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In the Virgo Collaboration, a hierarchical procedure for the blind search of continuous
gravitational signals has been developed. A brief description of the method with some

bibliographic references and of the preliminary results obtained on the data of C6 and
C7 Comissioning Runs can be found elsewhere in these Proceedings.1 In this paper we

focus attention on an important part of the analysis, consisting in doing coincidences

among the candidates found in two or more data sets, which allows to strongly reduce
the false alarm probability. A characteristic of the continuous signals search is that data

sets can indifferently belong to a single or more detectors.
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1. Need for coincidences

In the hierarchical procedure developed in Virgo for the search of continuous grav-
itational signals we select candidates in a given data set putting a threshold on the
critical ratio (CR) of the Hough sky histograms, defined as CR = n−µ

σ where n

is the number count in a given cell of the histogram, µ is the mean number count
and σ the standard deviation. The value of the threshold is chosen as a compromise
between the need to minimize the sensitivity loss and to have a manageble number
of candidates. By doing coincidences among candidates of two or more data sets we
strongly reduce the false alarm probability and, because the coherent ”follow-up”
is done only on the surviving candidates, also its computational load is lowered.
Making coincidences means to check if the parameters of a pair of candidates are
within a given coincidence window. To perform coincidences we need at least two
data sets. We can choose them in different ways and, as we will see, not all the
choices are equivalent.

• Distinct data sets of one detector

This is the most standard choice. ’Spurious’ candidates can appear for each data
set, and then also in the coincidences, if they cover a short time interval.1 This
not only affects the false alarm probability but also the accuracy with which the
parameters of a source, especially the position, can be determined. In addition, a loss
of accuracy may also rise in frequency because to do coincidences among candidates
we must compare their frequencies referred to the same reference time and a larger
coincidence window must be used if the initial times of the two data sets are very
different.

• Twofold ’mixed’ data sets of one detector
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We can take the two original data sets (call them a0 and b0) and suitably mix them
creating two new sets (a1 and b1). A simple choice would consist, for instance, in
taking a1 as the first half of a0 plus the first half of b0 and b1 as the second half of
a0 plus the second half of b0. In this way the difference among the initial times of
the two is shorter than before and, moreover, the time interval covered by each of
them is larger, thus reducing the number of spurious coincidences.

• N-fold ’mixed’ data sets

We can generalize the previous point by mixing more pieces of the original data
sets. A particularly convenient choice is to produce new sets with approximately
the same sensitivity. If we call ai and bi, with i = 1, ..n; n ≥ 2, the pieces, one
new set could be done, e.g., as a1 + a3 + ... + b1 + b3 + ... and the other one as
a2 + a4 + ... + b2 + b4 + .... If the noise does not change a lot from one pieces to the
next one the two sets will have about the same overall noise level. In this way, as
will be shown in the following, the sensitivity of the analysis is larger.

In the case of data sets belonging to different detectors we can still work as
in one of the previous cases. A difference is that we may have ’parallel’ sets, i.e.
covering the same time interval. This would minimize the coincidence window in
frequency. Moreover, noise is uncorrelated in the original data sets.

Let us show that we benefit from making coincidences among data sets with
the same sensitivity. Let us assume to have two data sets with corresponding linear
signal to noise ratio SNR1 and SNR2, for a unitary amplitude signal in arbitrary
units. By re-organizing them in two new data sets with equal sensitivity, the re-

sulting SNR for both is SNR = 4
√

SNR4
1+SNR4

2
2 assuming the incoherent step of the

hieararchical procedure (the Hough transform) is done adaptively.2 The number
count distribution in the Hough histograms is a binomial which, for average value
µ >> 1, can be approximated by a gaussian with the same parameters. Within this
assumption, the critical ratios for the original data sets are

CR1 = G(0; 1) + SNR2
1 · h2

gw; CR2 = G(0; 1) + SNR2
2 · h2

gw

where G(0; 1) describes a standard Gaussian variable and hgw is the amplitude of
the gravitational signal. In the case of two data sets with the same sensitivity we
have

CR1 = G(0; 1) + SNR2 · h2
gw; CR2 = G(0; 1) + SNR2 · h2

gw

The CR for a coincidence is CRcoin = min(CR1, CR2) where CR1 and CR2 refers
to the two coincident candidates; then, given a threshold CRthr, we can take the
probability P (CRcoin > CRthr) as a measure of ’effectiveness’ which allows us to
compare the two cases, see Fig.(1). For equal sensitivity data sets the probability
is larger, that is we could choose a lower threshold for candidate selection with a
lower sensitivity loss at fixed false alarm probability. Or, viceversa, taking fixed the
threshold we have a lower false alarm probability.
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Fig. 1. ’Effectiveness’ of the coincidence method for the original data sets (’standard’ case, with

SNR2 = SNR1
2

) and two ’equal sensitivity’ sets obtained from them.

Let us generalize the previous result by showing that, at least in principle, start-
ing from a given data chunk, the bigger is the number N of ’equal sensitivity’
subsets extracted from it and the larger is the gain in false alarm probability at
fixed detection probability. In each subset we have a sensitivity loss 4

√
N because

the sensitivity of the incoherent step scales as 4

√
Tobs

TF F T
. Given a threshold for candi-

date selection, making coincidences among the candidates of the N subsets we have

a reduction of the false alarm probability Pfa =
(
P s

fa

)N

, where P s
fa refers to the

original data set. The detection probability decreases as
√

N . Then, we can reduce
the threshold for candidate selection by the same quantity in order to compare the
false alarm probabilities for the same detection probability. This is shown in Fig.(2),
where we clearly see that the false alarm probability decreases with increasing N ,
independently of the threshold.

(a) (b)

Fig. 2. (a) False alarm probability, at equal detection probability, as a function of the threshold for

candidate selection. The most upper curve is for the original data set N = 1); the lower curves are
for the coincidences among N = 2,3 or 4 subsets with equal sensitivity extracted from the original

one. (b) Ratio Ni
N1

, i = 2, 3, 4, of the false alarm probabilities, at fixed detection probability.
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