigate the improvement obtained with learning on a parallel architecture machine.

We accomplish the training with two different machines: a DEC Alpha machine

with 200 MHz, 380 MFlops single processor and a Quadrics SIMD machine10 with

128 nodes, an 8× 4× 4 topology and a peak performance of 6.4 GFlops.
Learning for 32× 32 images (using an ANN with 5331 input neurons and 1024

output neurons) needs 55 MB memory resources and each iteration step requires

about 30 minutes on the Alpha machine. The minimum during training is reached

after a few hundred of iteration steps, as we can see in Fig. 7 for the training of

16× 16 and 32× 32 images.

Fig. 7. Convergence of MSE during the training of the 16× 16 and 32× 32 images.
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Neural networks, because of their structure, are fit to be realized in a natural

way on non-sequential architectures, like the MIMD (Multiple Instruction Multiple

Data) or SIMD (Single Instruction Multiple Data) ones. Here, the problem has a

high data parallelism, given by both pattern presentation and output nodes compu-

tation, therefore the latter (SIMD) is the optimal architecture for us. We used the

massively parallel Supercomputer Quadrics (QH1) consisting of 128 floating point

units, with a total of 512 MB RAM. We cannot implement the whole network on

each physical node (PN), because each PN has poor memory resources available

(4 MB). Therefore we must keep sequential pattern presentation and hence we par-

allelize on the output nodes (ON). Obviously, when the number of pixels (equal to

ON) is greater than number of PN, we have to implement more than one ON on

each PN. This way the degree of parallelism decreases: for 16× 16 images, ON/PN
is equal to 2, while for 32× 32 images ON/PN is equal to 8. Obviously we perform
learning tests with the same data used on the Alpha machine (380 MFlops) with

16×16 and 32×32 images. Due to the limited size of the RAM of each PN, we have
to fetch the training patterns from a disk device at each iteration step. We consider

two such CPU-time measures as meaningful ones: the first one represents the total

time (TT), and it also includes the read time (RT) necessary to fetch the patterns;

the second one points out only compute time (CT = TT− RT). In training with
an Alpha machine we can neglect the read time, because the patterns are fetched

only once at the beginning of learning and they are then kept in memory.

Fig. 8. For a 16× 16 sized image: Comparison between CT and RT on Quadrics (on the left) and
between Quadrics and Alpha TT (on the right); units are minutes (left) and hours (right).

Fig. 9. For a 32× 32 sized image: Comparison between CT and RT on Quadrics (on the left) and
between Quadrics and Alpha TT (on the right). Values are in day units.



A New Approach to Image Reconstruction in . . . 81

In Figs. 8 and 9 we compare CPU time used in the two different architectures: as

we can see, TT(Alpha)/CT(QH1) ∼ 13 in the first case and it is ∼ 4 in the second
one; a remarkable improvement, mostly if we consider that in peak performance

terms Alpha is equal to about 8 Quadrics nodes. This improvement is more evident

in the first image (16× 16), indeed the 16× 16 image is the most meaningful one,
because in this case there is a higher degree of parallelism (ON/PN = 2). If we

consider the total time TT(QH1), the improvement in the 16 × 16 image is much
less remarkable, because the read time is roughly equal to 1/3 of the total time:

this is due to very slow communication between the QH1 and the storage device

(approximately 1 MB/s). In the 32× 32 image, where read time is less significant
and the parallelism has a lower degree (ON/PN = 8) the decrease of improvement

between parallel and serial architectures is smaller. Instead, analysing the CT in the

16×16 image, that is the most meaningful one for Quadrics machine with 128 nodes,
we can say that this training algorithm is particularly suitable for massively parallel

architectures, because the very high data parallelism of the ANN reconstruction

problem allows us to obtain a remarkable improvement. Moreover, the Quadrics

machine could be used in a small, powerful dedicated system, suitable for medical

applications. When we have a Quadrics machine with a faster communication

bus and a greater number of nodes (the next generation of Quadrics machines,11

expected for the beginning of 1999, will consist of 2048 nodes, each one with a peak

performance sixteen times greater (800 MFlops) than now (50 MFlops)) we will

perform training of images bigger than 32× 32 in an acceptable time (it should be
even possible for a 128 × 128 images training in a quite reasonable time). These
results offer us an algorithm-architecture pair that shows that this seems to be the

right way. Thanks to a reduction of the learning time obtained by using a Quadrics

machine, we can execute useful studies on the optimal choice of training parameters

(learning rate, momentum term and so on).

A more rapid convergence (independently from the type of architecture used)

should be obtained using another type of training paradigm (e.g., conjugate gradient

method12) and a π/2 geometric symmetry should reduce computational needs.

3.2. Reconstruction

To test the reconstruction method, we use an artificial image obtained from the

projections of a simple brain phantom. This phantom represents a single brain slice

with 55 gray levels. We used the methods described in Sec. 2.2 to obtain three

images: an ideal image, from a simple geometrical projection; a noiseless image,

from a Monte Carlo simulation with 20 · 106 positron emissions; a noisy image,
from a Monte Carlo simulation with 1 · 106 positron emissions. Once the projection
counts related to this phantom are obtained, we reconstruct the image by the ANN

and FBP methods. To perform the FBP reconstruction, we use software available in

Ref. 13 and we include the attenuation correction in reconstruction of Monte Carlo

simulated images by means of multiplicative techniques of Chang.14 The training
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phase of the ANN reconstruction requires 400 iteration steps; the reconstruction

phase, as we have seen, is a single step process. It needs, for a 32×32 image, 24 MB
memory resources and, once the reconstruction matrix is fetched, we can perform

the reconstruction on an Alpha machine in a few seconds (the ANN reconstruction

time is comparable with the FBP one).

We measure the accuracy of the two reconstructions (FBP and ANN) by the

Normalized MSE (NMSE) formula defined as:

NMSE =

Ns∑

i=1

(Oi − Ii)2

Ns

Ns∑

i=1

I2i

, (7)

where Oi, Ii are the values of the Ns reconstructed and original pixels. The im-

provement between the two reconstructions can be written as:

IMP =
NMSEFBP −NMSEANN

NMSEFBP
. (8)

The ANN reconstruction for the ideal image (Fig. 10 and Table 1) is quite

perfect because, due to the absence of physical effects, there are no fluctuations

between examples proposed to the ANN during training and images presented in

the reconstruction phase. We will see that the ANN reconstruction is worse when

we introduce physical effects. In Fig. 11 we show the reconstruction of the noiseless

image: the introduction of physical effects leads to a worse recontruction, both for

the FBP and the ANN (see Table 1). The ANN method is much better, although

it is more sensitive to physical effects.

Fig. 10. Reconstruction of the ideal image. Original image (left), FBP reconstruction (middle)
and ANN reconstruction (right).

Table 1. NMSE for ANN and FBP reconstruction of the ideal
image, the noiseless and the noisy one. Last row is the relative

improvement IMP.

Ideal Image Noiseless Image Noisy Image

FBP 292 · 10−6 970 · 10−6 970 · 10−6

ANN 3 · 10−6 83 · 10−6 333 · 10−6

IMP (%) 98 91 66
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Fig. 11. Reconstruction of brain phantom with 20 · 106 counts. Original image (left), FBP
reconstruction (middle) and ANN reconstruction (right).

Fig. 12. Reconstruction of the noisy image. Original image (left), FBP reconstruction (middle)
and ANN reconstruction (right).

Fig. 13. Noiseless case. Difference between the original image and the reconstructed one: FBP
(left) and ANN (right).

In Fig. 12 we show the reconstruction of the noisy image. We can see that now

the ANN reconstruction is much worse than in the noiseless case seen above: the

improvement now is equal to 66% , but there is still a substantial improvement

over the FBP (see Table 1). The density gradients are better reproduced with the

ANN than with the FBP: we see that the FBP is not sensitive to the increase of

the statistical noise. For images bigger than those used in this work this effect

would assume more importance. It is therefore necessary to study some methods

that reduce the noise fluctuations. In particular Wiener filtering techniques6,15,16

should yield an important improvement in reconstruction in cases with noisy data

and result in a lower minimum of the NMSE.

In Fig. 13 we can see the pixel-by-pixel difference between the original image

and the reconstructed one for the noiseless case.
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We can see that the ANN difference image does not show any brain structure.

We can therefore say that the ANN is able to reconstruct any kind of distribution

contained inside the area mapped during training. Moreover, while training requires

a lot of resources and it must be therefore executed on a parallel machine, the

reconstruction phase can be obtained easily on a single processor machine in a

reasonable time.

4. Conclusion

This study has shown that it is possible to reconstruct the radioactive distribution

and hence an image of a PET system using artificial neural networks. To do this we

must train the network with simulated data that most closely match the parameters

of the real acquisition system. The training phase requires a lot of computational

resources and it must be executed on a parallel machine. However it is sufficient

to perform the training only once; the reconstruction phase is a single step process

and it is possible to perform it on a single processor machine.

The results obtained show that the ANN reconstruction is much better than the

FBP one for noiseless data (i.e., with more counts), while for the noisy case it is

still better, although the improvement is quite low. Further studies must be done in

order to reduce the effects of noise fluctuations and to make the training less heavy,

if we want to reconstruct real PET images. Wiener filtering techniques should be

especially useful in noisy data cases; moreover conjugate gradient methods and the

reduction of the training set by means of geometric symmetry should reduce the

computational needs in the training phase.
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