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ABSTRACT Segmentation of bony structures in CT scans is a crucial step in knee arthroplasty based
on personalized surgical instruments (PSI). As a matter of fact, the success of the surgery depends
on the quality of the matching between the patient-specific resection jigs, manufactured exploiting the
patient bony surfaces attained by segmentation, and true patient surfaces. Severe pathological conditions
as chronic osteoarthritis, deteriorating the cartilages, narrowing the intra-articular spaces and leading to
bone impingement, complicate the segmentation making the recognition of bony boundaries sub-optimal
for traditional semi-automated methods and often extremely difficult even for expert radiologists. Deep
convolutional neural networks (CNNs) have been investigated in the last years towards automatic labeling
of diagnostic images, especially harnessing the encoding-decoding U-Net architecture. In this paper, we
implemented deep CNNs to encompass the concurrent segmentation of the distal femur and the proximal
tibia in CT images and evaluate how segmentation uncertainty may impact on the surgical planning. A
retrospective set of 200 knee CT scans of patients was used to train the network and test the segmentation
performances. Tests on a subset of 20 scans provided median dice, sensitivity and positive predictive value
indices greater than 96% for both shapes, with median 3D reconstruction error in the range of 0.5mm.
Median 3D errors on both PSI femoral and tibial contact areas and surgical cut alignments were less than
2mm and 2◦, respectively, which can be considered clinically acceptable. These results substantiate that
deep CNN architectures can disclose the opportunity of segmenting bone shapes in CT scans for PSI-based
surgical planning with promising accuracy. However, we observed that segmentation scores alone cannot
be taken as representative of the 3D errors at the contact areas of the PSI. Therefore when comparing
segmentation algorithms of PSI-based surgical planning the 3D errors should be explicitly analyzed.

INDEX TERMS 3D U-net, Bone segmentation, CT images, Deep learning, Knee arthroplasty, Osteoarthri-
tis, Personalized surgical instruments.

I. INTRODUCTION

COMPUTED tomographic (CT) and magnetic resonance
(MR) imaging are competing techniques to perform

surgical planning in knee arthroplasty by means of person-
alized surgical instruments (PSI) and customized implants
[1]–[5]. The three-dimensional (3D) geometry of patient
bones, obtained through image segmentation and surface
reconstruction, is crucial to identify clinical landmarks, es-

tablish the optimal femoral and tibial resections, decide the
implant size, optimize the implant location in the different
planes towards the recovery of knee joint mechanics. Ac-
cording to the preoperative plan, patient-specific cutting jigs
are designed, manufactured and used during the surgery to
accurately drive the bone resection avoiding invasive intra-
medullar instruments [6]–[8]. In this clinical pipeline, image
segmentation plays a fundamental role as it influences the
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reconstruction accuracy of digital bone surfaces, the match-
ing of the personalized instrument to the true bone geometry
and ultimately the resection alignment, leaving therefore the
overall surgical performance particularly susceptible to seg-
mentation uncertainty [9]–[12]. Sub-millimetre correspon-
dence between patient surface and jig footprint has been
claimed as geometrical target for successful PSI-based knee
surgery [13], [14]. Due to such demanding requirement, bone
segmentation is manually performed by expert orthopaedic
radiologists using clinical image management and visualiza-
tion tools. Nonetheless, due to large variations in bone shape
and size among individuals, the process is very time consum-
ing, labor intensive and usually the results are subjected to
significant inter-operator variability [15]–[17]. Segmentation
is further complicated by the effects of pathological disorders
affecting cartilages and bone surfaces, whose morphology
can significantly differ from physiological conditions. For in-
stance, osteoarthritis or post traumatic sequelae, deteriorating
the cartilages and narrowing the intra-articular spaces, makes
the cortical profiles jagged, thus complicating the delineation
of bony boundaries and often requiring at least one addi-
tional quality cross-check performed by a different expert
radiologist. As soon as the severity increases to the chronic
condition, bone impingement occurs causing the interface be-
tween adjacent bones to become almost indistinguishable. In
addition, the formation of osteophytes, especially in case of
long-term impingement, makes the bony profiles extremely
irregular and the delineation of surface boundaries difficult
even for expert radiologists [18]–[20]. Not only the quality of
the manual segmentation of lower limb bones is prone to such
complexity but also traditional semi-automated algorithms,
based on gray histograms, edge detection, region growing
and statistical shape models were proven sub-optimal re-
quiring extensive manual post-processing [21]–[24]. As a
consequence, due to the limited speed and weak robustness
of bone segmentation on CT scans, such techniques have
had limited spread hitherto in PSI-based surgical planning
for knee arthroplasty. More recently, bone segmentation of
2D images and 3D scans has been addressed as a pixel-
wise classification problem by leveraging multi-layer convo-
lutional neural networks (CNNs), trained by supervised deep
learning (DL) algorithms [25]–[27]. This interest has been
motivated by several successes achieved by such method-
ology to solve complex problems such as text translation,
natural voice generation, lip reading, road sign recognition,
image synthesis and game challenges [28]. With respect to
traditional machine learning approaches, DL demonstrated
superior ability to discover from the original data the fun-
damental features that determine the success of the specific
task. The translation of this principle to image segmentation
is that representative features (e.g. lines, boundaries, con-
tours, 2D/3D geometries) can be learned by the DL multi-
layer network directly from raw images and the correspond-
ing labeled images, without requiring pre-processing or any
a-priori assumption about the complexity of the shape to be
segmented [29], [30]. Driven by the segmentation task, DL

exploits, layer by layer in the network, data encoding with
spatial down-sampling to synthesize significant shape char-
acteristics, and then data decoding with spatial up-sampling
to build full-resolution segmentation. The ability to learn
the complexity of the image structure may be extended to
the bone case in a wide spectrum of variability seen in a
huge number of different pathological conditions. A variant
of this encoding-decoding network is represented by the so
called U-Net that has been recently proposed in the field of
biomedical image segmentation [31]. Both 2D and 3D U-
Net models have been investigated for segmentation of hand
bones in X-ray images [32], mandibular bones in cranio-
facial CT [33], femur in CT scans [30] and major skeletal
bones in whole-body CT scans [34]. All such papers focused
mainly on binary segmentation of bones against the image
background, used low resolution data, disregarded the effects
of large bone deformations and osteophytes on the segmen-
tation quality. Overall the impact of segmentation errors the
surgical planning was underestimated. In order to address
such challenges, in this work we proposed to investigate
CNN networks based on 2D and 3D U-Net architectures for
the automatic semantic segmentation of the distal femur and
proximal tibia. Segmentation quality was evaluated to verify
whether such methods may be adopted with reliability to
reconstruct anatomical surfaces used in surgical planning for
PSI-based knee arthroplasty. Specifically, we performed the
segmentation of a dataset of 200 knee CT scans, acquired
on pathological patients, affected by severe osteoarthritis,
who underwent total knee replacement using PSI technique.
We quantified the effects of segmentation errors on contact
points and resection plane directions against the reference
planning based on manual segmentation performed by expert
radiologists. Main contributions in this paper, both from
technical and clinical points of view, can be herewith out-
lined: 1) extensive comparison between 2D and 3D U-net
architectures to demonstrate the better performance of the
3D framework; 2) specific comparison of the 3D U-net with
traditional algorithms, based on semi-automatic region grow-
ing, to evaluate the ability to segment femur and tibia affected
by wide morphological deformations and local spurs formed
by osteophytes; 3) morphological matching quality of the
PSI with reconstructed shapes, measured on the true contact
areas, is accurate enough to ensure rotational alignment in
agreement with the surgical planning performed by expert
surgeons.

II. MATERIALS AND METHODS
A. PATIENT DATA AND PREPROCESSING
Axial CT scans of the knee, over a set of 200 patients
(128 males and 72 females - 91 left against 109 right
knees), acquired for planning purposes and provided in
anonymized form by Medacta International SA (Castel San
Pietro, Switzerland), were retrospectively available for this
study [35], [36]. The patients, aged 67±10 years, reported
localized knee pain, associated to osteoarthritis, and mechan-
ical knee instability. Diagnostic imaging confirmed different
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(a) Patient #1 (b) Patient #4

(c) Patient #6 (d) Patient #29

FIGURE 1: Axial slices taken from 4 patients imaging the
distal femur. Deformations and osteophytes have been encir-
cled.

degrees of cartilage defects, femoral osteophytes and shape
abnormalities mainly at the condylar regions of the distal
femur and at the tibial plateau (Fig. 1). CT scans were ac-
quired with different imaging equipment, mostly at 512×512
pixels and 600 slices on average, with variable pixel size,
ranging from 0.3mm to 0.4mm, and axial slicing, ranging
from 0.3mm to 1.0mm, though. Along with the CT scans,
the dataset encompassed distal femur and proximal tibia
segmentation masks and the corresponding reconstructed
surfaces. Expert radiological operators manually performed
the image segmentation of the osseous portion of the bones
using Mimics software (Materialize, Belgium). For increas-
ing reliability, each dataset was segmented by one operator
and revised later on by another one. Because of the imaging
equipment and acquisition protocol variability, no common
segmentation protocol was adopted and no data about seg-
mentation uncertainty was available. As a function of the
particular centering of the knee joint in the CT scan, the distal
femur was segmented up to 2-4 cm away from frontal notch
of the trochlear region along the femur shaft. Concurrently,
the length of the tibia segmented shaft was variable across
the patient set in a range of about 2-3 cm. Along with the
bone morphology, the dataset included the corresponding
planning surfaces. Planning data were available on planning
surfaces as PSI contact points and contact areas, along with
planar sections indicating the planned cuts. An example of

FIGURE 2: (Left panel) Femoral and tibial PSI of MyKnee
system (courtesy of Medacta International Spa) with high-
lighted (light blue) contact points. (Right panel) Planning
surfaces for patient 185 in the frontal view with contact
points, areas and section planes.

the planning surfaces for one of the subjects included in
the dataset is depicted in Fig. 2. All the patients underwent
knee replacement surgery between 2014 and 2016 using
PSI technique exploiting the 3D surfaces reconstructed by
the available segmentation. As originating from different
scanning equipment, the CT volumetric datasets underwent
preprocessing to make the pixel intensity distribution consis-
tent and to arrange spatial dimensions to cope with network
input. First, pixels belonging to filling background and air
were automatically identified in the images, according to
information gathered from Dicom header, and the corre-
sponding intensity values put both to zero. The remaining
image pixels underwent intensity normalization taking into
account of different intensity scale encoding (e.g. Hounsfield
units, 12-bit raw pixels). Then, each scan was cropped in the
axial direction to remove the slices where segmentation was
not available.

B. U-NET ARCHITECTURE
The segmentation net adopted in this work took its roots from
the convolutional U-Net in the 2D and 3D versions. In our
implementation, 2D version of the U-Net was configured to
process in input one CT axial slice and provide in output
the femur and tibia segmented structures in a discrete-value
image. Likewise, 3D version was configured to process in
input one CT axial volume of the knee and provide in output
the femur and tibia segmented structures in a 3D discrete-
value volume. The U-Net mainly consists of a feed-forward
architecture, which performs input encoding by means of
convolutional layers, into a compressed multi-map feature
representation, and then data decoding by means of decon-
volutional layers. The decoding process exploits multi-scale
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feature fusion by concatenating the output of the encoding
layer to the corresponding deconvolutional layer (cfr. Fig. 3
for 3D architecture). According to the number of labels
the output is configured by means of a multi-dimensional
Softmax layer. In both 2D and 3D models, we envisioned
each sub-module of the encoding path composed by two
following convolutional layers, each one featuring linear
activation, linked to batch normalization layer and followed
by a ReLU layer (light red rectangle), and a final max pooling
operator (red rectangle), ensuring a spatial compression by a
factor of 2. The batch normalization layer shifted and scaled
the activation distribution of the convolutional layer at each
batch, by adjusting both the mean and the standard deviation
of the layer activation map to optimal values during training.
The bottleneck part embedded two following convolutional
operators. In the decoding path, each layer featured first the
up-sampling operator (blue rectangle in Fig. 3), implemented
by a transposed convolution with ReLU activation, whose
output was then concatenated (blue arrow in Fig. 3) with the
corresponding output of the encoding path (light red rect-
angle), followed by two convolutional operators. Assuming
8 feature maps in the first stage of the encoding path and
doubling the number every new stage, by convenience the
resulting U-Net architecture was named as 8-16-32-64-32-
16-8. The Softmax output layer was a 4D tensor featuring
the volume size, the first three dimensions, and the label
(background, femur, tibia) as the fourth one.

C. LOSS FUNCTIONS FOR TRAINING
The 2D (3D) network training was based on the correspon-
dence between the dataset of CT images/volumes and the
equal-sized dataset of 2D (3D) annotated masks. In our
specific problem, one pixel/voxel in the annotated mask will
feature alternatively background, femur or tibia labels. Con-
sidering the 3D case, the goal of training in the segmentation
network is to maximize the probability of voxel membership
to the corresponding label inside the volume, this attained by
minimizing a proper loss function. Traditionally, for volume
segmentation the voxel-wise cross-entropy loss is adopted,
which aims at maximizing each estimated posterior proba-
bility that voxels belong to a specific class given the corre-
sponding expected probability [37], [38]. As cross-entropy
does not discriminate among labels, the background, which
is predominant in CT images with respect to bony voxels,
may easily bias the network training. Alternatively to cross-
entropy, Dice similarity index and the Jaccard coefficient
harness the overlap of voxels belonging to the same class
between label and CT volumes [39] but the conventional
formulation does not address multi-label segmentation. This
issue is usually overcome by assigning a weight, proportional
to the number of voxels belonging to the specific class,
to each label contribution in such a way that the different
frequencies of voxel for each class can be compensated and
the overall loss function re-balanced. Assuming a multi-class
labeling across C classes and N voxels, the loss function
based on Dice can be written as:

D(y, ŷ) = 1−
C∑
i

ki(
2
∑N

yi · ŷi∑N
yi · yi +

∑N
ŷi · ŷi

) (1)

where yi and ŷi are respectively the true and predicted
segmented volumes for the label i whose scalar product is
computed over N voxels. The scalar value ki is a coefficient
weighting the contribution of each label to the loss function
and it can be computed as:

ki =
1

C − 1
(1− Pi

N
) (2)

where Pi and N are the number of voxels belonging to class i
and the overall number of voxels in the volume, respectively.
Similarly, the loss function based on Jaccard coefficient can
be written as:

J (y, ŷ) = 1−
C∑
i

ki(

∑N
yi · ŷi∑N

yi +
∑N

ŷi +
∑N

yi · ŷi
) (3)

For weighted cross-entropy, the loss function can be written
as:

CE(y, ŷ) =

C∑
i

ki(−ŷi · log(yi)+

(1− ŷi) · log(1− yi)) (4)

As far as the weights are concerned, usually they are com-
puted on the overall training dataset but this is sub-optimal in
a mini-batch paradigm, where the batch size is a fraction of
the entire set. We detailed below in the next section how we
addressed this issue.

D. NETWORK IMPLEMENTATION AND TRAINING
STRATEGY
Implementation was performed leveraging on Tensorflow
and Keras libraries in the Python environment. The code
was run using the Colaboratory platform by Google Research
(Google Colab, colab.research.google.com) equipped with 4-
core CPU, 25GB RAM and with NVIDIA® Tesla® T4 GPU
support, with 8GB RAM. For the training, out of the overall
200 samples, sorted alphabetically by family name, the first
160 samples, were used to train the U-Net model, namely by
computing the neural weights, the next 20 samples to validate
the training by checking the error for convergence. The
remaining 20 samples were later used to test the segmentation
performance. The training was based on Adam optimizer
with a customized adaptive learning rate, starting from an
initial value of 0.0003, which was updated according to the
topology of the error metrics on the validation set. A heuristic
threshold of 0.95 on the error metrics (see eq. 4) of femur
and tibia was set to trigger the reduction of the learning rate
by a factor of 2. The metrics used to evaluate the training
performance on the validation set was the Intersection Over
Union (IoU), computed as:

IoUi =
TPi

TPi + FNi + FPi
(5)
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FIGURE 3: Schematic of one symmetric encoder/decoder structure, linked by a bottle-neck stage, of the U-Net. Convolutional
(light red), Relu (orange), pooling (red), un-pooling (blue) and concatenating layers (light green) can be recognized in the
picture. The encoding path includes three stages, with each stage embedding 2 sequential convolutions and one max pooling.
In the first stage, the two convolutional layers features 8 feature maps each. The decoder stage, being symmetric to the encoder
one, includes three up-sampling stages. Exactly 351435 free parameters ought to be trained for this model. By convenience this
U-Net architecture was named as 8-16-32-64-32-16-8.

where TPi, FNi, and FPi are the true positives, false
negatives, and false positives, respectively, for class i. If the
computed average error metrics remained stable (lower than
5%) for 10 consecutive epochs, the training was considered
completed and the network was stored for later analysis. In
order to prevent early convergence, a predefined number of
epochs, set to 100, was allowed. A batch strategy in the
training was selected, with a batch size in agreement with
memory constraints. In order to ensure data mixing in the
batches, data reshuffling was implemented in each epoch of
the training. This required to compute at run-time for the
specific batch the weights ki (see eq. 1). In order to cope
with the computational limits of the Colab environment that
prevented to process original size data Dx, Dy, Dz, two
main strategies were put in practice ensuring a reasonable
trade-off among data size, network complexity and available
graphics processing unit (GPU) memory. The first approach
implied spatial sub-sampling while the second one required
the implementation of an efficient data loading in memory.
Sub-sampling was performed by generating four datasets,
featuring increasing resolutions (Table 1), which also allowed
to study the sensitivity of the network to spatial resolution.

Efficient data loading in memory was implemented by
data-generator strategy allowing to load only the batch of
data required at run-time during each epoch of the optimiza-
tion. The last relevant feature of the implementation was the
adoption of a 5 dimensional tensor representation of data to
embed the batch dimension, the volume size, and the label.
As an example, considering a batch size of 4, a volume

TABLE 1: Datasets with different dimensions (number of
pixels and slices). The corresponding voxel size (mm) are
average values across the sub-sampled dataset.

Name Dx Dy Dz ∆x ∆y ∆z
D1 128 128 128 1.50 1.50 1.00
D2 160 160 128 1.25 1.25 1.00
D3 184 184 160 1.10 1.10 0.80
D4 200 200 192 1.00 1.00 0.70

of 160×160×128 and the three labels, namely background,
femur and tibia, the size of the 5-dimension tensor will be
4×160×160×128×3. This will be therefore the data size
used in the loss function computation during the training
stage.

E. SEGMENTATION ASSESSMENT
In order to test the segmentation quality and the reconstruc-
tion accuracy across different dataset spatial resolutions and
network architectures, the last 20 samples, out of the 200
ones, which were not included in the training set were consid-
ered. Dice index (D), sensitivity (Se) and positive predictive
value (PPV ) for each segmented bone were computed and
compared. According to (eq. 1), the Dice index for class bone
i can be written as:

Di =
2TPi

(2TPi + FPi + FNi)
(6)

Sensitivity measures the portion of bone voxels in the labeled
volume being correctly identified as bone voxels by the
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automatic segmentation and can be computed as:

Sei =
TPi

(TPi + FNi)
(7)

Positive predictive value, also known as precision, is ex-
pressed by the proportion of correctly identified bone voxels
that are true positive results and can be computed as:

PPVi =
TPi

(TPi + FPi)
(8)

In addition to the above metrics, the computed labeled
masks were reconstructed in 3D to obtain the corresponding
surfaces Ŝ. Prior to reconstruction, the masks underwent
image processing to remove undue voxel spots by means
of the opening morphological operator. The reconstruction
accuracy, against the reference surface S, was measured by
root mean squared dR distances. Due to the relatively small
sample size, non-parametric statistical significance tests were
used to compare results across different conditions. Statisti-
cally significant effects were assessed at p < 0.01.

F. CLINICAL EVALUATION
The quality of femoral and tibial segmentation was evaluated
in terms of clinical impact on the surgical planning in the total
knee replacement based on MyKnee technology (Medacta In-
ternational Spa, Castel San Pietro, Switzerland). Practically,
the reconstructed surfaces of the test set were matched to the
corresponding planning surfaces (cfr. Fig. 2). For each bone,
the matching was quantified in terms of distance errors at
the contact areas of the PSI with the surface and angular
alignment errors of the distal femoral and proximal tibial
cutting planes, representing the surgical resections. On each
planning surface, contact areas were sampled by picking
either three or four technical landmarks each, at the vertices
of the areas (see supplementary materials), using Amira
software suite (Thermo Fisher Scientific Inc., Waltham, MA
USA). For each landmark, the corresponding point on the
reconstructed surface was determined by minimal distance.
The contact area matching was computed by averaging the
four distance errors. On the distal femur, two contact areas
in the frontal part and two contact areas in the distal part
were taken into account. On the proximal tibia, three contact
areas were deemed, namely on medial and lateral tibial
plateau region and one on the frontal region close to the
tibial tuberosity. In order to define the femur distal resection
plane, four landmarks were picked in correspondence of the
planned resection sulcus, two frontally and two posteriorly.
The resection plane of the tibial plateau was identified by four
landmarks picked on frontal, lateral, medial and posterior
aspects, in correspondence of the planned resection sulcus,
respectively (cfr. Fig. 2). Again, the minimal distance was
used to determine the corresponding points on the femur
and tibia reconstructed surface. For each bone, the normal
direction of the plane fit to the four points was computed in
the planning and reconstructed surfaces and the in-between
angular deviation was projected on both frontal and sagittal

anatomical planes, obtaining two clinically relevant measures
[1], [12], [40].

III. EXPERIMENTAL TEST AND RESULTS
A. U-NET SETUP

1) 2D and 3D comparison

The first analysis carried out on the U-Net was designed to
compare the performance achieved by the network, in its
3D implementation, to the results obtained with different
implementations of a 2D U-Net on the same data. The used
U-Net architecture included three main processing blocks for
both encoding and decoding paths with the following feature
map configuration (8−16−32−64−32−16−8) (Fig. 3). All
the convolutional and deconvolutional kernels had 3×3×3
and 2×2×2 size, respectively, leading to exactly 351435
free parameters. As far as 2D U-Net architecture was con-
sidered, three, four, five, and six processing layers in both
the encoding and decoding paths were taken into account.
For all the different 2D architectures, the number of feature
maps in the first layer was equal to 8, while the number of
features maps in the bottleneck were equal to 64, 128, 256,
and 512, respectively. The number of parameters of the 4
2D architecture ranged from 121 thousands (three processing
layers) up to 1,948,795 (6 processing layers). In order to
compare the performance of the 2D and 3D networks using
the same metrics, the images produced as outputs by the
2D U-Net were ordered and combined together to produce a
single volume for each patient belonging to the test set. After
completing this procedure, Dice, sensitivity, and precision
values were computed on the volumes as explained in Section
II-E. . This analysis was carried out on dataset D1, therefore
the images used in the 2D U-Net had a resolution of 128×128
pixels, and the respective three dimensional volume used in
the 3D U-Net had a resolution 128×128×128 pixels. Dice,
sensitivity, and precision results, computed on the test set
for both femur and tibia, were sensibly better for the 3D
U-Net that those obtained for all the 2D U-Net versions,
as shown Fig. 4. This analysis reported that the 3D imple-
mentation outperformed the 2D U-Net, even with a higher
number of processing layers in the encoding and decoding
paths. A statistically significant difference (p < 0.01) was
found when comparing the Dice values for both femur and
tibia computed on test set using the 3D U-Net and the four
different implementations of the 2D U-Net.

2) Loss function test

The second analysis aimed at testing the training dependency
on the three different loss functions, namely Dice, Jaccard
and cross-entropy indexes. The chosen U-Net architecture
was identical to that one of the previous test. Dataset D1,
composed of volumes with dimensions 128× 128× 128 was
used. For all the three loss functions, the median values of
Dice, Se and PPV distributions, across the 20 test patients,
ranged from 0.96 to 0.98 with no statistical difference (p >
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FIGURE 4: Boxplots of dice, sensitivity, and precision values
obtained on the dataset D1 using the described 3D U-Net,
and four different implementations of a 2D U-Net with an
increasing number of processing layers (2D-3: 3 processing
layers, 2D-4: four processing layers, . . . ). FD: Femur Dice;
TD: Tibia Dice; FS: Femur Sensitivity; TS: Tibia Sensitivity;
FP: Femur PPV; TP: Tibia PPV.

TABLE 2: Results of the ablation test performed on the
network using dataset D1 and a different number of convolu-
tional layers.

Layers Dice
Femur Tibia

2 0.97 (0.97-0.98) 0.97 (0.96-0.98)
3 0.97 (0.97-0.98) 0.97 (0.96-0.98)
4 0.97 (0.97-0.98) 0.97 (0.97-0.98)

0.1). Dice index was therefore chosen as loss function for all
subsequent experiments.

3) Ablation test

The third analysis aimed at evaluating the dependency of
the segmentation quality on number of convolutional lay-
ers of the U-Net. This was tested by means of an abla-
tion test, using again dataset D1. The convolutional lay-
ers were inserted or removed symmetrically in the en-
coding and decoding paths maintaining the bottleneck
layer. Four (8−16−32−64−128−64−32−16−8), three
(8−16−32−64−32−16−8) and two (8−16−32−16−8)
layers were taken into account. The results carried out on
the network are reported in Table 2. Four, three, and two
convolutional layers were taken into account for this analysis,
using as input to the network dataset D1. This analysis
reported that changing the number of convolutional layers
produced very small changes in the Dice metric for both
femur and tibia, with an overall range in the interval 0.96-
0.98. No statistically significant difference (p > 0.01) was
found when comparing the Dice values for both femur and
tibia using the three different number of convolutional layers.
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FIGURE 5: Boxplots of dice, sensitivity and positive pre-
dictive values obtained on the test set using dataset D2 with
three different filter sizes. Boxplots in blue refer to the femur
class, while boxplots in red refer to the tibial class. FD:
Femur Dice; TD: Tibia Dice; FS: Femur Sensitivity; TS: Tibia
Sensitivity; FP: Femur PPV; TP: Tibia PPV.

4) Dependency on feature map size and number
In the fourth test, dataset D2, composed of volumes with
dimensions 160× 160× 128, was considered to analyze the
variability of the segmentation performance as a function of
the feature map size and number in the convolutional layers.
The architecture 8−16−32−64−32−16−8 for the network
was taken into account again, whereas the 3D filter size of
the convolutional kernels was made variable across three dif-
ferent values: 3×3×3, 4×4×4 and 5×5×5. Boxplot charts
of dice, sensitivity and positive predictive values obtained
with the different filter sizes were summarized in Fig. 5. The
analysis showed that the change in the filter size elicited
very small effects with an overall range of sensitivity in the
interval 0.94-0.99 for both femur and tibia, and of positive
predictive value in the interval 0.93-0.99. After testing the
effects of filter size, two networks with two different feature
map configurations, namely 8-16-32-64-32-16-8 and 12-24-
48-96-48-24-12, were compared. Results attained with the
two different feature maps configurations were similar, with
little to none difference between them. No statistically signif-
icant difference (p > 0.01) was found when comparing dice,
sensitivity and positive predictive values computed using the
two different feature map configurations.

B. QUALITATIVE ANALYSIS FOR THE 3D U-NET
A qualitative analysis of the segmented scans was performed
using the 3D U-Net (loss function: dice, configuration: 8-16-
32-64-32-16-8, convolutional filter size: 3×3×3, deconvolu-
tional filter size: 2×2×2 size) trained on dataset D2 (Table
1). The segmentation was effective in accurately labeling
the distal femur and proximal tibia, excluding at the same
time the other bones such as the patella and the fibula, as
shown in Fig. 6. Interestingly, the trained network was able
to properly separate adjacent tibial and femoral surfaces also
in presence of very narrow spaces in between. Bony spurs
on the ridge of the trochlear region of the femur and on
the tibial plateau boundary were also correctly segmented.
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Interestingly, condylar osteophytes, both in medial and lateral
side, were again correctly segmented excluding contiguous
tissues (Fig. 7). In order to verify in which of the two paths of
the U-Net, and at what level, the removal of non-target tissues
occurred, we visually analyzed the activation maps layer by
layer in the encoder and in the decoder, corresponding to
the volumes input. As expected, the training specialized the
encoding path as edge and boundary detector at decreasing
spatial scale when increasing the path depth, while the decod-
ing path was tailored to remove background and discriminate
between target and non-target bones during progressive im-
age up-sampling. In Fig. 8, the visualization of the activation
maps in the net trained on dataset D2, corresponding to the
78th slice of the volume scan #185 can be appreciated. One
image in the first column represents the image output of one
feature map of the 8 available (for sake of clarity only 5 of
them were depicted) in the first convolutional layer in the
encoding path. One image in the second column represents
the image output of one feature map of the 16 available (for
sake of clarity only 6 of them were depicted) in the second
convolutional layer in the encoding path. One image in the
third column represents the image output of one feature map
of the 32 available (for sake of clarity only 9 of them were
depicted) in the third convolutional layer in the encoding
path. One image in the fourth column represents the image
output of one feature map of the 64 available (for sake of
clarity only 17 of them were depicted) in the bottleneck
convolutional layer. One image in the fifth layer represents
the image output of one feature map of the 32 available in
the first convolutional layer in the decoding path. One image
in the sixth layer represents the image output of one feature
map of the 16 available in the second convolutional layer in
the decoding path. One image in the seventh layer represents
the image output of one feature map of the 8 available in the
third convolutional layer in the decoding path. The output of
the last column will be the input of the Softmax classifier (see
supplementary multimedia).

C. QUANTITATIVE ANALYSIS FOR THE 3D U-NET
1) Segmentation errors
The four datasets (Table 1) with different resolution setups
were used to train the earlier U-Net architecture. Fig. 9 shows
the boxplot charts of Dice index distributions obtained on
femur and tibia across the test set. In all datasets, D, Se and
PPV median values were all greater than 0.96 for both femur
and tibia segmentation (Table 3). First and third quartile of
sensitivity values across the four datasets laid within the
range 0.97-0.99. PPV median values for the femur ranged
from a minimum of 0.96, on dataset D2, to a maximum of
0.98, on both datasets D3 and D4. PPV median for the tibia,
instead, were of 0.96 on dataset D2 and 0.97 on the remaining
datasets. Kruskal-Wallis test was used to assess the statistical
difference between femur and tibia classes in all the three
measures for each dataset. Sensitivity values between femur
and tibia were statistically different, at 1% of significance,
for dataset D1 and D3. Positive predictive values of femur

FIGURE 6: (upper panels) Frontal and sagittal views of the
segmented CT scan of patient #185. (lower panels) Frontal
and axial views of the segmented CT scan of patient #196.
In both frontal views, in correspondence of the narrow space
between tibia (yellow) and femur (dark red), correct segmen-
tation can be appreciated. As it can be noticed as well in the
axial view of patient #196, one spur on the medial ridge of
the trochlear region and one osteophyte on internal surface
of the medial condyle are both properly segmented.

and tibia class were statistically different only for dataset D3
(p < 0.01).

2) Three-dimensional reconstruction errors
For the models trained with the four datasets, the root mean
square distance (RMS) were computed. The median val-
ues of distance distributions ranged between 0.5 and 1mm,
with a maximum error lower than 1.5mm (Fig. 10). It is
noteworthy that in dataset D4 the values computed for the
femur and tibia classes were very akin and close to 0.5mm.
Furthermore, for dataset D4 the maximum IQR was lower
than 0.15mm. As it was expected, a general decreasing
trend for the 3D reconstruction errors was obtained as the
spatial resolution increases, thus suggesting that augmenting
the spatial resolution by approaching the original voxel size
could still improve the reconstruction quality even up to the
CT planning scans. Kruskal-Wallis test was used to assess
the statistical difference in RMS distances between femur
and tibia classes, and Conover post-hoc analysis with Holm
correction was carried out to compare the results across
the datasets. Differences statistically significant were found
(p < 0.005) when comparing dataset D1 with datasets D3
and D4, while no differences were found (p > 0.1) between
dataset D3 and dataset D4.
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TABLE 3: Summary of dice (D), sensitivity (Se) and precision (PPV) indexes obtained with the four datasets. Data shown are
median (first quartile-third quartile) values.

Dataset D Se PPV

Femur Tibia Femur Tibia Femur Tibia

D1 0.97 (0.97-0.98) 0.97 (0.96-0.98) 0.98 (0.97-0.98) 0.98 (0.98-0.99) 0.97 (0.97-0.98) 0.97 (0.95-0.98)
D2 0.98 (0.97-0.98) 0.97 (0.96-0.98) 0.99 (0.98-0.99) 0.99 (0.98-0.99) 0.96 (0.95-0.97) 0.96 (0.94-0.97)
D3 0.98 (0.97-0.98) 0.98 (0.97-0.98) 0.98 (0.97-0.98) 0.98 (0.98-0.99) 0.98 (0.97-0.99) 0.97 (0.95-0.98)
D4 0.99 (0.98-0.99) 0.98 (0.98-0.99) 0.99 (0.99-0.99) 0.99 (0.98-0.99) 0.98 (0.97-0.99) 0.98 (0.97-0.99)

FIGURE 7: Three axial views of the segmented femur (trans-
parent dark red) of the patient #197. From the corresponding
reference surface, it can be noticed the relevant deformation
of the trochlear ridge anteriorly, with the corresponding seg-
mentation that follows correctly the osseous profile.

3) Comparison with surgical planning obtained by manual
segmentation

The computed errors at contact areas located on the frontal
femur and tibial plateau locations were quite similar (range:
1-2mm) across the four training datasets, as it can be ap-
preciated in Fig. 11. The contact area error at condylar lo-
cations distally was conversely lower than 1mm, in all the
four setups. These findings were not surprising as the distal
condylar surfaces feature less local complexity than frontal
and medio-lateral areas. As a matter of fact, pathological
deformations tend to flatten the distal areas while condylar
ridges both frontally and laterally usually undergo wider
deformations. These deformation effects make the segmen-
tation more challenging, here confirmed by greater errors.
The median angular deviation of the direction of the femoral
distal resection plane, projected on both frontal and sagittal
anatomical planes, was close to 0◦ with IQR in the range
of 1◦ in all the four setups (Fig. 12). While no statistical
difference was found between the angular values of frontal
and sagittal planes (p > 0.33), a slightly greater IQR was

FIGURE 8: Simplified graphical representation of the pro-
cessing of the 78th slice, out of 128, in the U-Net (8-16-32-
64-32-16-8) for the patient #185 trained on dataset D2.
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FIGURE 9: Boxplots of Dice values obtained on the test set
with the four different datasets. Boxplots in blue refer to the
femur class, while boxplots in red refer to the tibial class. FD:
Femur Dice; TD: Tibia Dice.

attained for the sagittal plane. The direction of tibial plateau
resection plane deviated from the corresponding planning
direction less than 1.5◦ and no statistical difference was
detected (p > 0.07) between the angular values of frontal
and sagittal planes. Again, the alignment in the sagittal plane
was more uncertain than that in the frontal plane.
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FIGURE 10: Boxplots of RMS errors (mm) obtained on the
test set with the three different datasets. Boxplots in blue refer
to the femur class, while boxplots in red refer to the tibial
class. FR: Femur RMSE; TR: Tibia RMSE.
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FIGURE 11: Distance error distributions (mm) computed at
the contact areas for the four training setups. Blue and red
boxplot charts refer to the femur and tibia, respectively. FCM:
Femur Frontal Contact Medial; FCL: Femur Frontal Contact
Lateral; DCM: Femur Distal Contact Medial; DCL: Femur
Distal Contact Lateral; PCM Tibia Plataeu Contact Medial;
PCL Tibia Plateau Contact Lateral.
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FIGURE 12: Boxplot charts of angular error (◦) values ob-
tained on the test set using the different datasets. Boxplots
in blue refer to the femur class, while boxplots in red refer
to the tibial class. DCF: Femur Distal Cut Frontal; DCS:
Femur Distal Cut Sagittal; PCF: Tibia Plateau Cut Frontal;
PCS: Tibia Plateau Cut Sagittal. For the frontal plane, values
greater and less than 0◦ indicate medial and lateral side,
respectively. For the sagittal plane, values greater and less
than 0◦ indicate anterior and posterior side, respectively.

TABLE 4: Comparison between 3D U-Net, trained on dataset
D4, and region growing algorithm in terms of median (first
quartile-third quartile) Dice values and 3D RMS errors (mm),
computed on the test set.

Metric Class Algorithm
U-Net Region Growing

Dice Femur 0.99 (0.98 - 0.99) 0.95 (0.95 - 0.95)
Tibia 0.98 (0.98 - 0.99) 0.94 (0.93 - 0.94)

3D RMSE (mm) Femur 0.44 (0.38 - 0.48) 0.96 (0.92 - 1.08)
Tibia 0.57 (0.48 - 0.90) 1.08 (1.04 - 1.19)

4) 3D U-Net against Region Growing Algorithm
The segmentation performance of the 3D U-Net, trained
using dataset D4, was compared with the "Fast GrowCut" im-
plementation of the region growing algorithm [41], available
into 3D Slicer (www.slicer.org). The test set of the dataset
D4 was imported into 3D Slicer to semi-automatically per-
form the segmentation. Segmented images and reconstructed
surfaces (femur and tibia) were considered to compute DICE
and 3D RMSE, with respect to the original reference seg-
mentation and 3D surfaces. The DICE results, reported in
Table 4, demonstrated a better performance of the U-Net,
for both tibia and femur, supported by a significant statistical
difference (p < 0.01). Similarly, 3D RMSE results were in
favour of the U-Net with a significant statistical difference
(p < 0.01).

IV. DISCUSSION
A. MAIN FINDINGS
Many recent research articles extensively described the use
of U-Net for medical image segmentation and the majority
confirmed the superiority of the 3D architecture, with respect
to the traditional 2D, for the processing of 3D scans. It was
indeed shown that 3D convolution allows for the directly
modeling of the spatial connectivity of the target anatomical
regions during training [25], [42]–[44]. The results of the first
analysis performed in this work supported such previous find-
ings (cfr. Fig. 4). Using 3D U-Net, the binary segmentation of
bones in CT and MRI images was demonstrated feasible with
high accuracy [29], [30] while the feasibility of multi-region
labeling in a semantic segmentation approach and the role of
pathological deformations of bones were not systematically
addressed in the literature. Effects of segmentation quality
on image-based surgical planning had not been tested so
far. In order to deal with such challenges, in the present
paper we adopted the 3D U-Net paradigm to address the
semantic segmentation of CT images of the knee to extract
concurrently femur and tibia regions, affected by severe
pathological conditions, and evaluate how segmentation er-
rors might have impacted on PSI-based surgical planning.
While retrospective, the extensive dataset of 200 samples
allowed for evaluating the extrapolation properties of the
training. The obtained results on the test set confirmed that
both femur and tibia regions were successfully segmented
with high accuracy featuring both PPV and sensitivity greater
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than 96%. Such quality was corroborated by analyzing the
3D reconstruction errors with the median value in the range
of 1mm. The high quality of the 3D matching between the
reconstructed surfaces and the contact areas of the virtual
resection guides, represented by the planning surfaces, was
proved by a maximum median error lower than 2mm. Like-
wise, very low angular deviations (2◦) of the resection planes
further supported the achieved segmentation quality and the
overall implemented methodology.

B. COMPARISON WITH THE LITERATURE
Binary segmentation of bones in CT and MRI images ex-
ploiting neural networks and DL was already demonstrated
as feasible. Segmentation of spine in CT scans using a deep
CNN provided sensitivity of 97% and 3D surface distance
error of 7.4mm [27]. However, the study was performed on
a small dataset of 32 patients that reduced the span of the
results. Accuracy of about 97% for femur segmentation in CT
images was recently reported [30]. While including a dataset
of 150 patients, the work focused only of the one single
bone and performed the study using only a low resolution
version of the original dataset with an inter-slice resolution
(3mm) smaller than twice as many the resolution used in this
work. This can raise some doubts about the quality of the 3D
reconstruction attainable on the basis of such a segmentation.
Bone segmentation in dual energy CT scans by means of U-
Net architecture, applied to 15 patients, featured Dice index
of about 96%. [45]. However, the study performed binary
segmentation only and used a very low volume resolution.
The U-Net architecture was used in bone segmentation in
53 low-quality low-dose whole-body CT scans leading dice
score of 95% [34]. However, the generalization of the results
was reduced as the dataset was acquired with a unique scan-
ner. In our work, we used conversely volumes acquired with
four different scanners, namely Philips, Canon Medical Sys-
tems, GE Medical Systems and Toshiba. CNNs were applied
to segment the skull in 20 CT scans for treatment planning
applications achieving 92% of sensitivity and surface recon-
struction errors in the range of 1.5mm [46]. A specific study
exploiting a lightweight U-Net for hand bone segmentation in
X-ray images reported 94% of sensitivity [32]. The results of
the present work basically agreed also with such results, even
obtained on different bones. 2D U-Net was applied to multi-
label segmentation of 12 different structures in knee joint by
processing 20 MRI scans achieving a mean Dice index for
femur and tibia of about 90% [26], again in agreement with
our results. Overall, we can assert that the achieved results
are basically in line with the present literature, arguing also
that their scope can be regarded to a wider clinically extent
because of the heterogeneity of pathological severity into the
dataset and the proof of the results quality into the PSI-based
surgical planning application.

C. TECHNICAL CHALLENGES
It is well known that 3D CNNs are computationally more
demanding than 2D CNNs and can lead to higher overfit-

FIGURE 13: Segmentation using the trained U-Net (dataset
D4) on a 3D scan imagining the two knees of patient #198.
As expected, the network is performing a true semantic
segmentation labeling at the same time the left and right
shapes of tibia and femur.

ting due to the increased number of trainable weights. In
this paper, we tackled the first issue by down-sampling the
original data into four different dataset sizes that allowed
us to study the potential sensitivity of the segmentation to
pixel size and inter-slice distance using non-isotropic voxels.
From Dice, sensitivity, and positive predictive values, we
concluded that the segmentation performance of the corre-
sponding four trained networks was very similar. Conversely
but expected, the analysis of the 3D accuracy demonstrated
that the errors on the reconstructed surfaces were decreasing
with the increase of voxel resolution. In order to address the
second issue, we leveraged the validation error to drive the
training stop to successfully overcome potential overfitting.
This led to get very similar IoU metrics in the training and
validation datasets. As far as dataset extent is concerned, no
data augmentation was necessary. Usually such an approach,
implemented by rotation and translation of the original sam-
ples, is suggested to increase the sample size and enhance
the spatial variability of the target regions in the images.
However, in this work we deemed the available samples
sufficient to constrain the training, endorsed by both labeling
and reconstruction results. The spatial invariance achieved by
the network was further proved by the ability of the network
to generalize the true learnt semantic segmentation to the
labeling of both left and right regions into a single 3D scan
(Fig. 13). Finally, regarding computational demands, each
epoch during the training of the greater resolution dataset
(D4), took on average about 4 minutes and the overall train-
ing took approximately 12h. Completing one fully automatic
segmentation with the trained model took about 3s. Con-
versely, the region growing algorithm took approximately
45 minutes to complete a segmentation, requiring accurate
initialization of seeds performed manually.

D. CLINICAL CHALLENGES

As described, the matching of the femoral resection compo-
nent of MyKnee PSI mainly depends on the reconstruction

VOLUME X, XXXX 11



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3034418, IEEE Access

Marzorati et al.: Deep 3D convolutional networks to segment bone affected by severe osteoarthritis in PSI-based knee surgical planning

precision of both frontal and distal aspects of the distal
femur. For the tibia, the frontal aspect of the tibial plateau
mainly affects the matching with the tibial resection com-
ponent. Nominally, the final coupling tolerance should re-
flect the combination of uncertainty in scanning resolution
with accuracy of image segmentation, surface reconstruction,
surface smoothing, digital representation of the surface in
the production system and finally precision of manufacture.
While it is not unequivocal to exactly quantify the error
chain in each step, we give a feasible hypothesis of the final
matching error between the PSI and the true patient anatomy.
The scanning resolution, namely the voxel size, which is
typically 0.5×0.5×0.5mm for both planning CT and MRI,
is the first source of uncertainty. When carefully performed,
the segmentation quality, which however depends on the
image modality (in the MRI the bone-soft tissue boundary
is less contrasted than that in the CT) and on the operator
performing the task, introduces additional errors that, in the
best conditions, are at sub-voxel size scale. It is well known
however that the high quality segmentation process is very
time consuming and prone to errors, especially with severe
clinical conditions, worsening the manual segmentation. The
surface reconstruction quality, which strongly depends on
slicing thickness, and the surface smoothing further increase
the difference between the true and the digital patient bones.
Assuming that the virtual matching in the PSI design is
perfect, no additional errors should be considered at this
stage. Contrary, the prototyping process can decrease further
the matching accuracy due to the internal representation
of the surface data and the manufacturing precision. For
instance, modern 3D printers ensure a precision of at least
0.1 mm. In conclusion, it is realistic to assume that, in
the best condition, the uncertainty of the coupling is in the
range of 1 mm. It was reported that such an uncertainty
can induce rotational differences in the coronal and sagittal
planes, between the planned and intra-operative alignment, in
the range of about 2◦ [5], [47]. We showed that it is possible
to attain a reconstruction accuracy in terms of RMSE less
than 2.0 mm and 1.5 mm, for both tibia and femur, results
that could be further improved by processing datasets at
higher resolution. Such 3D errors led to deviations of the
femoral distal cut direction in the frontal plane less than
±1◦, being akin to alignment errors (±3◦) reported in the
recent literature [13], [17], [48], [49] and recognized in the
range of tolerable surgical errors, demonstrating the clinical
potential of the proposed segmentation approach. However,
the slightly greater deviations in the sagittal plane should
be carefully taken into consideration, as the corresponding
mal-alignment of the mechanical axis of the femur modifies
the tibio-femoral extension gap, which in turn affects the
patellofemoral joint kinematics and ligament balancing [49].
Similarly, the tibial angular error in the sagittal plane, while
being lower than ±2◦, must be carefully evaluated as it may
lead to prosthesis impingement issues in the knee flexion [8],
[50].

In general, Dice, sensitivity and PPV are assumed predic-
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FIGURE 14: Relation between PPV and contact errors (mm)
of the PSI for both femur and tibia (D4 dataset).

tive indices of the 3D reconstruction error. However, the seg-
mentation quality on the overall CT scan should be carefully
examined and not immediately considered representative of
local areas of the bony regions, especially those ones cor-
responding to the PSI contacts (Fig. 14). As a result, small
variations of the segmentation quality might correspond to
sensible error variation even greater than 1 mm as shown for
the tibial contact areas. In addition, morphological deforma-
tions are heterogeneously distributed across the overall bony
shape (see the difference between distal and frontal contacts
in the femur) making in both cases the segmentation quality
alone not enough to ensure accurate matching between the
PSI and the reconstructed surface. In synthesis, improve-
ments in the segmentation in terms of Dice, Se or PPV does
not necessarily mean an improvement of the clinical value of
segmentation. As a final remark, we highlight that the role
of the PSI surgical technique has been topic of many debates
with no general consensus about the accuracy and reliability
for a large-scale surgery [12], [50], [51]. Nonetheless, two
recent meta-analysis studies, comparing PSI-based interven-
tions to traditional surgery using invasive instruments on
approximately 5000 patients, reported significant differences
with regards to operative time and blood loss in favor of
PSI [52], [53]. In addition, knee surgery based on PSI has
been very recently reported to improve functional kinematics
with respect to traditional surgery [54]. In general, while
PSI cannot be regarded as the gold standard in total knee
replacement, advanced osteoarthritis conditions can be sur-
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gically addressed through such a technique, especially in
conditions of bone deformity, which can prevent the use of
intra-medullar bars [55].

V. CONCLUSION
The developed deep convolutional network was trained and
validated to concurrently segment distal femur and proximal
tibia, exhibiting severe pathological deformations, in knee
CT volumes acquired throughout different scanners. Interest-
ingly, within the U-Net paradigm, encoder and decoder were
proved suitable for filtering and semantic reconstruction,
respectively, resembling processing of brain neural pathways,
and the network exhibited reasonable generalization capabili-
ties when exposed to both knees within the same CT volume,
as expected from the convolutional spatial invariance. Spe-
cific results were shown valuable in terms of segmentation,
surface reconstruction and surgical planning performances,
being comparable to results obtainable by means of expert
segmentation. We can argue therefore that fostering deep
CNN in clinical tools may offer the opportunity of removing
the current prohibitive barriers of time and effort during CT
image segmentation, assuring high accuracy and making PSI-
based knee arthroplasty closer at hand.
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