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Disentangling the effect of hybrid interactions and of the constant 
effort hypothesis on ecological community stability
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In the last years, a remarkable theoretical effort has been made in order to understand the relation between stability 
and complexity in ecological communities. Yet, what maintains species diversity in real ecological communities is still 
an open question. The non-random structures of ecological interaction networks have been recognized as one key 
ingredient impacting the maximum number of coexisting species within the ecological community. However most 
of the earlier theoretical studies have considered communities with only one interaction type (either antagonistic, 
competitive or mutualistic). Recently, it has been proposed that multiple interaction types might stabilize ecosystems 
and that, in this hybrid case, increasing complexity increases stability. Here we show that these results depend on ad 
hoc hypothesis that the authors used in their model and we highlight the need to disentangle the role of multiple 
interaction types and constant interaction effort allocation on community stability. Indeed, we find that mixing of 
mutualistic and predator–prey interaction types does not stabilize the community dynamics and we demonstrate that 
a positive correlation between complexity and stability is observed only if a constant effort allocation is imposed in the 
ecological interactions.

The relationship between ecosystems complexity or  
diversity and stability is one of the most debated issue by 
ecologists (May 1972, 1974, Pimm 1984, McCann 2000, 
Ives and Carpenter 2007, Allesina and Tang 2012). Com-
plexity is defined as the product between the number of 
species S (also called diversity) and the connectance (C) – 
i.e. the ratio between actual and potential interactions in 
the ecological community. There are several definitions  
of stability (Ives and Carpenter 2007). Afterwards we will 
refer to community stability as the ability of the system to 
return to its rest state if a small perturbation drives the 
community away from its equilibrium state (McCann 
2000). Assuming that the population dynamics for the spe-
cies i is described by a non-linear differential equations 


n f ni i ( ) – where fi is a given non-linear function of n  – 
then the community stability is described by the linearized 
system equations δ Φ n n  (where δ ∗n n n  

   and n∗  is 
the fixed point of the community dynamics, i.e. f ni( )∗ 0 ). 

In particular, the system is stable if all the real parts of the 
eigenvalues of F are negative (Ives and Carpenter 2007). F 
is known as the community matrix, and its elements Fij are 
given by Φ ∂ ∂ ij i jf / n n( ) .

Empirical evidences (Pimm 1984, Ives and Carpenter 
2007) suggest a positive diversity – stability relationship, i.e. 
ecosystems with high biodiversity (e.g. tropical forests) are 
more stable and thus more resistant to perturbations. On  
the other hand, theoretical studies challenge this point of 
view and under some general assumptions they usually find 
that stability and diversity are negatively correlated (May 
1972, Allesina and Tang 2012). These contrasting results 
and related discussions are commonly referred to as the 
diversity–stability debate or complexity–stability paradox 
(McCann 2000, Ives and Carpenter 2007, Allesina and  
Tang 2012). The discussion is heated since Robert May  
published his pioneer work (May 1972), which provided a 
quantitative relation between the stability of randomly 
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In recent years a sparkling research has been devoted to the search of new theoretical mechanisms to explain 
way ecosystems may persist despite their complexity. Here we show that, contrary to what recently suggested 
(Mougi et al. 2012), the mismatch between theoretical results and empirical evidences on the stability of eco-
logical community is still there also for communities with both mutualistic and antagonistic interactions, and 
the ‘complexity-stability’ paradox is still alive.  Indeed, we demonstrate that their results arise as an artifact of 
the peculiar rescaling of the interaction strengths they imposed. Our study suggests that further theoretical 
studies and experimental evidences are still needed to better understand the role of interaction strengths in 
real ecological communities.
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assembled communities, its number of species (S), – and the 
species interactions strength, that usually are unknown and 
therefore are described by random variables. Specifically,  
for species interactions strengths randomly drawn from a 
Gaussian distribution of zero mean and standard deviation 
s, the ecosystem is stable if

σ CS 1 	 (1)

This result rises the celebrated complexity–stability paradox: 
the community stability decreases for increasing complexity 
(i.e. larger C  S) (May 1974). This important result suggests 
that real networks may have some non-random, stabilizing 
structures that allow ecosystems to persist despite their  
complexity (Fox 2006, Bascompte 2010). Indeed, in  
natural ecological communities species do not interact in a 
random way, rather emergent characteristic architecture 
structures in the species interaction networks can be detected 
(Pascual and Dunne 2006, Bascompte 2009, Suweis et al. 
2013). For instance mutualistic ecosystems (e.g. polli
nators and plants) seem to display a nested architecture  
(Bascompte and Jordano 2007): species interacting with 
specialist species (that have only few interacting partners) 
are also interacting with generalist species (that have  
several connections) (Bascompte et  al. 2003). However, 
structure cannot be the solution: it has been shown that 
realistic architectures (e.g. nested structure) are less  
stable than random ones (Allesina and Tang 2012, Suweis 
et al. 2013).

Recents studies have also highlighted that the variety of 
interactions types (e.g. mutualistic, antagonistic, etc.) have 
indeed a remarkable impact on the stability profiles of eco-
system community dynamics (Bascompte and Jordano 
2007, Allesina and Pascual 2008, Melian et  al. 2009,  
Allesina and Tang 2012). In particular, it has been found 
that antagonistic systems are more stable with respect to 
random assembled community (Allesina and Tang 2012, 
Stouffer and Bascompte 2011), while mutualistic commu-
nities are not (Staniczenko et  al. 2013, Suweis et  al.  
2013). However still for structured ecological communities 
stability decreases for increasing C and/or S (and fixed 
interaction strength).

A possible solution to the paradox has been recently 
proposed by Mougi and Kondoh (Mougi and Kondoh 
2012, Boyd 2012). They conclude that ecological com-
munities with multiple – both mutualistic and antago-
nist – interaction types (also called hybrid interactions) 
are more stable with respect to the less realistic case of 
ecosystem with interactions of a single type. Moreover it 
was found that in these systems with different types of 
interactions, complexity increases stability, in contrast 
with May’s result (May 1974) (Eq. 1). Here we question 
the core conclusions of their work by showing that the 
main findings presented by Mougi and Kondoh (2012) 
arise as an artifact of some specific hypothesis that are 
implicitly assumed in their equations. In particular  
we will present a theoretical framework to disentangle 
the effects of multiple interaction types and of the con-
stant interaction effort hypothesis (for which generalist 
species interact more weakly than specialist species) on 
community stability.

The paper is organized as follows. We first show – using 
a mathematical approach based on random matrices  
(Allesina and Tang 2012) – that a mixture of interaction 
types does not have a stabilizing effect on community 
dynamics; rather stability decreases as the fraction of 
mutualistic links increase. We then demonstrate that the 
results obtained by Mougi and Kondoh do not hold if  
the hypothesis of constant interaction effort allocation 
occurs irrespective of interaction types. Finally we show 
that a positive complexity–stability effect for ecological 
communities is achieved if the hypothesis of constant 
interaction effort allocation is imposed in the interaction 
matrix driving the community dynamics. In fact this 
mechanism, which is unrelated to the mixing of inter
action types, leads to an implicit rescaling of the inter
action strengths causing a positive relationship between 
ecosystem complexity and stability.

Material and methods

Random matrices approach

We first analyze the effects of mixing mutualistic and  
predator–prey interactions on the ecosystem stability by 
extending to hybrid communities the analysis recently pro-
posed by Allesina and Tang (Allesina and Tang 2012). This 
approach based, on random matrices, allows us to go beyond 
a specific model dynamics and illustrate some general 
results.

Consider the S  S community matrix F for the  
given community dynamics  n f ni i ( ) with i  1,…S. The 
matrix F for hybrid predator–prey and mutualistic inter
actions networks can be built in the following way (Allesina 
and Tang 2012). We first pick at random a pair i 2j of spe-
cies. With probability C, these two species interact, other-
wise they do not interact (Fij  Fji  0). If i 2 j are 
interacting species, then with probability 1 2pM species i 
preys species j, otherwise they are mutualistic partners. In the 
former case we set Φ ∼ σ Φ ∼ σ   ij jiN N( , ) ( , )0 02 2and  , 
otherwise Φ ∼ σ Φ ∼ σ   ij jiN N( , ) ( , )0 02 2and . is the 
normal distribution with mean m and variance s2, and  
determines the intensity of the interactions among species 
(with the notation | N(0,s2) | we mean that a random  
number is taken from N(0,s2) and its modulus is taken). 
Following this simple algorithm one can build community 
matrices with predator–prey (2) interactions and with a 
desired fraction pM of mutualistic () interactions. Fixing 
pM  0 we obtain ecological interaction matrices with pure 
antagonistic interactions, while if we set pM  1 we build 
ecological communities with pure mutualistic interactions.

Moreover it is easy to extend the above algorithm in 
order to superimpose a given structure to the interactions 
matrix (Allesina and Tang 2012). For instance in a preda-
tor-prey interaction matrix, we may impose a cascade 
structure (Cohen and Newman 1985), where species are 
ordered to form a hierarchy: from the species representing 
the top predator – that has negative column and positive 
row – to the species in the lowest trophic level (producer), 
which has positive column and negative row. For mutual-
istic ecosystems we build bipartite interaction matrices, 
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where plants species interact only with pollinator species, 
and vice versa (intra-species competition is turned off) 
(Allesina and Tang 2012).

To study the stability of the matrix F corresponding to a 
community with multiple interactions types, we analyze the 
corresponding eigenvalues: if the maximum real part of the 
eigenvalue is negative, then the system is stable. We can 
study the stability for several levels of complexity (C and S) 
and mixing of interaction types (pM). This is the most gen-
eral way to study the stability of ecosystem with hybrid 
interaction types, without considering specific ecological 
dynamics or hypothesis (e.g. constant interaction effort 
allocation).

Approach based on community dynamics models

Following Mougi and Kondoh (2012) we now present a  
different but complementary approach to study the stability 
of ecological networks as a function of their complexity and 
of pM (that measures the ratio between mutualistic and 
antagonistic interaction types in the community). It consists 
in defining a particular function f that drives the community 
dynamics and in studying the stability of the correspond-
ing community matrix F. For simplicity, we model the com-
munity dynamics through the classical Lotka–Volterra 
differential equations:


n f n n r a ni i i i ij j  ( ) ∑( ) 	

(2)

where ni is the abundance of species i, S is the number of 
species, ri is the intrinsic rate of growth and aij describes  
the interaction between species i and species j while aii  zi 
represents the interaction among individuals of the same 
species (density dependent regulation) and it is uniformly 
distributed between 0 and 1 (zi ~ U[0,1]). The matrix aij con-
tains all the information about the interactions between spe-
cies. Therefore different ecological cases can be analyzed 
depending on the way aij is chosen. As before, we can impose 
a characteristic architecture on a. Additional ecological 
hypothesis can be considered as appropriate constraints to a.

Constant interacting effort hypothesis

The constant effort hypothesis in species interactions 
assumes that interaction strengths decrease with increasing 
resource species. In other words, it assumes that if a species 
is generalist and thus can positively interact with several  
different species, then the average interaction strength must 
be smaller than the one of specialist species that has only 
few resources. Even though, to our knowledge, there is  
no empirical study contradicting this relation, the hypo
thesis is biologically sound. Indeed this is clear if we con-
sider that the interaction strength is proportional to the 
duration of the interaction between two species, i.e. there is 
a tradeoff between the number of interactions/contacts and 
the time spent in each one that a species may have.

The constraint of constant interaction effort can be  
incorporating in the modeling framework by imposing  
that species interaction aij is inversely proportional to  
the number of resources the species i has. To do that, we 
define the interaction matrix element aij as

a f e
A

A

a f e
A

A

ij M ij
ij

ikk m i p i

ji M ji
ji

jkk m j p j




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∑

∑ 	

(3)

while if species i has an antagonistic interaction with j  
(consider for instance i predator and j prey)

a f g
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A
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g
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m(i) ∪ p(i) is the set of the resource species of the species 
i, i.e. both the mutualistic partners and preys of i.  
The matrix A describes the potential preference of a  
species in choosing its partner, fA and fM are, respectively, 
the relative strengths of the antagonistic and mutualistic 
interactions, while eij and gij quantifies the asymmetry  
of the interactions. Not all the species interact: only a 
fraction C of matrix elements Aij is different from zero, of 
which a fraction pM is mutualistic, while a fraction 1 – pM 
is antagonistic.

Therefore in general we obtain that the assumption of 
constant interacting effort allocation is translated mathe
matically by rescaling the interactions as

a
A

A
A

SC p
p

E A
ij

ij

ikk m i p i

ij

M
M

∼ ≈
∈ ∪( ) ( )

1
( )∑ 







2 	

(5)

where E(⋅) represents the expectation value, ≈ denotes  
the approximation, that is valid when the product SC  
is large, and m(i) ∪ p(i) is the set of the resources species 
of the species i, i.e. both the mutualistic partners or preys 
of i.

For a given choice of: 1) the structure of the matrix  
Aij (random, cascade or bipartite)(Allesina and Tang 2012); 
2) the parameters fA and fM (that have not an a priori  
values range) and 3) randomly drawn values of eij and gij 
(uniformly distributed between 0 and 1), Eq. 3 and 4 lead to 
the interaction matrix a. By introducing a stationary point 
n n nS∗ ∗ ∗( , , )1 …  – whose components are randomly drawn 
from a uniform distribution between 0 and 1 – and  
linearizing Eq. 2 around n∗, one finally obtains the stability 
matrix F. If all eigenvalues of F have negative real parts,  
the system is stable. Otherwise it is unstable.

Constant interacting effort with an additional 
constraint

In Mougi and Kondoh (2012), the hypothesis of “constant 
interacting effort” is imposed with an additional constraint: 
the interacting effort spent separately in mutualistic and  
in antagonistic interactions are fixed to a constant. Indeed, 
in order to implement their constant interacting effort 
hypothesis, Mougi and Kondoh define the interaction matrix 
element aij as
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structure in the interaction network (cascade or bipartite) 
does not change these conclusions (Sommers et  al. 1988, 
Allesina and Tang 2012).

Effect of the mixing of interaction types on the 
community dynamics stability

As we have explained in the Method section, from Eq. 2, 3 
and 4 we can study the stability matrix Fij  2ni

* aij as a 
function of S, C and pM when a constant interacting effort 
is considered (through Eq. 3 and 4).

Figure 2 shows that also in this case, and contrarily to 
the conclusions of Mougi and Kondoh (2012), the com-
munity stability decreases monotonically for increasing 
pM. This result demonstrates that the mixing of interaction 
type does not stabilize ecological systems and that the sta-
bilizing effect of intermediate values of pM observed in 
Mougi and Kondoh (Fig. 1 in Mougi and Kondoh 2012) 
is solely due to the additional peculiar costraint discussed 
above.

Although the mixing of interaction types does not  
stabilize the system, there are two surprising facts that 
emerge from Fig. 2. In fact, from Fig. 2A we can see  
that the community stability increases for increasing  
connectance C, while from Fig. 2B a positive complexity–
stability relationship for intermediate mixing level is 
observed. Do these results suggest that the mixing of 
interaction types promote a complexity–stability relation-
ship? In the next section we will demonstrate that this is 
not the case.

Effect of the constant effort hypothesis: scaling of 
the interaction strengths

The apparent positive correlation between stability and com-
plexity observed in Fig. 2 is due to the particular re-scaling of 
the interactions that is imposed so to accomplish the con-
stant interacting effort allocation hypothesis (with or with-
out additional constraint).

The general equation describing the maximum real part 
among the eigenvalues of a random matrix M is (Sommers 
et al. 1988, Allesina and Tang 2012).

    d max E S E SE Ec1 1 2 1, ( ){ 	
(9)

If this quantity is negative the system is stable, otherwise it is 
unstable. In this equation

•	 S is the number of species (i.e. the dimension of the 
matrix)

•	 d is the average of the diagonal elements, 

E M
M
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for mutualistic interactions, while if species i has an antago-
nistic interaction with j (consider for instance i predator and 
j prey)
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Equation 6–7 are different from Eq. 3–4. Indeed in Mougi 
and Kondoh (2012) it was also assumed that the average 
effort spent by a species in mutualistic or antagonistic  
interactions does not depend on pM. In fact, in this case the 
total effort spent by species i to interact with its mutualistic 
partners is indeed

a f
E e A
E A

fijj m i M
ij ij

ij
M∼

∈ ( )
2∑

( )
( )

/

	
(8)

and in the same way the effort spent by the species i as a 
predator is on average equal to fA/2. We note that Eq. 8, 
contrarily to Eq. 5, does not depend on pM. In other words, 
Mougi and Kondoh (2012) assume independently of  
the species composition in the community, that the time 
spent by a species in mutualistic interactions is fixed.  
Therefore Mougi and Kondoh (2012) do not only assumes 
that, 1) “interaction strengths decrease with increasing 
resource species, due to an allocation of interacting effort”, 
but also that, 2) the total interaction strengths spent in 
mutualistic (antagonistic) interactions does not depend on 
the number of mutualistic (antagonistic) interactions. 1) and 
2) are described by Eq. 5 and 8, respectively.

This seemingly small additional constraint – that is bio-
logically questionable and unrelated to the definition of 
hybrid community – has a dramatic impact on community 
stability. In fact, as we will see, the intriguing and non linear 
dependence on pM of the observed increased stability in 
Mougi and Kondoh’s work (2012) is just a consequence of 
this specific additional constraint.

Discussion and results

Stability criteria for hybrid communities

If no constant allocation effort is considered, the random 
matrices approach shows that the mixing of interaction types 
have not – per se – a stabilizing effect on the community 
dynamics. On the contrary, adding mutualistic interactions 
in the ecological network tends to destabilize the commu-
nity. Figure 1 shows that also for hybrid community the  
stability of the linearized dynamics described by F decreases 
as S and/or C increases, independently of pM. Adding a  
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Figure 1. Stability profile of the stability matrix F in the model independent framework based on random matrices. In each plot, real and 
imaginary parts of the stability matrix eigenvalues are represented in the x-and y-axis, respectively. The profile of eigenvalues distribution in 
the complex plane, shows that increasing complexity decreases stability, i.e. the maximum real part of the eigenvalues of F increases for 
increasing S and/or C. Moreover the stability is not increased by the mixing of interaction types, but as expected (Allesina and Tang 2012) 
adding mutualistic links decreases stability. Interaction strengths have been drawn from the normal distribution with parameters m  0 and 
s2  1 as described in the Methods section.



530

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0

Connectance [C]

C
om

m
un

ity
 s

ta
bi

lit
y

20 40 60 80 100 120

0.2

0.4

0.6

0.8

1.0

With constant interaction effort allocation

Without constant interaction effort allocation

C
om

m
un

ity
 s

ta
bi

lit
y

No. of species [S]

20 40 60 80 100 120

0.2

0.4

0.6

0.8

1.0

Connectance [C]

C
om

m
un

ity
 s

ta
bi

lit
y

C
om

m
un

ity
 s

ta
bi

lit
y

No. of species [S]

(A) (B)

(C) (D)

Mutualistic interactions

Bipartite mutualistic interactions

Predator–prey interactions

Cascade predator–prey interactions

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0

Figure 3. Panel (A) and (B) show the dependence of the stability on the connectance C and the number of species S, for ecological  
networks with a single interaction type and where constant interaction effort allocation is imposed (Eq. 3 and 4). Panel (C) and (D) give 
the community stability for the same single type interaction ecological networks, but any constant interaction effort is considered in the 
dynamics given by Eq. 2. The stability is measured as the probability to have a positive eigenvalues over 1000 realizations. Parameters  
used for the simulations are in (A) S  100, fM  0.25, fA  6 (fA  30 in the cascade case); in (B) C  1, fM  0.15, fA  6 (fA  30 in the 
cascade case); in (C) S  100, fM  0.02, fA  0.8; in (D) C  1, fM  0.02, fA 1.
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Figure 2. Relationship between complexity, stability and fraction of mutualistic links (pM) for cascade networks with Holling type I 
linear response. The interaction strengths are rescaled by summing over both mutualistic partners and preys (Eq. 5). Panel (A) shows the 
community stability (measured as the probability that the linearized matrix is stable) versus the fraction of mutualistic links pM. Colors 
indicate different values of connectance. S is fixed to 50, while fA  fM  0.5. Panel (B) shows the complexity–stability relationship with 
varying pM. Both the panels shows that, differently from what is claimed in previous works, (Boyd 2012, Mougi and Kondoh 2012), 
mixing of interaction type in the community dynamics model given by Eq. 5 does not increase stability. The parameters zi, ni

*, Aij, gij 
and eij are drawn from an uniform distribution between 0 and 1, while fM  fA  1.
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of a negative or zero mean of interaction matrix (m  0), 
then h1  0, the second term in Eq. 11 dominates and the 
stability condition becomes

1 1 2 1

1SC
h h h C

h h C
d2

2
3 1

2

2
2

1
2

( ) ( )

( )

  

 


	

(15)

This condition has an inverse functional dependence on 
SC with respect to the well known May’s criterion for sta-
bility (May 1972) given by Eq. 1 and its generalization of 
Eq. 12. This inverse relation is not a consequence of the 
mixing of interaction types, because it holds also for  
pure antagonistic communities (pM  0 and\m  0). It is 
important to note that the presented approach is valid in 
the limit of large SC. For intermediate values of S also oth-
ers effects, which depends on the finite dimension of the 
matrix, may play an important role.

Therefore the key responsible of the observed positive 
complexity–stability relationship is the rescaling of the  
interaction strengths given by Eq. 5, rather than the mixing 
of interaction types. In other words, if constant effort is 
imposed, then a rescaling of the interaction strengths lead to 
Eq. 15 and thus introduce a positive correlation between sta-
bility and complexity.

To numerically confirm and stress this result, we show 
that also for non-hybrid ecological networks (with a single 
interaction type), if we impose the rescaling of interactions 
in order to accomplish the constant interaction effort allo-
cation hypothesis, we find that the stability of the commu-
nity matrix increases as complexity increases (Fig. 3). In 
fact, if we set pM  1 (i.e. we consider an ecosystem with 
pure mutualistic interactions), the stability condition in 
the large S limit becomes h1  d (because h1(pM  1)  0). 
Note that in this case the stability condition is independent 
of S (Fig. 3A). Similarly, if we consider predator-prey  
ecological networks, i.e. pM  0, Eq. 15 reduces to 
h h h C

Ch h C C
d S2

2
3 1

2

2
2

1
2

( ) ( )

( )

1 2 1

1

  

 
 , and we indeed observe a

stabilizing effect for increasing number of species  
(Fig. 3B). Figure 3 also shows that these results do not change 
if we superimpose a particular architecture structure of the 
interaction interaction network (bipartite or cascade).

On the other hand, if the constant interacting effort is 
not implemented in the modeling dynamics, then ecosystem 
stability is a decreasing function of the number of species  
S and connectance C, as expected in classical theoretical  
ecology (May 1972) (Fig. 3C–D). It is indeed the rescaling 
the interaction strengths – not the mixing of interaction 
types – that causes the apparent positive complexity stability 
relation observed in Fig. 2.

Conclusions

In this work we have shown that the mixing of mutualistic 
and predator–prey interaction types in ecological commu-
nity does not per se stabilize the community dynamics. In 
particular, using a general approach based on random matri-
ces (Allesina and Tang 2012) we find that community matrix 
stability decreases as the fraction pM of mutualistic links 
increases. Furthermore these results do not change if the 

We can rewrite the previous equation in terms of the  
connectance and of the moments of the distribution on non 
zero elements

   
  

 
d max CS C SC

C

C
µ µ

σ τ µ

σ µ
,

( ) ( )

( )
{

2 2

2 2

1 2 1

1
 

(10)

where

•	 C is the connectance (i.e. the fraction of non-zero  
elements of the matrix).

•	 m is the average of non-zero off-diagonal elements,  
i.e. E1  Cm.

•	 s is the variance of non-zero off-diagonal elements,  
i.e. E2  C(s2  (1 2 C)m2).

•	 t, is the normalized correlation of non zero elements,  
i.e. E(MijMji) 2 E1

2  C(s2t  (1 2 C )m2).

If we do not impose the constant interaction allocation 
hypothesis, then m, s and t does not depend C and S, and 
Eq. 10 defines the relation between stability and complexity. 
As expected, in this case, if we increase S and C, then the 
stability of both mutualistic, antagonistic and hybrid com-
munities decrease. In fact, in the large SC limit, the stability 
condition becomes,

µ µCS d if 0 	 (11)
while

SC
C

C
d

σ τ µ

σ µ
µ

2 2

2 2

1 2 1

1
0

( ) ( )

( )

  

 
 if

	

(12)

In both cases, larger is SC less stable the is system. In the 
second case the direct dependence on connectance is less 
trivial and depends on the choice of m, s and t .

If instead, we assume any constant effort allocation 
hypothesis on the interactions, then we are implicitly impos-
ing also a dependence of the elements of the interaction 
matrix on S and C, as shown in Eq. 5. Specifically, in  
the large SC limit, the off-diagonal elements Mij are  
proportional to 1/(SC). Therefore m, s and q are no more 
independent of S and C. One can verify that in this case

µ

σ

τ







h
CS
h
CS
h

1

2

3 	

(13)

where h1, h2 and h3 are independent of S and C. In the case 
of an hybrid community (Mougi and Kondoh 2012),  
these quantities will be suitable functions of pM (and of the 
others parameters fM and fA). By substituting Eq. 13 in  
Eq. 10, one obtains the following stability condition

max h
h
S SC

h h h C

h h C
d1

1 2
2

3 1
2

2
2

1
2

,
( ) ( )

( )
 

  

 


1 1 2 1

1




        

(14)

This equation implicitly incorporates a positive stability- 
complexity relationship. In fact, in the case of a positive  
average interaction (m  0), then h1  0 and therefore the 
stability condition simply becomes h1  d. While, in the case 
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assumption of constant interaction effort is incorporated  
in the model. Indeed, we have shown that also in this case 
the community stability decreases monotonically for 
increasing pM. The stabilizing effect for intermediate pM 
observed in Mougi and Kondoh (2012) is instead due  
to the additional constraint that the total effort spent  
by species in mutualistic and antagonistic interaction  
is independent of  pM. Finally, we have highlighted the 
importance to disentangle the effects of multiple interac-
tion types and of the constant interaction effort hypothesis 
on community stability. In fact, we have demonstrated  
that the emergent positive relation between stability and 
complexity in this model is not due to the mixing of  
interaction types, rather it is a consequence of the hypoth-
esis of constant interaction effort allocation: this condition 
is accomplished by rescaling the interactions strengths in a 
way that tacitly introduce a positive correlation between 
community matrix stability and SC. These results call for 
different principles beyond network structures and mixing 
of interaction types in order to understand the complexity 
and stability relationship in real ecological systems.
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