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Abstract. We consider a charged plasma of positive ions in a periodic focusing channel of quadrupolar
magnets in presence of RF cavities. The ions are bunched into charged triaxial ellipsoids and their descrip-
tion requires the solution of a fully 3D Poisson-Vlasov equation. We also analyze the trajectories of test
particles in the exterior of the ion bunches in order to estimate their diffusion rate. This rate is relevant
for a high intensity linac (TRASCO project). A numerical PIC scheme to integrate the Poisson-Vlasov
equations in a periodic focusing system in 2D and 3D space dimensions, is presented. The scheme consists
in a single particle symplectic integrator and a Posisson solver based on FFT plus tri-diagonal matrix in-
version. In the 2D version arbitrary boundary conditions can be chosen. Since no analytical self consistent
3D solution is known, we chose an initial Neuffer-KV distribution in phase space, whose electric field is
close to the one generated by a uniformly filled ellipsoid. For a matched (periodic) beam the orbits of
test particles moving in the field of an ellipsoidal bunch, whose semiaxis satisfy the envelope equations, is
similar to the orbits generated by the self consistent charge distribition obtained from the PIC simulation,
even though it relaxes to a Fermi-Dirac like distribution. After a transient the rms radii and emittances
have small amplitude oscillations. The PIC simulations for a mismatched (quasiperiodic) beam are no
longer comparable with the ellipsoidal bunch model even though the qualitative behaviour is the same,
namely a stronger diffusion due to the increase of resonances.

PACS. 29.20.Hm – 29.27.Ac – 52.40.Mj – 11.10.Ef

1 Introduction

High intensity linacs are being considered for a variety of
applications such as nuclear wastes transmutation, neu-
tron spallation sources and inertial fusion. One of the ma-
jor problems is the control of the beam quality, namely
of the losses from the core. The core is formed by posi-
tive ions moving in a quadrupolar magnetic field, which
focuses them transversally and in radio frequency cavities
(RF) which focus them longitudinally. The standard ap-
proach is based on the Poisson-Vlasov equations because
the plasma has a very low collisionality. If the longitu-
dinal focusing is absent, as it is the case of circular ma-
chines after the acceleration stage, the problem becomes
2D and the analytic Kapchinsky-Vladimirsky (K.V.) [1,
2] solutions are known also if the transverse focusing is
periodic. If the transverse and longidudinal focusing are
both constant, then the Hamiltonian is a first integral and
a self consistent distribution can be written. We analyze
the physical case for a linac with a periodic transverse and
logitudinal focusing, where no analytic solution is known.
The key issues are equilibrium distributions of ions and
the diffusion of test particles due to resonances with the
ions collective oscillations, which may explain the forma-

tion of a halo around the ions core. For a constant fo-
cusing model and azimuthally symmetric K.V. beam, the
1/2 resonance between the transverse oscillations of a par-
ticle due to quadrupolar fields (betatron oscillations) and
the (mismatch) oscillations of the core was proposed as
the mechanism for the halo formation [3]. Small pertur-
bations from a uniform charge density in the core were
shown to provide a possible escape mechanism [4,5]. The
same model was explored numerically for smooth self con-
sistent nonstationary distributions [6]. The dynamics of a
test particle has been investigated also in the periodic fo-
cusing case and the key role of the mismatch oscillations
in the diffusion process leading the halo formation was
confirmed [7,8]. Such a result was obtained using the Fre-
quency Map Analysis (FMA) on the particle-core model
(PC) for a KV beam; the presence of an additional fre-
quency prevents the use of the Poincaré map first proposed
to study the constant focusing models [9]. The analysis
has shown that the test particles are better confined if the
horizontal and vertical tunes are not equal, since in this
case the strong resonance νx = νy is avoided. The result
was confirmed by the numerical solution of the Poisson-
Vlasov equations using FFT and symplectic integration
[10,11], which corresponds to the particle in cell method
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(PIC) used in plasma physics [12] and beam dynamics [13].
The proposed Poisson solver allows to impose Dirichelet
conditions on an arbitrary boundary, doubling the com-
putational complexity.

In a linac the dynamics is essentially 3D since the
frequencies are comparable and the rms dimensions of a
bunch of ions are of the same order of magnitude. As a
consequence a three dimensional model for the halo for-
mation has to be considered. Recently a 3D constant fo-
cusing model has been proposed for azimuthally symmet-
ric bunches corresponding to a self consistent phase space
distribution, function of the Hamiltonian [14]. In this case
the PIC simulations show that longitudinal and transverse
halos develop when the beam is mismatched and the mis-
match frequencies agree with the analytical PC estimates
for small elongation of the bunch. The periodic focusing
model is certainly more appropriate for a realistic linac but
no self consistent solution of the Poisson Vlasov equations
is known and no azimuthal symmetry can be assumed.

We have developed a fully 3D PIC code to solve the
Poisson-Vlasov equations: the particles evolution is based
on a symplectic integrator, the Poisson solver on FFT. The
initial distribution is the product of a KV in transverse
phase space times a Neuffer[15] distribution in longitudi-
nal phase space. The configuration space projection of our
distribution is a cylinder with uniform transverse density
and parabolic longitudinal density. This distribution has
been chosen because its projections on the tranverse and
longitudinal phase spaces are self consistent solutions of
the 2D and 1D Poisson Vlasov equations. The overall dis-
tribution is not stationary but the numerical simulations
show that the rms radii have modest variations. We have
compared the cylindrical KV-Neuffer distribution with a
uniform distribution on an ellipsoid having the same rms
radii. On the slices obtained by cutting the cylinder and
the ellipsoid with the same transverse planes z and z+dz,
the charge is the same and the cylinder density is pro-
portional to the ellipsoid cross section since the density
of the latter is constant. The transverse electric field gen-
erated by the parabolic charge distribution in the cylin-
der is very close to the field generated by the uniformly
charged ellipsoid. The longitudinal electric fields are also
very close to each other around the center, and the dis-
crepancy exhibits a moderate increase with the longitudi-
nal distance. The chosen initial phase space distribution
rapidly relaxes to a new one, fitted with a Fermi-Dirac
distribution, since it devoleps a Maxwellian queue but re-
mains almost uniform close to the center. Nevertheless the
electric field has a modest variations. The rms emittances
have initially some low frequency oscillations while there
is a relaxation to a new equilibrium. We have systemati-
cally performed a benchmarking of the 2D version of the
code with the analytical KV solution. The observed steady
emittance growth is explained as a numerical noise effect
[10,20], the sudden rises, observed for unequal linear fre-
quencies, as an effect of the numerical mismatch, which
can excite linearly unstable modes. In these cases a non-
linear stability analysis would be needed to understand
the observed asysmptotic behaviour of the beam param-

eters, by extending the results obtained in the constant
focusing case [21].

The numerical study of the halo formation requires a
comparison between the integration of the Poisson-Vlasov
equations with the tracking results of the PC model. The
Poisson Vlasov solver introduces a cutoff on the Fourier
expansion of the space charge field, that could seriously
affect the single particle dynamics far from the beam core
since the Hamiltonian chaos, present in this region, is very
sensitive to the high frequency components of the spec-
trum. On the contrary the PC model considers a uniform
distribution for the beam core, which is not a self consis-
tent solution of the Poisson Vlasov problem and cannot
explain the spilling of particles from the core, that is an
essential point to understand the halo formation [21]. The
PC model is affected by important errors for the orbits
of test particles inside or nearby the beam core, but can
describe the diffusion of test particles due to resonance
overlapping up to large amplitudes. It is crucial to under-
stand to what extent we can rely on the results of the PC
model.

We have developed a PC model for a uniform charge
distribution on a triaxial ellipsoid whose semiaxis sat-
isfy the envelope equations. The frequency map analysis
(FMA) on the test particles confirms that the resonances
between the betatron oscillations and the mismatch oscil-
lations of the bunch create chaotic regions in phase space,
which contribute to the halo formation [16]. Since a self
consistent phase space distribution whose projection is a
uniform elipsoidal bunch does not exist, in order to vali-
date the PC model it is important to show that a self con-
sistent distribution with approximately the same r.m.s.
radii and the same electric field components can be found
so that the dynamical behaviour of a test particle out of
the core does not change appreciably. The chosen KV-
Neuffer distribution satisfies there requirements. We have
verified that the small amplitude high frequency mismatch
[18,19] oscillations of the beam of the PIC solution agree
with the envelope modes computed in the PC model. The
comparison of the regular (non resonant or resonant) or-
bits for a test particle in a matched beam beyond 2 rms
shows a fair agreemet for a few hundreds of periods, each
period corresponding to a FODO cell. In the 2D case the
comparison is excellent up to thousands of cells. In order
to overcome the phase error, which affects the comparison
of phase plots and linearly increases with the iteration
number, we have performed a FMA of the PIC and PC
test particle orbits. The results show that the location of
the main resonances is about the same in both cases and
the extent of the chaotic region is comparable.

A direct comparison of the orbits on the mismatched
case is quite hard even for the 2D case, due to the presence
of a large number of resonances and chaotic regions so that
the results are very sensitive to the choice of the initial
conditions. The correspondence is recovered if a global
analysis of the phase space is performed.

The results of the present analysis show that the PC
model is adequate to describe the main dynamical features
of the 3D dynamics of a matched beam. Further inversti-
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gations are needed to reach the same conclusions for the
mismatched case and to understand the new self consis-
tent equilibrium to which the PIC simulations evolve.

2 The model

We consider a FODO cell with a thin cavity described by
the following Hamiltonian

H =
p2
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y + p2

z

2
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where k(s) and k
C
(s) are piecewise constant functions de-

scribing the actions of transverse focusing and of the RF
cavity respectively. We denote by V the Coulomb poten-
tial produced by a bunch of unit charge and ξ is the per-
veance defined by

ξ =
2qQ
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=

2
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(

3 N q2
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(2)

where Q = Nq is the total charge of the bunch for a proton
beam, q is the charge of a macro-particle and p0 = mv0β
is its momentum. For some authors the perveance is the
last term of (2) within brackets, which differs from ours by
the factor 3/2. To have dimensionless quantities we scale s
with L and x, y, z with a; the dimensionless perveance ξ/L
scales with (a/L)3 and we still denote it by ξ. With the
natural choice L = 1 m and a = 1 mm all the quantities
become of order 1. The potential V satisfies the Poisson
equation

∆V = −4πρS(x, y, z, s) (3)

where ρ
S

is space projection of the normalized phase space
density ρ

ρS =

∫

ρ(x, y, z, px, py, pz, s) dpxdpydpz (4)

which satisfies the Liouville equation

∂ρ

∂s
+ [ρ, H ] = 0 (5)

The solution of the above Poisson-Vlasov equations must
be carried out self consistently and, unlikely the 2D case,
no analytic solution is known.

Optical functions An analytical reference solution is
missing. For comparison we have considered the particle
in core (PC) model [9], defined by the periodic solutions
of the envelope equations for a uniformly filled ellipsoidal
bunch, see section 3. The electric field within a uniform
ellipsoidal bunch is linear and we have computed the cor-
responding optical functions αx, βx, αy, βy. αz, βz. The
horizontal amplitude of the bunch and its derivative is
given by

Ax = (ǫx0βx)1/2 pAx ≡ dAx

ds
= −ǫx0

αx(s)

Ax(s)
(6)

and similar relations hold for the vertical and longitudinal
components. We have used the matched optical functions
of the PC model to define a set of normalized coordinates
X = β

−1/2
x x, Px = (αxx+βxpx)β

−1/2
x . These coordinates

are convenient also to illustrate the results of the self con-
sistent solution of equations (1,3) obtained with the PIC
code.

Phase space distribution The initial value ρ0, chosen
to solve (1,3) with the PIC code, is the product of a K.V.
times a Neuffer distribution [17]
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(7)

The configuration space projection is a distribution in a
cylinder with elliptical base and axis along z, uniform on
x, y and parabolic in z according to

ρ
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(8)
The moments of the KV-Neuffer distribution are given by
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These moments are evaluated after each cell and their
variation measures the deviation from the initial distri-
bution. We have examined a specific model correspond-
ing to the first section of a high intensity linac, the ISCL
project of the Legnaro laboratories of INFN. This is the
first stage of a linac designed for nuclear wastes transmu-
tation, TRASCO [22] project of INFN and ENEA. The
main design parameters are given in table 1.

Beam energy (β = 0.314) 50 Mev

RF Frequency 325 MHz

Period length (8βλ) 2.13 m

Beam current 30 mA

Acceleration gradient 2.5 MV/m

Synchronous phase −40o

TABLE 1 Linac parameters

The FODO cell consists of 8 elements as shown in figure
1, and their parameters, lengths and gradients, are shown
in table 2.
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O         C       O           D          O         C       O           F

Fig. 1. Structure of the cell : O, C, F, D drift, RF cavity,
focusing , defocusing quadrupole

The emittances of the bunch are ǫx0 = ǫy0 = 3.02 mm
mrad and ǫz0 = 6.81 mm mrad. The perveance corre-
sponding to the design current intensity is ξ = 14.2 but
we shall consider lower values such as ξ = 5, 10, since the
aim is to compare the PIC and PC methods and results.

Drift ℓo = 0.5096 m

RF cavity ℓc = 0.01 m kc = 44 m−2

Focusing quad. ℓF = 0.05 m k = 29.7 m−2

Defocusing quad. ℓD = 0.05 m k = 29.7 m−2

TABLE 2 Cell parameters

We denote with Ax0 = (ǫx0 βx0)
1/2, ... the bare ampli-

tudes (zero space charge ξ = 0) and with βx0, αx0, ... the
corresponding optical functions. Their values are quoted
in table 3 of section 4.

3 The PIC code

The self consistent solution of the Poisson-Vlasov equa-
tions was obtained numerically using a PIC code. We de-
scribe here the way to generate the initial condition, the
method to compute the density at the grid points and to
solve the Poisson equation, the interpolation for the elec-
tric field and the symplectic integrator to move the parti-
cles along the lattice. Some statistical considerations are
given to justify the values used for the number of particles
N and the number of grid points K on each dimension.

3.1 Initial distribution

The initial distribution is computed by mapping the hyper-
ellipsoid in the 4D transverse phase (KV) and the disc in
the 2D longitudinal phase (Neuffer), see equation (7), into
a unit 3D cube and a unit square where the distribution
is uniform. We use a random number generator to fill the
5D hypercube with N macro-particles, whose coordinates
are mapped back to the 6D phase space. Introducing po-
lar coordinates in any phase plane X = rx cos(2π φx) and
Px = rx sin(2π φx) where 0 ≤ φx ≤ 1 the hyper-ellipsoid
is parameterized by rx =

√
t ǫx0 cos θ and ry =

√
t ǫy0 sin θ

where 0 ≤ θ < π/2. Setting cos2 θ = u where 0 ≤ u ≤ 1
the transformation becomes

X =
√

t u ǫx0 cos(2πφx) Y =
√

t (1 − u) ǫy0 cos(2πφy)

Px =
√

t u ǫx0 sin(2πφx) Py =
√

t (1 − u) ǫy0 sin(2πφy)

(10)
In a similar way we introduce the transformation

Z =
√

ǫz0 (1 − v2/3) cos(2πφz)

Pz =
√

ǫz0 (1 − v2/3) sin(2πφz) (11)

for the longitudinal coordinates One can check that ρ dX×
×dY dZ dPx dPy dPz = δ(1 − t) t dt du dv dφx dφy dφz . As
a consequence after integrating over t, the distribution in
φx, φy, φz , u, v is uniform on the unit 5D hypercube, and
(10, 11) evaluated for t = 1 gives the distribtion in the
original coordinates.

3.2 The Poisson solver

Given an arbitrary distribution of macro-particles with
unit total charge, the calculation of the electric field is
carried out by solving the Poisson equation with a spec-
tral method. Assuming the center of the charge distribu-
tion to be at the origin we construct the parallelepiped
P : |x| ≤ Lx, |y| ≤ Ly, |z| ≤ Lz whose sides are signif-
icantly larger than the corresponding rms radii ri. (five
times at least). We divide the x side into Kx = 2nx subin-
tervals of length ∆x = 2Lx/Kx and, performing the same
subdivision of the y, z sides, we obtain a partition of the
rectangle into a lattice of identical cells. The grid points
are labelled by a vector q = (qx, qy, qz) whose components
are integer numbers and we denote their cartesian coordi-
nates by x(qx), y(qy), z(qz) where xi(qi) = Li(−1+2qi/Ki)
and qi = 0, 1, .., Ki ≡ 2ni for i = x, y, z. If the bunch di-
mensions are comparable the choice Kx = Ky = Kz =
K is made. The density at each lattice point is given
by ρ = ∆N/N where ∆N is the number of point-like
macroparticles falling into a shifted cell whose center is
at the given point, see figure 2, and N is the total nu-
mer of macroparticles used in the simulation. This corre-
sponds to the nearest grid point (NPG) interpolation for
the charge deposition, see [12]. We can treat a macroparti-
cle also as a uniform cloud of charge uniformly distributed
in a parallelepiped of sides ∆x, ∆y, ∆z whose center is
at the macroparticle position (x, y, z). The contribution
to the density at a grid point x(qx), y(qy), z(qz) is given
by the sum of the macroparticles clouds intersecting the
cell centered at the grid point, which is a paralleleped of
sides ∆x, ∆y, ∆z. In this case ρ = ∆N/N , where each
macroparticle at (x, y, z) such that |x − x(qx)| < ∆x,
|y − y(qy)| < ∆y and |z − z(qz)| < ∆z contributes with a
weight w, namely ∆N =

∑

w, where

w =

(

1 − |x − x(qx)|
∆x

)(

1 − |y − y(qy)|
∆y

) (

1 − |z − z(qz)|
∆z

)
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The Fourier expansion of ρ and V into a Fourier series
allows an immediate solution of the Poisson equation

(

ρ
V

)

=
∑

k

(

ρk

Vk

)

sin

(

πkx

Lx
x

)

sin

(

πky
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y

)

sin

(

πkz

Lz
z

)

(12)
because they are related by

Vk =
4

π
ρk

(

k2
x

L2
x

+
k2

y

L2
y

+
k2

z

L2
z

)−1

(13)

The use of the FFT allows to obtain V starting from ρ at
the grid points. Assuming for simplicity an equal number
of subdivisions along all the axis and letting K = 2nx the
computational complexity is (K log K)3. The use of FFT
in 2 dimension plus the inversion of three-diagonal matrix
allows to lower the complexity to K3(log K)2. We recall
that spectral smoothing (K finite) regularizes a field which
would be singular, being generated by a finite number N
of point macroparticles. Indeed since PIC is an approxi-
mation scheme to solve the equations (3-5), we should first
let N and then K go to infinity to converge to their solu-
tion. The electric field is then computed as a symmetric
difference namely

Ex(qx, qy, qz) = − V (qx + 1, qy, qz ) − V (qx − 1, qy, qz )

2∆x
(14)

where for brevity we set V (q) ≡ V (x(qx), y(qy), z(qz)).
To evaluate the field at the point where each particle is
located an interpolation is required. We use a multilinear
method. In 2D the algorithm consists in selecting the cell
to which the point belongs, to interpolate linearly on two
opposite sides and then on the line orthogonal to them.
More explicitly letting (qx, qy) be the a lattice point such
that x(qx) ≤ x < x(qx + 1), y(qy) ≤ y < y(qy + 1) the
algorithm reads

Ex(x, y) = Ex(x, qy ) +

+
Ex(x, qy + 1) − Ex(x, qy )

∆y (y − y(qy) )

Ex(x, qy + n ) = Ex(qx, qy + n) + n = 0, 1

+
Ex(qx + 1, qy + n) − Ex(qx, qy + n)

∆x (x − x(qx) )

(15)
In 3D after interpolating the field in the planes z(qz), z(qz+
1) a last interpolation in z is carried out. Even though the
result depends on the order in which the planes are cho-
sen, the difference is of higher order with respect to the
interpolation error.

Boundaries The numerical procedure can be extended
to allow for the potential to vanish on the boundary of
a connected domain D ⊂ P . The method we describe

Fig. 2. Grid for a 2D charge distribution, with a polygonal ap-
proximation to the boundary (left). Conjugate lattice (dashed
lines) for the computation of the density at the grid points
(right)

is similar to the capacity matrix method [23]. First we
solve the Poisson equation with Dirichelet condition on
the boundary of P

∆V0 = −4πρ V0 = 0 on ∂P (16)

Then we choose a sequence of K grid points xj which are
the vertices of a polygon D pol which approximates D, see
figure 2, and compute the Green’s functions

∆Gk =
{

0 if x 6= xk

1 if x = xk
Gk = 0 on ∂P

(17)
Then we build the function

V (x) = V0(x) +

K
∑

k=1

αkGk(x) (18)

where obviously V is a solution of the given Poisson equa-
tion in the interior of the polygon D pol . In order to im-
pose that V vanishes at the vertices of the polygon we
solve a linear system

V0(xj) +

K
∑

k=1

αkGk(xj) = 0 (19)

The inversion of the matrix Gk(xj) needs to be made only
at the beginning since it does not depend on ρ, but only
on the boundary. In order to have an error of order 1/K2

an interpolation may be carried out. The method has been
implemented in the 2D problem but its extension to 3D
does not rise any problem except for the size of the set of
linear equations to solve.

3.3 Discretization parameters

Choosing K Fourier components in each dimension amounts
to cover the d dimensional cube P of side 2L with cells
of side ∆x = 2L/K. The number of cells which cover the
domain D is given by

n
C

=
Vol(D)

(∆x)d
= Kd η η =

Vol(D)

(2L)d
(20)
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and for a uniform distribution of N particles in D the
average number of particles per cell is nP = N/nC . Our
first choice of the discretization parameters was obtained
by requiring that the uncertainty in the position ∆x/ℓ
where ℓ = [Vol(D) ]1/d should be equal to the statistical
fluctuation ∆n

P
/n

P
= n−1/2

P
of the number of particles.

This choice, leads to a higher number of particles with
respect to a standard choice of a few particles (typically
10 with CIC charge deposition) per cell

N = Kd+2 η1+2/d N stand = 10 nC = Kd 10 η

In dimension D = 2 with η = 10−2 using K = 128 the
optimal number would be N = 2.5 × 104 and the number
of particles per cell nP ∼ 150 whereas N stand = 1.3×103.
For our higher choice of N the results do not change ap-
preciably changing from NPG to CIC charge deposition
method. As a consequence we believe that our very con-
servative choice allows to reduce strongly the self forces
effects for NPG charge deposition. In the 3D model de-
fined in section 1 the ratio of the volumes is η = 0.009, see
caption of figure 4. As a consequence for K = 64 we would
have 4 × 105 corresponding to n

C
∼ 2 × 103 cells and

nP ∼ 160 particles per cell. The standard choice would be
N stand = 2.5 × 104. Even in this case the higher number
of particles chosen justifies the use of the NPG charge de-
position method. We notice that the computational com-
plexity of the linear evolution, field interpolation and the
density evaluation is ∼ 200N and consequently since the
field computational complexity is K3(9 + log2 K) namely
7 × 106, the load of the dynamical step and the Poisson
solver is comparable for K = 64 and N = 105. A typi-
cal run over 103 FODO cells requires about one day on
a R10000 MIPS processor of an OCTANE workstation of
Silicon Graphics. Increasing N and K to higher values re-
quires a parallel implementation of the code, which has al-
ready been developed [24]. We have compared for K = 64
the results obtaining by decreasing the particle number
to 2.5 × 104 and the difference in the averaged variables,
radii and emittances, was always below 1%. The numeri-
cal stability with respect to variations in the number K of
Fourier components was also checked. As a consequence
we believe that the results of the PIC simulations for the
chosen values of N and K are reliable and numerically
balanced.

3.4 Error in the electric field

The main problem in the simulation is that a self consis-
tent solution is not known. We used a KV-Neuffer distri-
bution in phase space which produces a distribution in a
cylinder parabolic in z according to (7). The discrepancy
between the electric field generated by the KV-Neuffer and
a uniform distribution in the ellipsoid
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Fig. 3. Top: electric field component Ez(0, 0, z) for a uniform
unit charge on an ellipsoid Ax = 4, Ay = 2, Az = 3 (left) and
on a cylinder (right) according to (7). Bottom: The same for
Ex(x, 0, 0). The units are arbitrary: if the coordinates x, y, z
are in mm the electric field unit is mm−2. The red curve refers
to the solution obtained with the Poisson solver for K = 64,
the blue one to the analytical solution for the ellipsoid

with the same semi-axis is significant only near z =
±Az, as shown by figure 3. The discrepancy decreases by
approaching the origin, see figure 3, where we plot the re-
sults for Ax = 4, Ay = 2, Az = 3. The exact solution for
the ellipsoid is computed by using the analytical results
given in the next section, equation (33), where the elliptic
integrals are evaluated by Gaussian quadratures to the de-
sired accuracy. We choose a cube of half side L = 11.5 and

define the error as
[

(3K3)−1
∑

q ‖E(q) − E ex (q)‖2
]1/2

where q runs on the lattice points. The relative errors for
K = 64 are of the order of 1% (ellipsoid) and 10% (cylin-
der) respectively. For the cylinder, the major contribution
is due to the z component. The results obtained with 105

particles randomly distributed in the ellipsoid or cylinder
rather than with analytical density do not change appre-
ciably.
The electric field generated by a macroparticle system
with an initial KV-Neuffer distribution, changes as the
system evolves but the deviations from the initial values
are modest even for high values of the perveance. In figure
4 the results of a simulation with ξ = 10 are shown.

3.5 Evolution scheme

We have chosen a second order symplectic scheme for the
dynamic evolution. The Hamiltonian (1), which depends
on s, can be written as H = H0 + 1

2ξ V where H0 is the

quadratic part and ξ
2V is the space charge potential. The

lattice Hamiltonian H0 is a piecewise constant function of
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Fig. 4. Top: electric field components Ex(x, 0, 0) (left) and
Ez(0, 0, z) (right) after crossing 500 cells. Bottom: the same
after crossing 10 cells. The electric field, corresponding to a
unit charge, is is obtained from a PIC simulation with ξ = 10,
K = 64, N = 105, n map = 48; if x, y, z are expressed in
mm. the field unit is mm−2. The red curves refer to the re-
sults of the simulations the blue curve to the field of a unit
charge uniformly distributed on an ellipsoid with semi-axis
Ax =

√
βxǫx0 = 4.2, Ay = 1.78, Az = 3.51 mm. The side of

the cube where the field is computed is 2L = 23 mm.

s whereas V is continuous. The numerical scheme consists
in treating the space charge force as an impulsive force
namely to replace H with

H kick = H0(s) +
ξ

2

∞
∑

i=1

(si+1 − si) δ(s − si)V (s) (25)

The set of points si must include the discontinuity points
of the quadrupolar gradients k(s), k

C
(s). We illustrate the

choice of the non uniform integration step for a lattice of
identical FODO cells of length ℓ tot . First we choose an
average step ∆s and divide the element j of length ℓj

into nj = [ℓj/∆s] identical intervals of length ∆s(j) =
ℓj/nj. The function [x] is equal to the integer part and of
x if x ≥ 1, to 1 if 0 < x < 1. Choosing ∆s = ℓ tot /50
for the lattice defined in table 2 we obtain a partition
into 48 microcells of which 4 are identical to the active
elements (one focusing, one defocusing, two RF cavities)
the remaining 44 being just 1/11 of the drift length.
We recall that given a Hamiltonian H = H0 + V (set
ξ = 2) independent of s in the interval [si, si+1] of length
∆si the evolution is given by a symplectic map x(si+1) =
Msi+1,six(si) where M = e∆si DH is the Lie series and DH

is the Lie operator whose action on any dynamic variable

is the Poisson bracket DHA = [A, H ]. One can easily check
that the ordinary splitting

Msi+1,si = e∆si DH0 e∆si DV + O
(

(∆si)
2
)

(26)

is a second order scheme, whereas the symmetric splitting

M
sym

si+1,si
= e

1
2 ∆si DV e∆si DH0 e

1
2 ∆si DV + O

(

(∆si)
3
)

(27)
is of order 3. These schemes correspond to the exact evolu-

tion of the impulsive Hamiltonian H
(i)
kick = H0+V ∆si[δ(s−

si) + δ(s− si+1]. More precisely the second order approx-
imation in (26) corresponds to the evolution defined by

H
(i)
kick from x(si − 0) to x(si+1 − 0), the same approxi-

mations with the operators interchanged to the evolution
from x(si + 0) to x(si+1 + 0), the third order symmetric
scheme (27) to the evolution from the x(si) to x(si+1)
defined as the averages of the left and right limits (recall
that the integration of δ(s− si) starting from si gives 1

2 ).
Partitioning the cell into n microcells of average length
∆s = ℓ tot /n the error with the symmetric algorithms is
n (∆s)3 = O(n−2). The Hamiltonian (25) gives the same
contribution as (26) where V is replaced by V (si) to the
evolution in [si, si+1], whereas the symmetric evolution
(27) becomes

M
sym

si+1,si
= e

1
2 ∆si+1 DV (si+1) e∆si DH0 e

1
2 ∆si DV (si) (28)

The symmetric evolution along the FODO cell gives

M
sym (s0, sn) = e

1
2∆snDV (sn) M(s0, sn)e−

1
2∆s0DV (s0)

(29)
Recalling that the periodicity implies ∆sn = ∆s0 we no-
tice that if the beam is matched, V (s) is periodic of pe-
riod ℓ tot , the errors for the symmetric and unsymmetric
algorithm is the same since V (sn) = V (s0) and the corre-
sponding evolution operators are conjugated.

4 The particle in core model

The PC model is defined by the Hamiltonian (1) but the
charge of the bunch is chosen to be uniformly distributed
on an ellipsoid of semi-axis Ax, Ay, Az . With this con-
straint the equations of motion for a macro-particle within
the bunch are linear.

4.1 The envelope equation

We have computed iteratively the optical functions of these
equations [25,10]. At the first step we set V = 0 obtain-
ing the bare optical functions and the bare amplitudes.
At the second step the potential V is computed for an
ellipsoid having the bare amplitudes as semi-axis. The
new optical functions βx1, αx1, ... and amplitudes Ax1 =
(ǫx0βx1)

1/2, ... are determined and the process is iterated
until convergence. The matched amplitudes and optical
functions are related by (6). Up to ξ = 10 the method
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Fig. 5. Optical functions for ξ = 0 (blue curve) and for ξ = 10
(red curve) expressed in m.

can be safely used and one can show that the result is the
same as the periodic solution of the envelope equations
corresponding to the Hamiltonian

H env =
p2

Ax
+ p2

Ay
+ p2

Az

2
+

ǫ2x0

2A2
x

+
ǫ2y0

2A2
y

+
ǫ2z0

2A2
z

+ k(s)
A2

x − A2
y

2
− kC (s)

A2
x + A2

y

4
+ kC (s)

A2
z

2
+

ξ

2
V env (A)

(30)
where V env is the envelope potential defined by dV env =
Ax cx dAx + Ay cy dAy + Az cz dAz and V = 1

2 (cx x2 +

cy y2 +cz z2) is the potential inside the ellipse. If the elec-
tric field components are Ei = ci(A)xi = −∂V/∂xi, de-
fined by (33) in subsection 4.2, then the corresponding
force in the envelope equation is −∂V env /∂Ai = ci(A)Ai.

ξ ωx ωy ωz βx βy βz

0 84 84 81 4.38 0.670 1.47

5 69 69 72 5.07 0.850 1.65

10 58 58 65 5.85 1.03 1.81

TABLE 3 Phases (in degrees) and optical functions in m. at s = 0

Unlikely the 2D case the density ρs of the PC model is not
the projection of a phase space distribution ρ, self consis-
tent solution of the Poisson-Vlasov equations (1,3). The
self consistent distribution ρ corresponding to (7) has a
projection ρs which differs moderately from the PC dis-
tribution as illustrated in section 3.4.

In absence of space charge the optical functions are com-
puted exactly, at the lattice points si, defined in Section
3.5.

After computing the cell map L(0) = L1 · · · Ln map at s = 0
as a product of all the micro-maps, the recurrence L(si) =
Li L(si−1) L

−1
i allows to obtain the cell map L(si) at the

location si and to determine the optical functions there.
When the space charge is present, its contribution is a lin-
ear kick and the cell map is evaluated in the same way.
The iterative procedure described above allows to deter-
mine the sequence Ax n, βx n, αx n which converges below
a critical value of ξ. The only error in this case is the dis-
cretization of the space charge force. We find that with

n map = 48 an accuracy better than 10−3 is obtained on
the tune shifts and the optical functions. In table 3 we
quote the phase advance and β for the bare cell and the
cell with space charge with ξ = 10. In figure 5 we show
the graphs of the optical functions for the bare cell and
the cell with space charge.

4.2 Electric field computation

The electric field generated by a uniform distribution in
an ellipsoid is known exactly up to an integration [27,
28], which can be performed in terms of elliptic functions
or, more conveniently, with Gaussian quadratures after
a suitable change of variables. Letting Ax, Ay , Az be the
ellipsoid semi-axis we define for s ≥ 0

D(s) = (A2
x + s) (A2

y + s) (A2
z + s)

λ(s; x, y, z) = x2

A2
x + s

+
y2

A2
y + s

+ z2

A2
z + s

(31)

If the point of coordinates (x, y, z) is interior or exterior
to the ellipsoid 1 − λ(0; x, y, z) is positive and negative
respectively; moreover we have λ(s; x, y, z) < λ(0; x, y, z).
We introduce the function χ(x, y, z) defined as χ = 0 if
λ(0; x, y, z) ≤ 1 and otherwise as the unique real positive
solution χ of a cubic equation in s defined by λ(s; x, y, z) =
1. When the point is exterior and χ > 0 then A′

i = (A2
i +

χ)1/2, i = x, y, z are the semi-axis of the confocal ellipsoid.
Given a unit charge distributed on the ellipsoid with a
density ρ depending only on λ, the potential and the elec-
tric field are given by

V = π AxAyAz

∫ ∞

0

µ(λ)ϑ(1 − λ)√
D

ds

Ei = 2π xi AxAyAz

∫ ∞

0

ρ(λ)ϑ(1 − λ)

(A2
i + s)

√
D

ds

(32)

where µ(λ) =
∫ 1

λ ρ(t) dt. The potential and the field cor-
responding to a charge distribution on an infinite cylinder
with elliptical cross section is obtained by taking the limit
Az → ∞. We consider here the case of constant density
ρ(λ) = ρ0, µ(λ) = (1 − λ)ρ0 where ρ−1

0 = 4
3 π AxAyAz .

Since for interior points λ(s) < 1 for any s ≥ 0, whereas
for exterior points λ(s) < 1 if s > χ we obtain

V = 3
4

∫ ∞

χ(x,y,z)

1 − λ(s; x, y, z)
√

D(s)
ds

Ei = 3
2 xi

∫ ∞

χ(x,y,z)

1

(A2
i + s)

√

D(s)
ds

(33)

Since χ = 0 for the interior points, the electric field there
is linear. In order to carry out the integration we perform a
change of coordinates s → u which brings the integration
to a finite interval [0, u0] and removes the singularity at
u = 0

s = AxAy

(

1

uα
− 1

)

u0 =

(

1 +
χ

AxAy

)−1/α

(34)
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Choosing α = 3/2 for Ei the integral is regularized and a
Gaussian integration gives a very accurate result. The po-
tential V splits into two integrals: for the first one, whose
integrand has a numerator 1, we choose α = 2, for the
second with numerator is λ we choose α = 3/2. We have
checked the accuracy of the integration with 4 Gaussian
points, propagated in subintervals of [0, u0] against the
analytical expressions for a symmetric ellipsoid Ay = Ax.
The use of 32 × 4 Gauss points is adequate.

5 Analysis of the results

We describe here the results obtained on two numerical
experiments carried out with intermediate and high space
charge namely ξ = 5 and ξ = 10 (this is the value since
we measure s in m, x, y, z in mm and the emittance in
mm mrad. Measuring x, y, z in m and the emittance in in
m rad the perveance would be multiplied by 10−9). The
electric field has moderate variations, as shown by figure 4,
where we compare it with the PC field. The main feature
is that the fields are almost linear within the core and
the longitudinal field tends to be stronger within the core,
with respect the ellipsoid case, as shown by figure 4, where
Ex(x, 0, 0) and Ez(0, 0, z) are plotted after 10 cells and 500
cells. We notice that the region of linearity is smaller. This
is due to the change in the structure of the core. After the
first few cells the distribution changes considerably. We
have analyzed its space projection in the x, y plane and in
the z, pz plane, see figure 6. In both cases we observe that,
after a transient rearrangement, which is more dramatic
in z and smoother in x, y, the distributions take a similar
shape, given by a central core and a tail of exponentially
decreasing density.

It turns out consequently that they can be nicely fitted
with a Fermi Dirac distribution, see figure 6

ρ
F D

(t) =
α

log (1 + A−1)

1

Aeαt + 1
(35)

where the best-fitting parameters are stable after 200 cells
and are A = 0.16, α = 3 for the distribution in t =
x2/A2

x + y2/A2
y and A = 0.18, α = 5 for ǫz/ǫz0 =

(Z2 + P 2
z )/ǫz0. In figure 7 the plot of points in the trans-

verse configuration space clearly shows the formation of a
halo described by the Fermi-Dirac tail.
The main feature is that the rms radii and rms emittances
have moderate variations. Short and long period oscilla-
tions are observed. The frequencies are determined by an-
alyzing the signal 〈x2

n〉1/2 and the corresponding ones for
the y and z axis. The results are comparable: for short
signals 0 ≤ n ≤ 32, 64 two frequencies ν1 = 0.390 and
ν2 = 0.435 and low frequency νs are found. The frequen-
cies ν1 and νs are very stable and are found for the x, y
and z signals, whereas ν2 appears in the y or z signal.
For longer signals 1 ≤ n ≤ 128, 256, 512 still ν1 and νs

are present and their value is unchanged. We interpret
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Fig. 6. Normalized distribution of τ = x2/A2

x + y2/A2

y (top)
ǫz/ǫz0 = (Z2 + P 2

z )/ǫz0 (bottom) after 0, 50, 200, 500 FODO
cells. PIC simulation (blue), Fermi-Dirac fit for n > 0 (red)

the stable short frequency as a mismatch, even mode os-
cillation, which in the smooth approximation is given by
ν1 mis = 0.428. The remaining mismatch frequencies are
are ν2 mis = 0.373 and ν2 mis = 0.366. The origin of the
low frequency oscillations, which are clearly observable in
figure 8, for all the rms variables with period 40, still re-
mains to be explained.

In figure 8 we show the plots of the rms quantities over
200 and 1400 turns obtained with the following parameters
K = 64, N = 105, n map = 48.
Just to give an idea of the difference in the dynamical
behavior of the PC model and the simulation, we have
plotted the orbits of a few test particles within and out of
the core for a variable length of the orbit, see figure 11.
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Fig. 7. Plot of points in the x, y plane for ξ = 10 at the
beginning (left) and after 10 cells (right). The x, y unit is mm.

Up to a few hundred FODO cells the orbits are similar
but at one thousand cells or more the differences become
evident and some sort of diffusive behavior appears.
Nevertheless the overall behavior is not diffusive since the
rms quantities have modest variations.
We have made a comparison with the PC model by com-
puting the frequencies for a sequence of test particles cho-
sen on the X axis in the normalized coordinates and on an
annular region in the X, Y plane in order to plot the fre-
quency map, which is effective in detecting the resonances
between the betatron and collective oscillations.
In figure 9 we compare the transverse tunes for an or-
bit extending on 300 cells for two values of the perveance
ξ = 5, 10. Out of the core the tunes are in reasonable
agreement. Since the core is quite different from a uni-
form ellipsoidal charge distribution one can expect some
dependence on the amplitude. We have also performed
the frequency map analysis (FMA) [29,30] for a uniform
grid of initial conditions in the X, Y plane in an annu-
lar region between the core and twice its area, choosing
Z = 0 and zero momenta Px = Py = Pz = 0, (see the cap-
tion of figure 10). The FMA turns out to be a useful tool
to give a picture of the phase space of the PC model in
the mismatched case. Regular trajectories define a regular
mapping between the initial conditions and the frequency
space; the uniform grid of initial conditions is smoothly
deformed in the frequency space.

Resonant trajectories appear as a set of points cluster-
ing on a plane (line) in the frequency space (plane), sur-
rounded by an empty channel.

The chaotic trajectories are sensitive to the initial condi-
tions and form fuzzy clouds in the frequency space.
In figure 10 the plot in the νx, νy plane for ξ = 10 shows
that the main resonance structures are present both in
the PIC simulation and the PC model. Then the effect of
the mismatch was explored on the PC model using the
FMA. In figure 12 we show the plots of the transverse and
longitudinal tunes for a 10% mismatch, capable of exciting
mainly the first mode.
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Fig. 8. Plot of the rms radii and emittances obtained from
a PIC simulation with initial KV-Neuffer distribution using
K = 64, N = 105, n map = 48 for ξ = 5, 10. We denote by n
the number of cells crossed. The unit are mm for the rms radii
and mm mrad for the rms emittances.

With the choice Ax = 1.1 Ax matched , Ay = 0.9 Ay matched ,
Az = Az matched , a quadrupole mode is excited. The res-
onances in which the transverse frequencies are one half of
the small mismatch oscillation frequencies νx = νx mis /2,
νy = νy mis /2 are clearly recognized in the frequency plot.
The initial condition corresponding to the resonant orbits
are shown in figure 12 by using different colors. The ap-
plication of the FMA to the study of 3D phase space of
an ellipsoidal bunch has been considered [16].

6 Conclusions

We have examined a model for a linac with high current by
considering the numerical solution of the Poisson-Vlasov
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√
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Fig. 10. Frequency plot: the results of the PIC simulation
(black dots) for ξ = 10 is compared with the results of the
particle in core model (small red dots). The initial conditions
are chosen in the normal coordinates X, Y plane in a ring 1 ≤
X2/A2

x+Y 2/A2

y ≤ 2. The length of the orbits is n = 300 FODO
cells.

equations. The major problem is the lacking of an analyt-
ical self consistent solution to compare with and to test
the accuracy of the numerical scheme. We have used a
symplectic scheme for the dynamical evolution consisting
in a kick approximation of the self field force on a se-
quence of micro-cells and a spectral method to solve the
Poisson equation. Comparison with other 3D codes [31,
32] has been planned and performed at present just with
Parmila [33]. The accuracy in the field computation has
been checked in the static case. In the dynamic evolution
we have chosen an initial KV-Neuffer distribution, which is
not self consistent and which very rapidly evolves towards
a distribution where the core is followed by Maxwellian
tails and can be fitted with a Fermi-Dirac distribution.
The core appears to be stable as shown by the rms quanti-
ties which have moderate variations and reach asymptotic
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Fig. 11. Comparison of the orbits in the normal coordinates
plane X, Px obtained from the PIC simulation and the PC
model for 4 different initial conditions corresponding to X =
0.25, 0.5, 2.25, 2.5 and Y = Z = Px = Py = Pz = 0. The per-
veance is ξ = 10 and the radius of the core is Rx =

√
ǫx0 = 1.74.

The various frames show the same orbits at various lengths cor-
responding to n = 200, 600, 1000, 1400 FODO cells. The blue
points refer to the PC model the red points to the PIC simula-
tion. The units are mm/m1/2 since we measure the transverse
coordinates in mm, the optical functions in m.

values after ∼ 103 FODO cells. On the contrary the depar-
ture from the initial distribution occurs after a few cells.
The single particle emittances vary, which means that a
re-mix of the particle within the core may occur. The PIC
simulations described have been carried out on a FODO
cell subdivided into n map = 48 micro-cells with a grid
of K3 cells with K = 64 and N = 105 macro-particles,
and the stability of the results with respect to an increase
of n map and N was verified. With these parameters the
load of the dynamical evolution and the Poisson solver is
comparable: increasing K and N is possible with the par-
allel implementation of the code. Nevertheless to investi-
gate the linac problem where the number of cells is below
100, this appears not to be necessary. A comparison with
the results of the PC model has shown that the dynamics
are comparable for low n (below 200), see figure 11, and
the frequency analysis produces similar results: the same
resonant structures appear. This means that the informa-
tions on the resonances and related stochastic regions due
to space charge and mismatch oscillations are reliable for
the purpose of a linac design. The exploration of the equi-
librium asymptotic state of the system requires further
investigations and more accurate experiments which will
be carried out with the parallel implementation.
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7 APPENDIX

To justify the statistical analysis of the density and electric
field fluctuations, subsection III-C, we present here a one
dimensional model where the corresponding results are
proved. Consider a uniform charge distribution of density
ρ in a slab between the planes x = ±L and let Q = 2L ρ
be the charge per unit area in the slab. The electric field is
aligned with the x axis and E(x) satisfies dE/dx = 4πρ =
2πQ/L so that

E(x) = 2π Q
x

L
|x| < L, E(x) = 2π Q σ(x) |x| ≥ L

(A1)
where σ(x) denotes the sign of x.
The field within the slab is linear, just as the field within
the the core for a 2D KV distribution or approximately
for our 3D model. We consider a partition of the interval
|x| ≤ L into a regular lattice with spacing ∆x = 2L/K
for K even. The points of the lattice are xk = k ∆x for
|k| ≤ K/2 and to each point we associate the interval Ik

defined by

x ∈ Ik xk − ∆x

2
≤ x ≤ xk +

∆x

2
(A2)

see figure 13.

Regular distribution We replace then the given charge
with of N charged planes x = x∗

i with a charge q = Q/N
per unit area or with a uniform charge distributions be-
tween the planes x = x∗

i ± 1
2∆x having the same charge per

xxx  =−L x x =L
−2 −1 1 2

I0 I III −2 −1 1 2

Random 

xxx  =−L x x =L
−2 −1 0 1 2

I0 I III −2 −1 1 2

Regular

0

n  = 2              n   =3                n  = 4                  n  = 5               n  =2
−2 −1 20

n  = 2              n  =4                n  =4                  n  =4               n  =2
−2 −1 0 1 2

1

Fig. 13. Regular and random distribution of N = 16 points
in [−L, L] partitioned into K = 4 equal intervals by the lat-
tice points xk, k = −2, · · · , 2. The Intervals Ik centered at xk

contain nk points.

unit area. We denote by I∗i the interval x = x∗
i ± 1

2∆x From
now on we refer to the charged planes as point charges and
to the uniform distributions in the mini-slabs as clouds.
The density for point charges is

ρ∗(x) = q

N
∑

i=1

δ(x − x∗

i ) (A3)

and the corresponding electric field is

E∗(x) = 2πq

N
∑

i=1

σ(x − x∗

i ) (A4)

The clouds density ρ∗(x) is obtained by replacing δ(x)
with the step function δ∆x(x) = 1/∆x if |x| < ∆x/2.

Space discretization The analogue of the numerical pro-
cedure of space discretization consists in replacing the den-
sity ρ∗(x) with a density defined at the lattice points xk

as ρ∗k = q∗k/∆x where q∗k = qnk is the total charge in the
interval Ik and nk is the number of elementary charges.
One has

ρ∗k =
1

∆x

∫ xk+ ∆x
2

xk−
∆x
2

ρ∗(x)dx = q

N
∑

i=1

S(xk − x∗

i ) (A5)

where S(x) is the square or triangular shape function de-
fined in [5]: S(x) = δ∆x(x) for point charges, S(x) =
(∆x)−1(1 − |x|/∆x) if |x| < ∆x for the clouds. Rather
than using a finite difference or FFT algorithm to find the
field at the lattice points we associate to ρ∗k a density ρ̂(x)
corresponding to point charges q∗k = ∆xρ∗k located at the
lattice points

ρ̂(x) =

k=K/2
∑

k=−K/2

q∗k δ(x − xk) (A6)
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The corresponding electric field is

Ê(x) =

k=K/2
∑

k=−K/2

2π q∗k σ(x − xk) (A7)

In the case of a regular distribution of n
P

(even) equally
spaced particles per interval (N = K n

P
) we have ρ∗k =

n
P

q/∆x = ρ for |k| < K/2 and ρ∗
±K/2 = ρ/2 and the

electric field is

Ê(x) = 2π nP q (2k+1) = 2π
Q

L

(

xk+
∆x

2

)

xk < x < xk+1

for −K/2 ≤ k ≤ K/2 − 1

Ê(x) = σ(x) 2π n
P
q = σ(x) 2πQ |x| > L (A8)

The result is the same for a uniform distribution of N
clouds. We notice that in this case the field at xk is discon-
tinuous with left and right limits 2π Q L−1(xk ± ∆x/2).

Defining the field as the average Ek = 1
2 (Ê(xk + 0) +

Ê(xk − 0)) at the inner points |k| < K/2 and E
±K/2

=

Ê(x
±K/2

± 0) at the ends, the exact result is recovered.
The linear interpolation gives also the exact result.

Random distribution Consider the random generation
on N point charges q = Q/N with a uniform probability in
[−L, L] and denote by nk the number of points which fall
in the interval Ik, see figure 1. The charge in the interval
Ik is is q∗k = qnk and the field Ê(x) generated by point
charges q∗k at x = xk with density (A6) is given by (A7).

Since Ê(x) is discontinuous at the xk we define its value
Ek there as the average of ledt and right limits if |k| < K/2
and the limit from outside at the ends if k = ±K/2 so that

Ek = 2πq





k−1
∑

j=−K/2

nj −
K/2
∑

j=k+1

nj



 for |k| <
K

2

(A9)
At the end points the field is still E±K/2 = ±2πQ. For a
regular distribution nk = qn

P
if |k| < K/2 and n±K/2 =

1
2q n

P
, where N = K n

P
, the exact result Ek = 2πQ xk/L

is recovered from (A9).

Fluctuation estimates In order to analyze the density
and electric field fluctuations we consider the random vari-
ables

ρk =
qnk

∆x
=

Q

N∆x

N
∑

i=1

χ
Ik

(x∗

i )

Ek =
2πQ

N

N
∑

i=1

(χAk
(x∗

i ) − χBk
(x∗

i )) (A10)

where Ak = [−L, xk], Bk = [xk, L] and χA(x) denotes the
characteristic function of the set A. We have changed the
lower index in the second sum in (A9) from k + 1 to k
since the results do not change appreciably for the statis-
tical analysis and the computations are simpler. With this

-1 1
0

1

  x

  ρ

-1 1
0

1

  x

  ρ

-1 1
-1

1

  x

  E

-1 1
-1

1

  x

  E

-1 1
0

0.01

  x

  σ
E

-1 1
0

0.01

  x

  σ
E

Fig. 14. Density and electric field dependence on the interval
number K for N = 105 randomly generated particles in the in-
terval [−1, 1]. The figures on the left have K = 50, the figures
on the right have K = 500. The top figures show the density
histogram. The middle figures show the electric field. The bot-
tom figures show the electric field variance. It is evident that
the density fluctuations increase with K whereas the electric
field fluctuations are K independent. The red curves refer to
the simulation, the blue curves to the result.

change Ek is 2πq times the difference between the num-
ber of particles falling in the intervals Ak and Bk. The
variables x∗

i belong to IR and their probability measure is
µ(x) = (x + L)/2L if x ∈ [−L, L], constant elsewhere. To
evaluate the average and the variance of ρk and Ek de-
fined in the product space IRN is standard in probability
theory, For instance the electric field mean is

〈Ek〉 =
2πQ

N

∫ N
∑

i=1

(χAk
(x∗

i )−χBk
(x∗

i ) ) dµ(x1) · · · dµ(xN ) =

2πQ [ µ(Ak) − µ(Bk) ] = 2πQ
xk

L
(A11)

In a similar way we evaluate

〈E2
k〉 = (2πQ)2 N−1 [1+(N −1)(µ(Ak)−µ(Bk))2] (A12)

so that the mean square deviation is

σ2
Ek

=
(2πQ)2

N

(

1 −
(xk

L

)2
)

(A13)
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Fig. 15. Variation with the number number of intervals K
of the density fluctuation σρ/ρ (left) and of the electric field
fluctuation σE

√
N (right) for N = 105 randomly generated

particles in [−1, 1]. The variance is averaged on all the intervals.

The mean density is given by

〈ρk〉 =
Q

∆x
µ(Ik) =

Q

∆x

1

K

and its mean square value

σ2
ρk

=

(

Q

∆x

)2
µ(Ik) − µ(Ik)2

N
∼
(

Q

∆x

)2
1

N K
(A14)

The electric field variance σEk
does not depend on K

whereas the density variance σρk
does. The density fluc-

tuation is

∆ρk

ρk
=

(

K

N

)1/2

=
1

〈n
P
〉1/2

(A15)

where 〈n
P
〉 denotes the average number of particles in

each interval. The spread of the values of ρk around the
mean value is Gaussian with variance σρk

according to the
central limit theorem. The electric field fluctuation is

∆Ek

|Ek|
=

(1 − x2
k/L2)1/2

|xk|/L

1√
N

≤ K

2
√

N
k 6= 0 (A16)

where the highest value is achieved close to the center at
x = ±∆x. The condition ∆ρ/ρ ∼ 1/K gives K = N1/3

and ∆E/E ∼ N−1/6.

Self forces The choice N = K3 makes a fluctuation of
the electric field to zero unlikely even at x = ±∆x. The
self-force field contribution is dominated by the electric
field of the remaining particles. Let us consider the field
generated by a single particle or cloud located at x∗. Its
contribution to the charge at the lattice points is q∗k =
q ∆xS(xk − x∗) according to (A5). For the point charge
the self field according to (A7) reads

Ê(x∗) = 2π q

k= K
2 −1
∑

k=−
K
2

σ(xk +
1

2
∆x − x∗) χ[xk,xk+1](x∗)

(A17)

x x x
k−1 k k+1

x x x
k−1 k k+1

V V

x x

Point charges Cloudsself  field self  field

* *

Fig. 16. Self field potential for point charges and clouds

and is piecewise constant; its potential is a sawtooth with
minima at xk + ∆x/2, see figure 16. In the case of clouds
the self field is

Ê(x∗) = −2πq

k= K
2 −1
∑

k=−
K
2

x∗ − (xk + 1
2∆x)

1
2∆x

χ[xk,xk+1](x∗)

(A18)
is periodic and piecewise linear with equilibria still at the
mid points xk + ∆x/2, see figure 16 and at the lattice
points has the same value 2πq as for a point particle .
Here the field of all the particles is

Ek = 〈Ek〉 + pσEk
= 2πq

(

2k
N

K
+ p
(

1 − 4k2

K2

)1/2 √
N

)

(A19)

where p is a real variable normally distributed, namely

with probability density e−p2/2/
√

2π. At the origin the self
force is dominated by the field fluctuations. In the nearby
points |k| = 1, 2 the average value N/K dominates the√

N fluctuation if K <
√

N , a condition which is satisfied
by our choice K = N1/3. Since the field grows linearly
far from the origin the problem of self oscillations is not
present in any case.
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