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A B S T R A C T   

Proper measurement of technology knowledge and social change enables managers to advance strategies in 
technology management. Structural equation modeling is the ideal method in Technological Forecasting and 
Social Change (TFSC) and other leading journals to assess the measurement quality of the relevant decision 
variables and understand how they are related. However, a myriad of indicators are now available to judge how 
suitable these measurements are (i.e., how well they fit). Despite a consensus that fit indicators are highly 
context-dependent and no “one-fits-all approach” emerges, a more contingent perspective is surprisingly missing. 
To fill this gap, we advocate for a “tailored-fit model evaluation strategy” that is specific to the situation at hand 
to exploit the particular strengths of fit indicators. Motivated by a synthesis of structural equation modeling in 
TFSC, our simulation study finds that three critical distinctions regarding (a) model novelty, (b) focus on 
measurement or structural models, and (c) sample size are vital. The proposed strategy demonstrates that, in 
many contexts, only a few indicators are recommended to avoid artificially inflated Type I/II errors. We provide 
a decision tree to reach more accurate decisions in model evaluation in order to better theorize and forecast 
technological and social challenges.   

1. Introduction 

Emerging over the past 40 years, structural equation modeling (SEM) 
became an important tool to assess various issues in quantitative 
research, such as confirmatory factor analysis (CFA), discriminant val
idity, and common method bias, as well as complex theoretical models 
involving mediation and moderation analysis (Williams et al., 2009). 
What contributed to the success of covariance-based SEM is its ability to 
quantify empirical fit (Bentler, 1990), that is, the degree to which a 
model corresponds to the empirical data.1 It is this model fit on which 
researchers base their decisions about whether the empirical data fit the 
theoretical model in order to accept or reject a model when testing a 
measurement, specific mechanism, or even whole theories. 

The researcher’s toolbox contains a myriad of fit indicators rooted in 
different principles (e.g., chi-squared distribution values or fit indices). 
For these indicators, thresholds are defined to separate correct from 

misspecified models. Recently, these cutoff values also account for the 
size of the model and sample (Niemand and Mai, 2018). Such “flexible” 
cutoffs can principally be derived for all fit indicators, which nearly 
doubles the number of candidates when evaluating a model. Scholars are 
likely puzzled about which indicators to consult because all fit indicators 
have specific strengths and weaknesses. 

This research draws attention to a related problem that has largely 
been disregarded thus far. Common to most previous approaches is that 
they seek to identify recommendations which are effective under all 
conditions and all purposes; we label this a “one-size-fits-all-purposes” 
approach. Although the malleability of fit indicators is widely 
acknowledged, methodological research still fails to provide recom
mendations that are optimal in the researcher’s situation. 

This paper, to the best of our knowledge, is the first to suggest 
shifting our thinking from a “one-size-fits-all-purposes” approach to a 
“best-to-fit-a-specific purpose” paradigm of model testing. We propose 
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the idea of a flexible evaluation strategy that relies on those indicators 
that are most effective in the given context. We seek to overcome 
established routines by advancing (and extending beyond) the recent 
suggestions of more flexible, contingency-based approaches (e.g., Nie
mand and Mai, 2018) that are still limited to improving cutoffs of more 
or less precise fit indicators. We propose, instead, to optimize the eval
uation strategy systematically and rely on those fit indicators and cutoffs 
that are most precise for a given research purpose and model conditions. 
In updating current recommendations, this paradigm shift and the spe
cific guidelines aims to assist scholars in making better decisions about 
their models. 

Technology management research widely uses fit indicators to study 
questions about technology management and social change in order for 
the field to benefit from more accurate evaluations of the applied 
measures or theories. A review of research published in this journal will 
show that the conditions under which scholars assess their models are 
very different; fit indicators in the field are likely distorted by diverse 
sources of variation. The proposed flexible model evaluation strategy 
accounts for not only model and data characteristics, but also important 
conceptual considerations guiding the model estimation. Fit indicators 
are known to differ in the way they are immune to Type I errors (erro
neously rejecting a correct model) and Type II errors (erroneously 
accepting a false model). Certain indicators may therefore be more 
suitable for testing a novel model for which Type II errors are especially 
harmful. Others may be better when estimating well-established models 
for which both error types are required to be more balanced. Likewise, 
fit indicators differ in their ability to identify the error in the structural 
model or errors in the measurement model (Hu and Bentler, 1999). A 
flexible model evaluation strategy exploits the fact that specific fit in
dicators are more sensitive for assessing structural paths, while others 
may be more appropriate for testing a measurement model (e.g., CFA). 
We suggest that a flexible model evaluation strategy should account, at 
least, for the following three key questions:  

(a) The novelty of a model—estimating an established model vs. 
testing a novel model;  

(b) Focus on the model—conducting CFA vs. testing a theoretically- 
derived structural model;  

(c) Certainty of the evidence (i.e., sample size as an expression of 
certainty). 

Our central premise is that—rather than a silver bullet—users of 
covariance-based SEM require a model evaluation strategy with clear 
guidelines about the optimal fit indicator(s) for the purpose of their 
research. In this paper, we first discuss current methodological advances 
about fit indicators and establish that they are highly context- 
dependent. Our review of SEM research in the Technological Fore
casting and Social Change (TFSC) literature illustrates this context- 
dependency in the field, substantiating the need for a flexible evalua
tion strategy. To provide the basis for such a strategy, an extensive 
Monte Carlo simulation explores the relevant factors related to the 
research purpose and studies a comprehensive set of fit indicators under 
the various conditions. We conclude with guidelines and an easy-to-use 
decision tree to derive the optimal model evaluation strategy. Finally, 
we reflect on potential research propositions and limitations. 

2. Recommendations from the methodological literature 

2.1. Overview of fit indicators 

At a very abstract level, two competing paradigms of model fit 
currently coexist: chi-squared distribution values of model fit (T statis
tics) and fit indices. Although T statistics and fit indices serve the same 
purpose, research on both is relatively independent. Covariance-based 
SEM seeks to overcome the drawbacks of traditional regressions, 
which disregard (a) the measurement error in the variables, (b) the 

complex relationships between these variables, and (c) the error due to 
omitted variables (Jöreskog and Sörbom, 1982, p. 404). This is achieved 
by comparing the observed (empirical) covariance matrix with an esti
mated (fitted) covariance matrix that rests on the conceptual model of 
latent variables (or factors) and items (Hu and Bentler, 1999, p. 426). By 
minimizing the discrepancy function of the estimated covariance matrix 
for a sample size n (Yuan et al., 2015, p. 380), the corresponding T 
statistic assesses the fit of both matrices. For a model to be identified as 
correctly specified, the empirical T value should not significantly differ 
from zero and should not exceed the theoretical chi-square distribution’s 
critical value. 

Unfortunately, T is notably sensitive to sample size (n-sensitivity). T 
values are inflated for small samples while being smaller than they 
should be for larger samples (e.g., Bentler and Bonett, 1980; Curran 
et al., 2002). Likewise, T increases with model size (p-sensitivity) 
because the estimated covariance matrix expands, such as when more 
manifest variables (p) are included (e.g., Kenny and McCoach, 2003; 
Moshagen, 2012). T is traditionally derived through Maximum 
Likelihood-estimators, so deviations from multivariate normality 
(hereafter termed mvn-sensitivity) can also affect the assumptions of T 
(e.g., Boomsma, 1985; Fouladi, 2000). These issues are not novel (e.g., 
Jalal and Bentler, 2018; McNeish, 2020), and different ways were pro
posed to address them.2 Most of these suggestions focus on the correc
tions of the T statistic, which can be roughly clustered into two groups: 
corrections for the n- and p-sensitivity of the T statistic (Bartlett, 1951; 
Swain, 1975; Yuan, 2005; Yuan et al., 2015) and corrections for the 
mvn-sensitivity (Jiang and Yuan, 2017; McNeish, 2020; Satorra and 
Bentler, 2001). 

However, research on these corrections is inconclusive because all 
corrections heavily depend on the study context (e.g., Fouladi, 2000; 
Herzog et al., 2007; Jackson et al., 2013; Savalei, 2010; Yang et al., 
2018). Table 1 summarizes important empirical studies on these issues 
(a detailed discussion of the different correction procedures is provided 
in the Appendix). Overall, no correction type emerged as superior 
because, to some degree, all are “heuristics” (McNeish, 2020, p. 5). Prior 
approaches addressing the shortcomings of the T statistic assume that an 
unknown chi-square distribution is met by incorporating information 
regarding the model or data. However, this is often specific to certain 
(simulation) assumptions. 

The second paradigm follows an approach that is not based on testing 
T itself. Instead, a comparison standard is taken, for which a “good” 
model scores high on an index ranging between 0 and 1 (Bentler and 
Bonett, 1980). These “fit indices” can be roughly grouped into “good
ness-of-fit” indices (optimum: 1, e.g., GFI) and “badness-of-fit” indices 
(optimum: 0, e.g., RMSEA, SRMR; Appendix for further details). These 
are “absolute fit indices” because they are solely based on the estimated 
model. Additionally, it is reasonable to compare the estimated model 
with a baseline model that assumes all correlations and loadings to be 
zero. Indices that rely on such relative interpretation are termed “in
cremental fit indices” (e.g., NFI, TLI, CFI). 

Compared to direct corrections of T, fit indices share a few important 
commonalities. First, fit indices are largely descriptive; all available 
indices (except for RMSEA) cannot be used to estimate a confidence 
interval for inference (Chen et al., 2008). Second, all fit indices are a 
function of T (except for SRMR), so they inherit some of T’s sensitivity 
and can be subject to n-, p-, and mvn-sensitivities (Table 1). Conse
quently, fit indices are also heavily contingent on the many sources of 
variation other than model misspecification (e.g., Bagozzi and Yi, 2012; 
Fan and Sivo, 2005; Niemand and Mai, 2018; Sharma et al., 2005). 

2 We hereafter refer to them by “T” and the first letters of the surnames of 
authors, TB, TS, TY, TY1, TY2, TY3, TJY and TSB. Since the approach by 
McNeish (2020) is F-distributed, we term this FN. 
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2.2. Cutoffs to separate correct and misspecified models 

Given that fit indices do not follow a testable theoretical distribution, 
methodologists recommend specific cutoff points to judge whether a 
model shows a “good” fit. For goodness-of-fit indices, scholars typically 
apply a “larger or equal to”-logic (e.g., CFI ≥ .95), while a “smaller or 
equal to “-notion is used for badness-of-fit indices (e.g., SRMR ≤ .08). To 
increase the accuracy of such cutoff points drawing a dividing line be
tween correct and misspecified models, Hu and Bentler (1999) proposed 
combinations of indices in dual-index strategies (e.g., CFI/TLI/RMSEA 
and SRMR), which are currently the standard in model evaluation 
(Bagozzi and Yi, 2012). As such, cutoffs are universal, but fit indices are 
contingent on other factors; scholars argue that fixed, general cutoffs are 
often inappropriate (Fan and Sivo, 2005; Marsh et al., 2004). The dis
tribution of fit indices vary with the size of the sample and model 
characteristics, along with the distribution of the data itself, which 
changes the implied levels of Type I and II errors. Remarkably, cutoff 

recommendations are either outdated (Bagozzi and Yi, 1988; Baum
gartner and Homburg, 1996) or ignore this issue of contingency 
(Bagozzi and Yi, 2012). 

To account for the fact that fit indices follow unique “sui generis” 
distributions specific to the model and sample (Cheung and Rensvold, 
2001, p. 248), Niemand and Mai (2018) introduced “flexible” cutoffs 
that are determined through an array of contingency variables, 
including sample size, model size, reliability (magnitude of factor 
loadings), and non-normality. These cutoffs build on correctly specified 
models for which the unique fit distributions are individually deter
mined, depending on the sample size (n = 100 to 1,000), model size 
(number of latent variables from 2 to 10, number of items from 2 to 10), 
factor loadings (.7, .8, .9), and the degree of non-normality (no, mod
erate and severe). These flexible cutoffs were derived from the quantiles 
of the left (goodness-of-fit indicators) or right tail (badness-of-fit), given 
a predetermined value (e.g., 5%) to allow for error. This flexible 
approach was only applied to fit indices (CFI, TLI, RMSEA, SRMR) 

Table 1 
Important empirical and simulative investigations regarding fit indicators    

Focus  
Study Type of investigation Indices Cutoffs Purpose Model Uncer- 

tainty 
Major recommendations 

Bagozzi and Yi 
(1988) 

Example data focusing on Type I & 
Type II errors (NHST) 

●    ● T should be non-significant and yield adequate power. Further, 
cutoffs for an incremental fit index (IFI ≥ .9) and adjusted 
goodness of fit index (AGFI ≥ .9) are recommended as additional 
criteria to indicate appropriate fit. Both fit indices are not 
recommended in later research. 

Hu and Bentler 
(1998) 

Simulation study focusing on Type I 
& Type II errors (NHST) 

●    ● Comparing a wide set of indices, SRMR is found to be the most 
sensitive to structural model misspecification, while TLI, IFI, 
CFI/RNI are most sensitive to measurement model 
misspecification. SRMR and one of the other indices should be 
combined. 

Hu and Bentler 
(1999) 

Simulation study focusing on Type I 
& Type II errors (NHST) 

● ●   ● Based on the recommended dual-index representation of Hu and 
Bentler (1998), cutoffs of ≤ .09 for SRMR and ≥ .95 for CFI/RNI, 
TLI, or ≤ .06 for RMSEA, or ≥ .90 for MC yield an acceptable 
balance of Type I and II errors. 

Cheung and 
Rensvold, 
(2001) 

Simulation study focusing on M and 
SD of chi-square values  

●    Fit evaluation should account for sampling and parsimony errors 
that jointly affect the criteria’s distribution. Hence, the 
probability distribution of fit indicators should be used, not 
arbitrary cutoffs. 

Marsh et al. 
(2004) 

Simulation study focusing on Type I 
& Type II errors (NHST) 

● ●   ● Replicating Hu and Bentler (1998, 1999) and adding larger 
sample sizes showed that T and T/df are superior when the 
sample size is N = 2,500 or N = 5,000. Hence, dual-index 
representation cutoffs are not generalizable. 

Fan and Sivo 
(2005) 

Simulation study focusing on Type I 
& Type II errors (NHST) 

● ●   ● Replicating Hu and Bentler (1998, 1999), the proposed 
dual-index representation is found to not be optimal, and more 
contingencies such as more complex model misspecifications are 
needed. 

Sharma et al. 
(2005) 

Simulation study focusing on Type I 
& Type II errors (NHST) 

●    ● GFI, TLI/RNI, NNCP, and RMSEA are investigated regarding 
variations in sample size, the number of items, factor loadings, 
and factor correlation. TLI/RNI or NNCP should be coupled with 
RMSEA. 

Nye and 
Drasgow 
(2011) 

Simulation study focusing on Type I 
& Type II errors (NHST) 

●    ● Non-normality, together with sample size, affects RMSEA, and 
SRMSR when using DWLS. Regressions for both indices are 
applied to obtain cutoffs given an acceptable level of Type I 
error. 

Williams and 
O’Boyle, 
(2011) 

Example data from six studies 
focusing on Type I & Type II errors 
(NHST) 

● ●    Path model-based versions of NSCI and RMSEA outperformed 
traditional CFI and RMSEA indices and, thus, should be used for 
theoretical model evaluation. 

Niemand and 
Mai (2018) 

Simulation study focusing on Type I 
& Type II errors (NHST)  

●   ● Flexible cutoffs yielded lower Type I & Type II error rates across 
various distorting patterns (sample size, model size, factor 
loadings, non-normality) and particularly for the ‘gray area’ of 
moderately misspecified models. A conservative level of 
uncertainty (α = .05) is recommended for flexible cutoffs. 

McNeish 
(2020) 

Simulation & example study 
focusing on the distribution of chi- 
square and F-values, Type II error 

● ●   ● Using F-tests instead of chi-squared T-tests helped overcome 
rejection issues of T and fit indices (only in example data) with 
small samples. 

This study Simulation study focusing on 
Type I & Type II errors (NHST) 

● ● ● ● ● No one-fits-all approach exists. Flexible cutoffs generally 
perform better than fixed cutoffs, but selecting appropriate 
indicators (esp. SRMR) and cutoff paradigms depend on the 
research purpose, model focus, and data certainty. 

Notes. Chronological order. Purpose: Established model vs. novel model. Model: CFI vs. SEM. Uncertainty: Sample size. Names of indices are used as in the studies—e. 
g., IFI from Bagozzi and Yi (1988) is equal to BL86 in Hu and Bentler (1998)—then standardized to ease understanding. NHST: Null Hypothesis Significance Testing. 
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(Niemand and Mai, 2018), but the T statistic and its corrections are still 
ignored. 

Academic and managerial research will substantially benefit from 
contingent cutoffs for the T statistic because of its known distribution 
and the potential to compare fit; for instance, when contrasting nested 
theoretical models (West et al., 2012). Another more important short
coming of the current contingency-based approach is the limited focus 
on optimizing cutoffs. Certain fit indicators may be less sensitive or 
imprecise in specific situations. Advancing this contingency notion and 
extending beyond the empirical issues surrounding fit indices and cut
offs, the flexible paradigm developed in this article posits that the model 
evaluation should also take into account the conceptual considerations 
that guide a research project. 

2.3. From “One-to-Fit-All-Purpose” to a “Best-to-Fit-a-Specific Purpose” 

As reasoned above, different solutions have been proposed to ac
count for the contingency of fit indicators (whether T corrections or fit 
indices) on data characteristics (e.g., sample size, non-normality issues) 
and model characteristics (e.g., the number of latent variables). Sur
prisingly, what has been ignored thus far is that these unique distribu
tions of fit indicators also have unique implications from a conceptual 
perspective. For example, Bagozzi and Yi (2012) recommend combining 
CFI and SRMR with values of .93 and .07, respectively, which stands in 
contrast to earlier recommendations by Hu and Bentler (1999) of .95 
and .09. Consequently, CFI became more lenient and SRMR more con
servative, with notable implications at a conceptual level. Concretely, 
SRMR is particularly sensitive to misspecification in the structural 
model, whereas CFI is more sensitive to misspecification in the mea
surement model (Table 1). The updated recommendations for this index 
pair, therefore, increased the likelihood to accept models where the 
measurement model is more relevant, such as for CFA. 

Evidently, prior recommendations in the literature were made with 
the intent to provide one-size-fits-all recommendations. Several scholars 
propose a combination of at least two specific indicators (Bagozzi and 
Yi, 2012; Baumgartner and Homburg, 1996; Nye and Drasgow, 2011; 
Niemand and Mai, 2018; Sharma et al., 2005); while other scholars 
advocate to rely on a single criterion (Cheung and Rensvold, 2001; 
McNeish, 2020). The present research proposes the novel idea of a 
tailored-fit evaluation approach that answers calls to be more contingent 
(“flexible”) in the indicator selection (e.g., Cheung and Rensvold, 2001; 
Nye and Drasgow, 2011; Williams et al., 2009). Rather than focusing on 
a small subset of possible indicators, we apply a holistic approach and 
consider a large body of established and newly proposed fit indicators to 
identify those that are optimal for the purpose of a given research 
project. 

As the malleability of the common fit indictors also has implications 
at an epistemological level, a flexible model evaluation strategy should 
extend beyond accounting for data and model characteristics to include 
the research purpose when selecting the appropriate fit indicator(s) and 
cutoff(s). We propose that the model evaluation strategy needs to be 
guided by considerations related to the research purpose and, specif
ically, by three key questions:  

(a) whether an established model is estimated or a novel model is 
tested,  

(b) whether CFA is conducted or primarily a theoretically derived 
structural model is tested, and  

(c) the extent certainty that is present in the empirical data (e.g., 
sample size). 

Novel vs. established model. The first fundamental question that needs 
to be answered is whether scholars seek to estimate a well-established 
model or whether they are testing a novel model that has not been 
specified before and is being tested for the first time. This question is 
relevant because fit indicators provoke different types of errors. When 

testing a model, two types of errors can occur: Type I errors (“errone
ously rejecting a correct model”) and Type II errors (“erroneously 
accepting a misspecified model”). Note that the pattern for hypothesis 
testing in covariance-based SEM is opposite to traditional null hypoth
esis testing with classic multivariate techniques.3 

We argue that, depending on the research purpose, Type I and Type II 
errors may be differentially relevant when fitting a model. When testing 
a novel model that is specified for the first time, Type II errors are 
arguably more relevant than Type I errors. Following a critical ratio
nalist principle, the consequences for science are much more harmful 
when erroneously accepting a misspecified model than erroneously 
rejecting a correct model. This notion rests on the principle that un
derlies hypothesis testing where both errors are weighted differently (e. 
g., often with a 4:1 ratio, such an accepted α of .05 and accepted β of 
.20). Bear in mind that both errors are mutually dependent and cannot 
be improved simultaneously: reducing Type I error in model estimation 
provokes inflated Type II errors. Not surprisingly, fit indicators with 
lower Type I error have inflated Type II errors, and vice versa. For this 
reason, balancing both types of errors is essential and should be aligned 
to the research purpose. When estimating a model that is well estab
lished in the literature and which was replicated numerous times (e.g., 
Theory of Planned Behavior, Ajzen, 1991), it is plausible to enhance the 
importance of Type I errors of erroneously rejecting a correct model, for 
example, adopting a 2:1 ratio or weighting both error types equally. Fit 
indicators vary in the likelihood of rejecting models and, therefore, are 
more or less efficient in accepting correct models or detecting mis
specification. As a consequence of this variability, researchers may need 
to rely on different indicators, depending on the purpose of their 
research. In a similar fashion, flexibly derived cutoff points tend to be 
more conservative in the model assessment, which may also affect the 
balancing of Type I and Type II errors. A flexible model evaluation 
strategy makes use of these specific characteristics that fit indicators and 
cutoffs exhibit under the different conditions. Consequently, the selec
tion of the appropriate fit indicator(s) and cutoffs are expected to be 
contingent on the research purpose. 

CFA vs. structural models. Covariance-based SEM is applied for 
different tasks with two principal foci, namely, conducting CFA (also for 
establishing discriminant validity or assessing a common method bias) 
or confirming a theoretical model (Bagozzi and Yi, 2012). In terms of 
CFA, the loading patterns among manifest and latent variables are of 
primary interest. The error in the measurement model is particularly 
relevant here, whereas the correlations among latent variables are 
assumed to be complete, which makes errors in the structural model 
rather unlikely. By contrast, in research that focuses on estimating the 
structural paths, the measurement models (i.e., the constructs) were 
often validated beforehand (CFA’s focus). The model’s theoretically 
derived structure is in focus here, making structural model mis
specification more important than misspecification of the measurement 
model. However, fit indicators are differentially effective in detecting 
misspecifications in measurement or structural parts of the model 
(Niemand and Mai, 2018). A flexible model evaluation strategy is 
therefore needed that may refer to different fit indicators for conducting 
CFA or testing a structural model. 

Sample size. As a third major consideration, the flexible model eval
uation strategy should take into account the certainty about the 
empirical evidence. We consider the size of the sample as a represen
tation of certainty. The sample size is the most investigated source of 
variation in methodological research, directly affecting the indicator’s 
accuracy (Steiger, 1990). Although most prior recommendations 

3 While many statistical tests seek to reject the null where a false rejection 
(Type I) often is more harmful than erroneous acceptance (Type II), covariance- 
based SEM seeks to accept the null hypothesis of perfect fit (= a correct model). 
Here, false acceptance of the null (Type II) would be more hurtful than an 
erroneous rejection of the null (Type I, Marsh et al., 2004). 
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acknowledge the importance of sample size, only Hu and Bentler (1999), 
and Niemand and Mai (2018) explicitly incorporate sample size into 
their recommendations. In general, the larger the sample size is, the 
greater the certainty is in model evaluation because both the ratio of the 
parameters to be estimated and sample size are relaxed (i.e., more data is 
available to assess the fit of the observed and estimated matrices). 
Sample size consequentially distorts the relevant fit indicators, leading 
to potentially biased decisions about the model. The model evaluation 
strategy should account for the fact that fit indicators differ in the degree 
to which they are sensitive to a distortion by sample size. For example, 
Niemand and Mai (2018) found that CFI, TLI and RMSEA are less sen
sitive to sample size than SRMR. 

Apart from the research purpose (novel vs. established model) and 
the purpose of the model specification (CFA vs. theoretically derived 
model), a researcher’s decision about which fit indicator(s) to consult 
and what cutoffs to use may consequently also be guided by the certainty 
related to the available data. This research, for the first time, in
corporates these conceptual considerations into the model evaluation 
strategy. We next conduct a review of the TFSC literature to illustrate the 
strong context-dependency of SEM applications in this field, substanti
ating the need for a tailored-fit model evaluation strategy. 

3. Review of structural equation modeling in technological 
forecasting and social change 

To gain an overview of how SEM is applied to study technological 
forecasting and social change, we evaluated all papers published in this 
journal between 2016 and 2020. We chose a five-year period because 
recent methodological contributions (e.g., Bagozzi and Yi, 2012; Nie
mand and Mai, 2018) require some time to diffuse among applied re
searchers. Initially, an ISSN-specific keyword search for “structural 
equation”, “structural equation model” (or “SEM”) or “partial least 
squares” (or “PLS”) in Google Scholar revealed 260 potential full-text 
papers that were then manually checked for applications of 
SEM-techniques, yielding a final sample of 72 papers (Appendix), of 
which 38 papers (52.8%) use PLS (e.g., Kraus et al., 2020), while 34 
papers (47.2%) apply covariance-based SEM (e.g., Nadeem et al., 2020). 

In the next step, we analyzed the literature regarding our three key 
questions to test our assumptions that research in TFSC varies consid
erably regarding the research purpose (established vs. novel model), the 
specification purpose (CFA vs. SEM), and the certainty (sample size). 

Established vs. novel model. Regarding the research purpose, we coded 
as to whether SEM applications were based on an established model—a 
(modified) theoretical framework—compared to a novel model. A vast 
majority of 51 papers (70.8%) investigated a novel model, whereas 21 
(29.2%) estimated an established model. Among these established 
models, the Technology Acceptance Model (TAM, Davis, 1989) was used 
eleven times (52.4%, e.g., Fotiadis and Stylos, 2017), followed by the 
related theories of Theory of Planned Behavior (Ajzen, 1991) with three 
(14.3%, e.g., Youssef et al., 2021) and the Theory of Reasoned Action 
(Ajzen and Fishbein, 1977) with two applications (9.5%, e.g., Barnes 
and Mattsson, 2017). 

CFA vs. structural models. Next, we coded the purpose for which 
covariance-based SEM was used (multiple coding possible). Most of the 
applications tested a theoretical model (57, 79.2%), but about one-third 
of the papers also used the method for assessing the measurement model 
through a CFA (25, 34.7%). We also found other purposes, such as 
detecting common method bias (28, 38.9%) or establishing discriminant 
validity (40, 55.6%). 

Sample size. As expected, our review shows a wide range of sample 
sizes. On average, SEM is conducted with a median sample size of 
265.50 (SD = 264.37), while PLS is applied to smaller sample sizes 
(median = 245.50, SD = 259.59) than covariance-based SEM (median =
359.88, SD = 269.97), ranging from 47 (Blohmke et al., 2016) to 1,156 
respondents (Gali et al., 2020). In these SEM studies, 68.1% collected 
larger samples (>200), and 31.9% used a small sample (< 200). Overall, 

this review confirms a wide variance in the TFSC literature regarding 
our three major factors, which underscores the need to account for them 
in a flexible model evaluation strategy. 

Commonly applied fit indicators. We further identified the most 
frequently applied fit criteria, which comprise TLI (18, 52.9%), followed 
by RMSEA and CFI (both 15, 44.1%) and SRMR (4, 11.8%). T was 
applied in 11 cases (32.4%). It is noteworthy that the combinations 
proposed by Hu and Bentler (1999) and tested in other studies (e.g., Mai 
and Niemand, 2018) are rarely used (CFI & SRMR: 4, 11.8%, TLI & 
SRMR: 3, 8.8%, RMSEA, and SRMR: 4, 11.8%). To date, TFSC re
searchers do not take advantage of the unique benefits of fit indicators 
by paring SRMR with a second fit index (see, e.g., Gali et al., 2020 for an 
exception). We often found that scholars report extensive sets of fit 
criteria. For example, de Zubielqui et al. (2019) consulted T, T/df, CFI, 
TLI, and RMSEA. Remarkably, combinations of T with fit indices 
occurred frequently (with CFI or RMSEA: 9, 26.5%, with TLI: 8, 23.5%, 
with SRMR: 2, 5.9%). Evidently, combinations between the competing 
paradigms to determine model fit (T statistics and fit indices) were more 
common in the TFSC literature than combinations within the same 
paradigm. 

We lastly investigated the occurrence of fit indices regarding these 
criteria via logit regressions. CFI and RMSEA (Odds ratio [OR] = 16.75, 
z = 3.77, p < .001 for both) as well as SRMR (OR = 6.22, z = 2.28, p <
.05) were more likely to be applied for CFAs than for theoretical models. 
T instead is not related to any criteria covered in our sample. These 
results generated two insights. First, fit indices were more often used in 
TFSC studies that seek to validate the measurement model in a CFA. 
Second, T is neither related to sample size nor the purpose of the 
research (novel vs. established) and model specification (CFA vs. 
structural paths). This implies that T is used rather descriptively. 

Overall, the widely used fit indicators do not appear specifically 
linked to the research purpose (established vs. novel) or sample 
size—two of our three major considerations for a flexible model evalu
ation strategy. This observation about the TFSC literature pinpoints that 
current model evaluations in the field do not appear to exploit the 
unique benefits of certain fit indicators. As technology management 
research may benefit from a more tailored-fit approach, we incorporated 
the three major considerations into a flexible model evaluation strategy 
and identified the appropriate fit indicators and cutoffs. To this end, we 
conducted an extensive simulation study that manipulates a broad range 
of relevant conditions. 

4. Simulation study 

4.1. Objective and procedure 

The simulation study serves to develop the flexible model evaluation 
strategy and has two steps. First, data were simulated for different 
conditions to compare the fit indicators (corrections of T and fit indices) 
and their dependency on misspecification-unrelated factors. For these 
conditions, we secondly estimated the flexible cutoff values for T and its 
corrections as well as a comprehensive set of fit indices. Our data was 
obtained through a Monte Carlo simulation based on multivariate 
random number generators, using R and the simulateData function in 
package lavaan. A population model for CFA was initially defined by 
setting all latent variable correlations to .3 and all factor loadings be
tween latent variables and items to equal, standardized values. The 
population model does not contain misspecifications and is thus a cor
rect model. 

For the first step, we systematically manipulated five model and 
sample factors in that population model: factor loadings (3 levels), the 
number of latent variables (4 levels), the number of items (4 levels), the 
degree of non-normality (3 levels), and the sample size (4 levels). The 
relevant levels of the manipulated factors were selected adopting the 
simulation procedure by Niemand and Mai (2018). Because of this pa
per’s focus, we made a few changes, such as adding factor loadings of .6 
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to the levels of .7 and .8. We omitted the level of .9 because these 
loadings are likely to yield unrealistically high-reliability estimates for 
the latent variables, while loadings below .6 can provoke convergence 
issues, specifically for small samples (Gagne and Hancock, 2006). 
Additionally, sample size (100, 200, 500, and 1,000) is modified from 
the original sizes (125, 250, 500, 1,000) to avoid inconsistent use in the 
reference study (125 is only used in study 2, 1,000 only in study 1) and 
to obtain an equal ratio of smaller (100, 200) and larger (500, 1,000) 
samples. Finally, we followed the reference simulation procedure 
regarding the number of latent variables (2, 4, 6, 8), the number of items 
per latent variable (2, 3, 4, 5), and the manipulation of multivariate 
normality for skewness and kurtosis (no: 0 and 0; moderate: 1 and 3.5; 
severe: 2 and 7).4 Overall, 576 conditions were created. 

Based on these settings, each population model is then applied to 
estimate a robust Maximum Likelihood-estimator CFA, applying the 
standard options in lavaan (set free: intercepts of items, intercepts of 
latent variables, residual variances, variances of latent variables, co
variances of latent variables; set to 1: first indicator per latent variable). 
For each condition, 1,000 replications are estimated. Further, the indi
vidual models were varied in four ways to manipulate the (mis)speci
fications in the measurement model and the structural equation model: 
(a) a correctly-specified model with no errors in the measurement model 
(MME = 0) and the structural model (SME = 0); (b) a model with one 
error in the measurement model (by switching the first items of latent 
variable A and latent variable B); (c) a model with one error in the 
structural model (by restraining the correlation between A and B to 
0 instead of .3); and (d) a model version including both error types. 
Given the results from Niemand and Mai (2018), we opted not to 
introduce more errors as these are easily recognized by common fit in
dicators and are not relevant for our investigation. To illustrate the 
manipulation procedure, Fig. 1 depicts a model of four latent variables 
with three items each. This procedure led to a dataset of 2,304,000 
cases. Additionally, fourteen relevant fit indicators are extracted directly 
or calculated. 

To derive the flexible cutoff values for the second step, the respective 
576 conditions were simulated with 1,000 replications per model type 
(no errors in the measurement and structural model). Empirical quan
tiles of type 8 (Hyndman and Fan, 1996) from definition 8 were 
extracted for a width of p = .05. 

4.2. Descriptive findings 

Sensitivity of fit indicators. We initially explored the degree to which 
the fit indicators are distorted. To this end, we investigated the basic 
patterns of sample size (n), number of items (i), number of latent vari
ables (m), factor loadings (fl), and non-normality (non) within the 
simulated data. Table 2 illustrates these patterns for the fit indicators 
based on η2 from ANOVAs (Sum of squares: Type II). According to 
Cohen (1988), we classified this sensitivity of the fit indicators as 
“small” (η2 ≥ .01), “medium” (η2 ≥ .06), or “large” (η2 ≥ .14). This first 
step in our analysis serves to identify whether a fit indicator exists that is 
primarily sensitive to misspecifications in the measurement model and 
the structural model, while simultaneously being immune to the dis
tortions that are induced through the misspecification-unrelated factors 
related to the data (e.g., sample size, non-normality) and the model (e.g., 
the number of the latent variables or items). 

As shown in Table 2, the T statistic is not only substantively sensitive 
to the number of items and latent variables; it is moderately sensitive to 
measurement model misspecification, but also slightly sensitive to 
sample size. Notably, this pattern persists for all corrections of T, which 

implies that the suggested corrections do not help fully remedy the 
sensitivity of the T statistic to misspecification-unrelated aspects. The 
Jiang-Yuan-T correction (TJY) is additionally sensitive to sample size 
(Jiang and Yuan, 2017). It is noteworthy that the recently proposed use 
of F-tests (FN) shows only moderate sensitivity to the number of latent 
variables (McNeish, 2020). 

With regard to the fit indices, this research replicates the patterns 
identified in previous research. SRMR is the sole fit indicator that is at 
least moderately sensitive to misspecification in the structural model (η2 

= .11, p < .001) while also being sensitive to errors in the measurement 
model (η2 = .24, p < .001). Still, this fit index responds substantially to 
sample size and the number of latent variables (Table 2). This obser
vation corresponds with the finding in our review of the TFSC literature 
that scholars do not follow a consistent evaluation strategy in 
covariance-based SEM. Our review further pinpointed that no superior 
fit indicator emerged in the field. These observations, coupled with the 
results in Table 2, provide a first indication of the need for a model 
evaluation strategy that is tailored-fit to the situation at hand. RMSEA, 
CFI, and TLI share high sensitivity to errors in the measurement model 
but are also moderately (CFI) or strongly (RMSEA, TLI) affected by the 
number of latent variables. Owing to the fact that CFI responds to in
teractions between the misspecification of the structural model and that 
of the measurement model, the previously proposed combination of CFI 
and SRMR appears to work best for disentangling the two mis
specification types (measurement model and structural model) from the 
unintended nuisance variance introduced by misspecification-unrelated 
aspects. The following analyses, therefore, focus on the most relevant 
indicators CFI, TLI, RMSEA, SRMR, and TSB. 

Fixed vs. flexible cutoffs. We now turn our attention to the cutoffs that 
draw a dividing line between correctly specified models and 

Fig. 1. Examples for different types of model misspecification 
Notes. Example specification for four latent variables with three items each. A- 
D: latent variables (ovals), a1-d3: items (rectangles); two-sided arrows above 
the latent variables indicate latent variable correlations; one-sided arrows 
below the latent variables indicate standardized loadings. 

4 A Vale-Maurelli approach (VM) is used to derive non-normal data (simu
lateData-function in lavaan). As only one estimator is applied, differences in 
estimator performance as described by Foldnes and Grønneberg (2015) are 
irrelevant. 
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misspecified models. Fixed cutoffs rely on a constant threshold (e.g., 
.95), regardless of the distortions mentioned above regarding the fit 
index score. Flexible cutoffs (parametrized as “flex”) account for these 
distortions by determining a unique distribution for the given model and 
data characteristics. To demonstrate how fit indicators respond to the 
sources of distortion, Table 3 provides the mean values of the flexibly 
derived cutoffs for all manipulated factors. These results demonstrate 
that all cutoff values are not constant but do vary, as expected. 
Regardless of actual model misspecification, fit indices are generally 
more likely to indicate appropriate fit for larger samples, higher factor 
loadings, fewer items, and latent variables, as well as normal data. Note 
that this variation in the cutoff values occurred for correctly specified 
models and therefore arises regardless of whether actual mis
specification is present in the model. A flexible cutoff captures the 
lowest empirical score that is to be expected for a fit indicator under the 
given model and data conditions (the maximum score for badness-of-fit 
indices). For example, when investigating a model based on a sample 
size of n = 500, 95% of same-sized correctly specified models would 
show a mean CFI of .958 or higher and an SRMR score of .035 or lower 
(across all manipulated factors). 

4.3. Overall precision of the fit indicators under the different research 
conditions 

Having determined their sensitivity to data and model characteris
tics, we next address the question of whether conceptual considerations 
should guide the researcher’s choice of fit indicator(s) and cutoffs. 
Supported by our review of the TFSC literature and the great variety in 
the field, we propose that different indicators should be consulted. For 
developing feasible and simple guidelines, we detailed the three critical 
questions that scholars face when estimating a model and investigating 
its fit. Our notion of a flexible model evaluation strategy posits that the 
selection of the optimal fit indicator(s) is contingent on the research 
purpose (established vs. novel model), the specification purpose (CFA 
vs. SEM), and the certainty of the evidence (sample size). To compare 
the accuracy of the fit indicators and cutoffs (fixed and flexible), we 
calculated their hit rates in model evaluation (Hu and Bentler, 1999) 

Ta
bl

e 
2 

Se
ns

iti
vi

ty
 o

f fi
t i

nd
ic

at
or

s 
fo

r 
m

an
ip

ul
at

ed
 fa

ct
or

s 
( η

2 
in

 %
)  

In
di

ca
to

r 
Sa

m
pl

e 
si

ze
 (n

) 
N

um
be

r 
of

 it
em

s 
(i

) 
N

um
be

r 
of

 la
te

nt
 v

ar
ia

bl
es

 (m
) 

A
ve

ra
ge

 fa
ct

or
 lo

ad
in

g 
(fl

) 
N

on
-n

or
m

al
ity

 (n
on

) 
St

ru
ct

ur
al

 m
is

sp
ec

ifi
ca

tio
n 

(S
M

E)
 

M
ea

su
re

m
en

t m
is

sp
ec

ifi
ca

tio
n 

(M
M

E)
 

SM
E 

* 
M

M
E 

T 
st

at
is

tic
 

4.
2 

32
.7

 
31

.0
 

(.8
) 

(.2
) 

(.5
) 

6.
9 

(.1
) 

TB
 

6.
4 

31
.9

 
29

.0
 

(.9
) 

(.2
) 

(.5
) 

7.
5 

(.2
) 

TS
 

5.
7 

32
.0

 
29

.7
 

(.8
) 

(.2
) 

(.5
) 

7.
4 

(.2
) 

TY
 

6.
1 

31
.9

 
29

.4
 

(.8
) 

(.2
) 

(.5
) 

7.
4 

(.2
) 

TS
B 

3.
4 

33
.2

 
33

.9
 

(.5
) 

(.0
) 

(.2
) 

6.
7 

(.2
) 

TJ
Y 

19
.8

 
20

.1
 

17
.2

 
(.8

) 
(.1

) 
(.4

) 
9.

4 
(.3

) 
TY

1 
5.

9 
31

.9
 

29
.6

 
(.8

) 
(.2

) 
(.5

) 
7.

4 
(.2

) 
TY

2 
5.

9 
31

.9
 

29
.6

 
(.8

) 
(.2

) 
(.5

) 
7.

4 
(.2

) 
TY

3 
5.

9 
31

.9
 

29
.6

 
(.8

) 
(.2

) 
(.5

) 
7.

4 
(.2

) 
FN

 
4.

2 
3.

6 
11

.9
 

(.7
) 

(.0
) 

(.6
) 

5.
5 

(.2
) 

CF
I 

2.
7 

(.5
) 

9.
9 

(.0
) 

(.2
) 

(.7
) 

41
.2

 
1.

8 
TL

I 
1.

2 
3.

0 
16

.0
 

(.0
) 

(.1
) 

(.6
) 

34
.2

 
(.6

) 
RM

SE
A

 
1.

0 
1.

8 
23

.0
 

1.
4 

(.1
) 

(.7
) 

30
.4

 
(.1

) 
SR

M
R 

17
.8

 
3.

9 
10

.5
 

1.
9 

(.1
) 

11
.1

 
23

.6
 

(.4
) 

N
ot

es
. η

2 
(i

n 
%

) f
ro

m
 T

yp
e 

II-
su

m
 o

f s
qu

ar
es

 A
N

O
VA

 (d
ep

en
de

nt
 v

ar
ia

bl
e:

 in
di

ca
to

r, 
in

de
pe

nd
en

t v
ar

ia
bl

es
: n

, i
, k

, fl
, n

on
, S

M
E,

 M
M

E,
 a

nd
 in

te
ra

ct
io

n 
SM

E 
* 

M
M

E)
. T

B 
=

Ba
rt

le
tt

-T
 (B

ar
tle

tt
, 1

95
1)

, T
S 
=

Sw
ai

n-
T 

(S
w

ai
n,

 
19

75
), 

TY
 =

Yu
an

-T
 (Y

ua
n,

 2
00

5)
, T

SB
 =

Sa
to

rr
a-

Be
nt

le
r-

T 
(S

at
or

ra
 a

nd
 B

en
tle

r,
 2

00
1)

, T
JY

 =
Ji

an
g-

Yu
an

-T
 (J

ia
ng

 a
nd

 Y
ua

n,
 2

01
7)

, T
Y1

 =
Yu

an
-E

m
pi

ri
ca

l-T
1 

(Y
ua

n 
et

 a
l.,

 2
01

5)
, T

Y2
 =

Yu
an

-E
m

pi
ri

ca
l-T

2 
(Y

ua
n 

et
 a

l.,
 

20
15

), 
TY

3 
=

Yu
an

-E
m

pi
ri

ca
l-T

3 
(Y

ua
n 

et
 a

l.,
 2

01
5)

, F
N

 =
F-

te
st

 (M
cN

ei
sh

, 2
02

0)
, C

FI
 =

Co
m

pa
ra

tiv
e 

Fi
t I

nd
ex

, T
LI

 =
Tu

ck
er

 L
ew

is
 In

de
x,

 R
M

SE
A

 =
Ro

ot
 M

ea
n 

Sq
ua

re
 o

f E
rr

or
 A

pp
ro

xi
m

at
io

n,
 S

RM
R 
=

St
an

da
rd

iz
ed

 
Ro

ot
 M

ea
n 

Re
si

du
al

. A
ll 

fit
 in

di
ce

s 
(e

xc
ep

t S
RM

R)
 a

re
 b

as
ed

 o
n 

TS
B.

 S
en

si
tiv

ity
: i

n 
pa

re
nt

he
se

s 
“i

ns
en

si
tiv

e”
 (

η2 
<

1.
0)

, i
ta

lic
s “

sm
al

l”
 (

η2 
≥

1.
0)

, n
or

m
al

 “
m

ed
iu

m
” 

(η
2 
≥

6.
0)

, o
r 

bo
ld

 “
la

rg
e”

 (η
2 
≥

14
.0

). 

Table 3 
Patterns of derived flexible cutoffs for manipulated factors  

Factor CFI TLI RMSEA SRMR TSB 

Sample size      
n = 100 .769 .663 .077 .077 226.302 
n = 200 .893 .831 .052 .055 210.690 
n = 500 .958 .929 .032 .035 202.763 
n = 1000 .979 .963 .023 .024 200.285 
Number of items      
i = 2 .913 .784 .060 .038 48.290 
i = 3 .895 .850 .046 .049 134.821 
i = 4 .897 .872 .040 .051 252.426 
i = 5 .895 .879 .036 .053 404.503 
Number of latent variables      
m = 2 .907 .792 .071 .042 28.660 
m = 4 .907 .865 .043 .048 112.284 
m = 6 .899 .869 .036 .050 251.060 
m = 8 .886 .859 .033 .050 448.036 
Average factor loading      
fl = .6 .875 .810 .045 .049 209.612 
fl = .7 .902 .850 .046 .048 210.125 
fl = .8 .923 .880 .046 .046 210.292 
Non-normality      
normal .916 .869 .046 .046 209.958 
moderate .904 .852 .046 .047 209.915 
severe .880 .818 .046 .050 210.157 

Notes. Mean values for flexible cutoffs (p = .05) dependent on manipulated 
factors, CFI = Comparative Fit Index, TLI = Tucker Lewis Index, RMSEA = Root 
Mean Square of Error Approximation, SRMR = Standardized Root Mean Re
sidual, TSB = Satorra-Bentler-T (Satorra and Bentler, 2001), all fit indices 
calculated except SRMR based on TSB. 
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under different conditions. 
A hit rate specifies the relative proportion of a positive outcome (i.e., 

confirming a correct model or identifying a falsely specified model). The 
T statistic (and all related corrections) indicate confirmation if p ≥ .05, 
given a chi-square distribution with the model-implied df (or vice versa 
for rejecting a model). Hit rates for fit indices with fixed cutoffs apply the 
thresholds recommended by Hu and Bentler (1999) (CFI, TLI: .95; 
RMSEA: .06; SRMR for single indices: .08, SRMR in combination with 
CFI/TLI/RMSEA: .09). Hit rates for flexible cutoffs apply the quantiles 
derived to estimate the flexible cutoffs (p = .05). 

Table 4 presents the hit rates for the three key questions (research 
purpose, specification purpose, certainty of the evidence). The results 
clearly support our assumption that fit indicators are differentially 
effective. Beyond the hit rate for the best performing indicator (in bold), 
the gray bars in Table 4 indicate the deviation of the individual indicator 
from the best performing indicator in the respective condition. For 
example, for novel CFA models tested with larger samples (N > 200), 
RMSEA with flexible cutoffs shows a hit rate of 95.3% and differs by 2.5 
from the best-performing indicator in this condition SRMR with a hit 
rate of 97.8%. Overall, the diverging patterns across the conditions 
support our notion that the fit indicator selection needs to be tailored. 
We next elaborate on each of the three decisions that scholars have to 
make. 

4.4. Decision 1: Estimating an established model vs. testing a novel model 

The first fundamental decision scholars must make is regarding the 
purpose of research, which may affect selecting the appropriate index 
and cutoff (fixed or flexible). Our assumption is rooted in the fact that fit 
indicators differ in the extent to which they are capable of balancing 
Type I and Type II errors. Note that both error types are differently 
important to test a novel model as compared to estimating a well- 
established model. When studying novel models, researchers typically 
adopt a critical rationalist perspective and employ a more conservative 
approach by testing the model with a stronger emphasis on Type II er
rors (erroneously accepting a false model). Conversely, research that 
estimates an established model also accentuates avoiding Type I errors 
(erroneously rejecting a correct model), which requires a more nuanced 
balance between both types of errors. 

To analyze the impact of the research purpose, we systematically 
varied the weighing of Type I and Type II errors from very conservative 
(1:4) to equally balanced (1:1). To facilitate the understanding of both 
errors’ implications, we analyzed the calculated hit rates in the different 

conditions of model evaluation. In the following, we report and spotlight 
only the results for the best-performing indicators (Table 2) and their 
most relevant combinations, namely, CFI, SRMR, RMSEA, and TSB (TLI 
performed comparably to CFI in all conditions). Our results reveal 
notable differences among the widely used fit indicators and their 
combinations. As visualized in Fig. 2, the use of flexible cutoffs largely 
shows improved performance than when applying fixed cutoffs to fit 
indices. Notably, this difference in the hit rates between both cutoff 
paradigms increases with more conservative testing (towards a 1:4 ratio 
of Type I and Type II errors). For this reason, flexible cutoffs appear to be 
particularly efficient when estimating novel and so-far untested models. 

In the analysis, we also address the question of whether researchers 
should rely on combinations of indicators or whether an indicator exists 
with superior performance. The flexible form of SRMR seems to perform 
reasonably well across all manipulated models. As illustrated in Fig. 3, 
SRMRflex may be considered a “silver bullet” for research when both 
types of errors are equally relevant (i.e., estimating well-established 
models). The index performs here even better than in combination 
with another index (e.g., CFI & SRMR, RMSEA & SRMR), which is due to 
a lower accuracy of SRMR’s counterpart in detecting a correctly speci
fied model. Evidently, index combinations can introduce additive errors 
from both indices so that the likelihood of falsely rejecting a correct 
model is artificially inflated if two fit indices are applied in combination. 
Researchers are hence well-advised to refrain from cherry-picking 
several fit indicators in their reporting but, instead, rely on specific 
previously tested fit indicators or their combinations. 

In sum, when estimating established models (equal weight to Type I 
and Type II errors), the following indicators perform best with the 
following highest hit rates: SRMRflex .05 = 90.55%, CFI & SRMRflex .05 =

89.64%, TSB & SRMRflex .05 = 89.58%. Note that all differences are 
highly significant (ps < .001). By contrast, when evaluating novel 
models (more strongly weighing Type II), this set of indicators is slightly 
different: CFI & SRMRflex .05 = 88.77%, TSB & SRMRflex .05 = 88.71%, 
SRMRflex .05 = 88.59%. Again, all differences are significant (CFI & 
SRMRflex .05 vs. TSB & SRMRflex .05: p < .001; TSB & SRMRflex .05 vs. 
SRMRflex .05: p = .029). Consequently, while for established models, a 
single index strategy seems advisable (SRMR), combinations of indices 
(CFI & SRMR) are recommended in situations when a more conservative 
approach is required, such as when testing a novel model. 

4.5. Decision 2: CFA vs. structural models 

We next distinguish our recommendations concerning the purpose of 

Table 4 
Hit rates contingent on the research purpose and data certainty   

Established models (1:1 weighting) Novel models (1:4 weighting) 
Focus CFA (measurement model) Structural model (structural paths) CFA (measurement model) Structural model (structural paths) 
Sample size small large small large small large small large  

Fixed cutoffs 
CFI -7.4 97.1 -15.9 -35.5 84.2 -2.1 -12.2 -59.7 
SRMR -17.2 -39.8 -15.3 -43.2 -33.2 -66.1 -28.9 -72.3 
TSB -6.3 -1.5 -17.4 -19.2 -6.4 -.9 -23.0 -29.9 
RMSEA -13.7 -29.0 -19.9 -40.1 -27.9 -48.7 -36.5 -67.1 
CFI & SRMR -7.4 97.1 -15.2 -35.4 84.2 -2.1 -11.1 -59.5 
TSB & SRMR -4.4 -2.1 -4.1 -1.6 -1.7 -.6 68.5 -.6 
RMSEA & SRMR -12.7 -29.0 -17.6 -39.9 -26.2 -48.7 -32.7 -66.8  

Flexible cutoffs (p = .05) 
CFI -5.0 -3.6 -19.2 -19.2 -14.2 -1.5 -35.6 -27.3 
SRMR 84.1 -.5 75.1 94.5 -5.3 97.8 -4.1 94.4 
TSB -5.0 -.8 -17.6 -19.4 -13.6 -.7 -32.5 -31.2 
RMSEA -6.5 -6.4 -19.3 -19.9 -12.2 -2.5 -31.2 -24.8 
CFI & SRMR -.1 -1.4 -.9 -.9 -3.5 -.3 -3.4 -.3 
TSB & SRMR -.3 -1.5 -.9 -1.0 -3.9 -.3 -3.4 -.3 
RMSEA & SRMR -2.6 -6.7 -3.3 -6.2 -3.8 -2.4 -3.7 -2.2 

Notes. Best-performing indicator in the column in bold. All other values indicate the difference of the indicator from this best performing indicator under the given 
condition. Sample size small: n ≤ 200, large: n > 200. 
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model specification. Our results support previous findings that fit in
dicators are differentially effective in detecting misspecifications in the 
measurement model and the structural model (e.g., Hu and Bentler, 
1999; Niemand and Mai, 2018), such that scholars may need to refer to 
different fit indicators when running CFAs or to test a theoretically 
derived structural model. For established models, SRMRflex is best when 
testing structural models (84.81%) and significantly better than the 
second-best two-index strategy (CFIfix and SRMRflex: 83.89%, t(1152) =

10.849, p < .001). For novel models, CFIfix (89.98%) as well as the 
combination of CFIfix & SRMRfix (89.98%) and TSBfix & SRMRfix 
(89.85%, t(1152) = .455, p > .05) perform well when conducting CFA. 
However, for novel structural models, this is the case for fixed (81.17%) 
and flexible combinations of TSB & SRMRfix (79.59%, t(1152) = 3.864, p 
< .001). This is a noteworthy finding because this indicator combination 
has not been considered or tested thus far. 

4.6. Decision 3: Low vs. high certainty 

As a third and final major decision, the model evaluation strategy 

may need to be adjusted to the certainty about the empirical data. All fit 
indicators are biased by the volume of data. As visualized in Fig. 4, the 
hit rates of fit indicators substantially depend on sample size. Especially 
for SRMRfix, the indicator’s accuracy weakens dramatically with larger 
samples, irrespective of whether misspecification is present in the 
model. As was shown in Table 3, the average SRMR values for the very 
same model specification range from .077 for a sample of 100 subjects to 
.024 for 1,000 subjects. It is consequently much more likely that the fit 
score will exceed the fixed cutoff for a misspecified model with larger 
samples. Flexible cutoffs can partly compensate for this issue; hit rates 
even increase with larger samples. Nonetheless, flexible cutoffs cannot 
compensate for fit indicators that are less precise per se. Here, the pro
posed flexible model evaluation strategy appears to help compensate for 
individual fit indicator shortcomings by optimizing the selection of the 
best performing indicators under the given situation (Table 4). 

The consequences of the sample size-induced changes in fit in
dicators are further illustrated in Fig. 4 using the example of SRMR and 
CFI. The application of flexible (vs. fixed) cutoffs substantially improved 
the quality of the decision about a model (i.e., hit rates are improved; 

Fig. 2. Comparison of the fixed vs. flexible cutoff paradigm 
Notes. Type I to Type II error weighing indicates the relative weight of the respective error type for the overall hit rate (e.g., 1:4 implies that the imprint of Type II 
error is four times greater than that of the Type I error). 

Fig. 3. Comparison of top-performing single indicators vs. combinations 
Notes. Type I to Type II error weighting indicates the relative weight of the respective error type for the overall hit rate (e.g., 1:4 implies that the imprint of Type II 
error is four times greater than that of the Type I error). 
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overall: t(2304) = 16.638, p < .001). The need for more precise decisions 
is particularly pressing for novel models that need to be judged more 
conservatively (Fig. 4). Furthermore, the fit indicators seem to have 
slightly greater difficulty in detecting misspecification in the structural 
model than in the measurement model. If both types of misspecification 
occur in a model (not shown), the hit rates reach the upper bond (i.e., a 
hit rate of 100%) because most fit indicators successfully detect the 

presence of several types of misspecification. Evidently, this is not a 
challenging evaluation of a model. 

4.7. Recommendations for model evaluation 

Through this simulation study, we found that the precision with 
which a model is evaluated is contingent on the research purpose, 

Fig. 4. Hit rates of the fit indicators conditional on the research purpose 
Notes. Type I to Type II error weighting indicates the relative weight of the respective error type for the overall hit rate (e.g., 1:4 implies that the imprint of Type II 
error is four times greater than that of the Type I error). 

Fig. 5. Decision tree for identifying the optimal fit indicator 
Notes. Hit rate of the best-fit indicator are shown in parentheses. *CFI & SRMRfix performed equally well, but is omitted for reasons of parsimoniousness. †: Rec
ommended but needs to be considered with caution due to low overall hit rates in this condition. 

R. Mai et al.                                                                                                                                                                                                                                     



Technological Forecasting & Social Change 173 (2021) 121142

11

purpose of the specification, and certainty about the available data. 
Researchers are advised to answer three key questions to determine the 
most effective fit indicator or their combinations. The first question 
should be, is this a novel model that has not been explored before, or is it 
already well established in the literature with sufficient evidence? The 
second question should be, is the purpose of the specified model to verify 
a measurement model in CFA, or does the research focus on confirming a 
theoretically derived structural model? The last question should be, is 
the sample size large enough to offer sufficient statistical power, or is the 
sample size rather small (e.g., ≤ 200) considering the number of pa
rameters to be estimated? 

By answering these three simple questions, Fig. 5 provides a simple 
decision tree to determine the best performing fit indicator(s) and cut
offs (fixed or flexible). The disparity of recommended fit indicators 
across the different research conditions supports our premise that 
guided this research. Evidently, fit indicators to evaluate model fit need 
to be carefully selected, and—although SRMR with flexible cutoffs (p =
.05) proved most accurate in many conditions—no one-fits-all-purposes 
indicator emerged. When testing established models (balancing Type I 
and Type II errors), a single index performed reasonably well and, in 
terms of SRMR, even often outperformed combinations of indicators. 
This is an important observation because scholars may intuitively apply 
a more-is-better approach with the intent to be more rigorous. Yet, 
consulting multiple indicators boosts the danger of erroneously rejecting 
a correct model, inflating Type I errors. By contrast, carefully selected 
combinations of indicators (esp. TSB & SRMR) are beneficial for novel 
models, where the ramifications of falsely accepting a misspecified 
model are exceptionally harmful (i.e., Type II errors). 

Our recommendations even suggest a fit indicator that has not been 
addressed in previous research: TSB is particularly useful when testing 
structural paths (i.e., detecting a misspecification in the structural 
model) with small samples (up to 200 subjects) that include substantial 
uncertainty. The finding is notable because this—according to our 
review—is a frequent and problematic condition in research on tech
nology management and social change. Bear in mind that for the models 
estimated in this research, the fit indicators had greater difficulty in 
detecting misspecification in the structural model compared to mis
specification in the measurement model. The simple decision tree for a 
flexible model evaluation strategy (Fig. 5) therefore helps researchers 
rely on the most precise fit indicator(s) to make better decisions about 
their model, measurement, or theory. 

5. General discussion 

5.1. Discussion of our results in the light of previous recommendations 

This research shifted the focus to optimize the model evaluation 
strategy. The various corrections of T and an extensive set of fit indices 
with flexible and fixed cutoffs were included in our model evaluation 
strategy. Rather than searching for a “one-fits-all-purposes” index, our 
findings suggest exploiting their specific benefits for flexibly adjusting 
the evaluation strategy to the situation at hand. Accordingly, different fit 
indicators need to be evaluated depending on (a) the research purpose 
(testing a novel model vs. estimating a well-established model), (b) the 
purpose of the model specification (CFA vs. estimating a theoretically 
derived model), and (c) the certainty that can be placed in the data 
(small vs. large sample). For these important questions, we developed 
specific recommendations about which indicators to consult (Fig. 5). 

Overall, SRMR with a flexible cutoff detected correct and mis
specified models better than all other indices examined in this study. 
Still, the indicator substantially responded to sample size, such that 
other indicators showed better performance in specific conditions. For 
example, CFI with a fixed cutoff of .95 seemed optimal for running CFA 
on a well-established measurement model using larger samples. This is 
in line with prior recommendations because—under these rather 
forgiving conditions—fixed cutoffs work well (Bagozzi and Yi, 2012; Hu 

and Bentler, 1999; Marsh et al., 2004). Also, fit indicator combinations 
that have not been proposed so far emerged as optimal in specific con
ditions. When testing a novel structural model with a small sample, the T 
statistic TSB combined with SRMR outperforms established fit index 
combinations, such as CFI & SRMR or TLI & SRMR. Yet, this is limited by 
the generally low hit rates in these very demanding conditions (i.e., a 
novel model is evaluated with a rather small sample). 

Although hit rates tend to be lower in demanding conditions (e.g., 
Marsh et al., 2004), previous guidelines fail to address the issue of 
inflated Type I errors in these conditions. Across all conditions, the 
pairing of TSB & SRMR with flexible cutoffs seems to be a solid choice 
because the largest difference compared to the top-performing indicator 
in each condition does not exceed 3.9% (or 4.4% for fixed cutoffs). The 
combination of CFI & SRMRflex is even slightly more effective as the hit 
rate differences do not exceed 3.5% across all model conditions. 
Although not the intention of this research, TSB & SRMRflex or CFI & 
SRMRflex would serve the one-fits-all indicator philosophy in a decent 
number of cases. This is illustrated in Fig. 6, in which a smaller area 
under the curve indicates better unconditional performance across all 
conditions. 

Assistance by a second indicator is only needed for novel models and 
smaller samples. Our findings also accord with previous observations 
that SRMR is better in detecting structural misspecification, whereas CFI 
and TSB are better in detecting measurement misspecification (Fan and 
Sivo, 2005; Niemand and Mai, 2018). In this way, our recommendations 
(Fig. 5) help overcome the misuse (e.g., cherry-picking of fit indicators) 
or lack of practical simplicity that is often addressed in methodological 
research (Marsh et al., 2004). 

The proposed flexible model evaluation strategy also helps overcome 
some shortcomings of the recent advances towards more contingency- 
based approaches in model evaluation. As argued by Niemand and 
Mai (2018) and consistent with our findings, flexible cutoffs partially 
remedy the poor performance of widely used cutoff rules in the critical 
conditions where substantial uncertainty exists in the model and data. 
However, as they are limited to flexibility in the cutoffs, flexible cutoffs 
are no safeguard against ineffective indicators and do not ensure re
searchers use the most precise toolbox they have at hand for their spe
cific problem. Instead of applying the contingency-based notion to a 
classical “one-size-fits-all-purposes” approach, we widened the flexi
bility focus towards a “best-to-fit-a-specific purpose” thinking in model 
testing. 

5.2. Implications for future research 

This paper and the extensive simulation study provided evidence 
that a flexible model evaluation strategy improves hit rates and, in turn, 
the chance to detect correct models or sort out misspecified models. 
Neither the established combinations of fit indicators with fixed cutoffs 
nor single or paired fit indicators with flexible cutoffs clearly emerged as 
being consistently superior in all conditions. Still, in five of our eight 
recommendations, SRMRflex is the endorsed index. In line with Bagozzi 
and Yi (2012), this is due to more conservative cutoff values of ≤ .06 / 
.07 (Table 4) compared to the .08 / .09 recommendations by Hu and 
Bentler (1999). Apart from the challenging case of testing novel struc
tural models with small samples, SRMRflex alone or combined with CFI 
or TSB performs relatively consistent across the board and better than 
any other index or index pair, partially confirming Niemand and Mai 
(2018). The reasons why the combination of TSB with SRMR (fixed or 
flexible cutoffs) is such a promising index pair needs to be explained 
through future research. To the best of our knowledge, no study has yet 
investigated this combination. 

Furthermore, the inferior performance of the corrections of the T 
statistic may stem from the factors manipulated in the simulation study. 
The corrections are recommended with minimum sample sizes, such as n 
≥ max (50, 2p) (Yuan et al., 2015) or n ≥ 4p (Shi et al., 2018), indicating 
that only small models can be analyzed with small samples. It is possible 
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that the corrections of T perform better at the limits of those rules (e.g., a 
six-factor CFA with two items each, v = 50, against a sample size of n =
100 or 200). Supplementing our decision tree in the future with model 
size (small vs. large models) may further improve our flexible model 
evaluation strategy. 

Another avenue for further research lies in a more detailed manip
ulation of the tradeoff between sample and model size (e.g., Gagne and 
Hancock, 2006) when comparing T-based fit indicators and fit indices. 
Future simulation studies may start, for example, with a ratio of sample 
size–to–number of items of 1 and relax this tradeoff with higher ratios (2 
to 5) to gain knowledge about the limits at which fit indicator perfor
mance increases. 

A strength of contingency-based approaches lie in their indepen
dence from misspecification. Recommendations for fixed cutoffs (e.g., 
.95) require the manipulation of rather subjective types of mis
specification (Marsh et al., 2004), whereas flexible cutoffs require cor
rect models to be determined (Niemand and Mai, 2018). Our focus on 
binary levels of SME and MME may be too simplistic here. Future 
research may investigate less obvious levels (e.g., a weaker correlation 
restricted to zero) or other forms of misspecification (e.g., equality 
constraints). 

In light of the ongoing discussion on the overreliance on p-values 
(Camerer et al., 2018), we warn against a “dogmatic insistence” in SEM 
research (Baumgartner and Homburg, 1996, p. 157). Very much as a 
p-value of .051 should not decide alone about rejecting a hypothesis, 
SRMR values of .081 should not be interpreted as the absolute rejection 
of a model when the cutoff is .08. Cutoffs can only serve as a benchmark 
to which fit indicators should come “close to” (Hu and Bentler, 1999, p. 
27). The flexible paradigm seconds this understanding because the ideal 
fit value of 0 (or 1) is often unrealistic given the indicator’s dependency 
on sample and model size. In line with Baumgartner and Homburg 
(1996), we recommend a subjective interpretation of model fit. Does my 
fit indicator come close to the benchmark? Although this research 
included an extensive set of global fit indicators, future research may 
integrate local fit criteria (such as composite reliability, average 

variance extracted, or discriminant validity). For example, reliability 
estimates may detect issues in the measurement model more precisely 
compared to fit indicators, such as T or CFI. 

5.3. Limitations 

Some limitations of the simulation design and estimation may 
weaken the generalizability of our findings. First, despite their inde
pendence from misspecification, flexible cutoffs may depend on other 
design characteristics (e.g., equal factor loadings and correlations 
among factors). Although being eminent for fixed cutoffs and correc
tions (e.g., TSB), this issue requires further simulation studies involving 
more factors and factor levels. For example, studies with less than 100 or 
more than 1,000 subjects are harmed by the fact that flexible cutoffs 
were not derived for such levels. Unequal factor loadings, a larger va
riety of non-normality patterns, or an unequal number of items per 
factor are also not considered. Since flexible cutoffs require extensive 
simulations of CFA models (which are non-trivial to compute), the 
current limiting factor is processing power. Simulating replicable flex
ible cutoffs for specific models under investigation is a future venture as 
processing power increases over time. 

Second, our review of SEM in TFSC only provides a snapshot of the 
past five years, demonstrating some tentative results that motivated our 
research. Evidently, a larger sample (e.g., 20 years of research in TFSC) 
and a more holistic view of other outlets in the field will generate more 
precise and generalizable results. 

Third, as every simulation study rests on certain assumptions, beliefs, 
and tradeoffs (Boomsma, 2013), generalizability cannot be achieved in a 
single study. Despite our efforts to provide feasible recommendations by 
investigating a variety of factors and distortions relevant to TFSC 
research, generalizing the results from this research may require some 
caution. 

By proposing the idea of a tailored-fit evaluation strategy, this 
research aimed to place a fresh take on the ongoing debate about 
assessing structural equation models. The suggested flexible model 

Fig. 6. Cumulated differences of selected fit indicators to the best performing indicator (across all model conditions) 
Note. The smaller area under the curve indicates better unconditional performance. 
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evaluation strategy, coupled with the empirical findings, urges us to also 
account for conceptual considerations as well as the research purpose. 
This shift in the prevailing paradigm allows the selection of the most 
powerful fit indicators and, in turn, can lead to better decisions in the 
domain of technology knowledge and social change. Adopting this 
flexible principle will support a cleaner measurement of technology 
knowledge and social change. It will ideally enable managers to advance 
technology development and social change strategies. 
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Appendix 

Corrections of T 

The difference between both matrices follows a (non-)central chi-square distribution and can be written as (Curran et al. 2002, p. 8): 

TML = F̂(n − 1) (Eq. A.1) 

F is the Maximum Likelihood-estimator of minimizing the discrepancy function of the estimated covariance matrix for a given sample size n (Yuan 
et al., 2015, p. 380). Since this value is not necessarily chi-square distributed in most cases, we hereafter use the term T instead of χ2 to acknowledge 
this issue. For Eq. (4), we also use TML to indicate that it is derived from Maximum Likelihood. 

Sample size corrections account for the typically small sample sizes in research and can be traced back to factor analysis techniques (Bartlett, 1951) 
[TB]. Subsequent approaches are proposed by Swain (1975) [TS] and Yuan (2005) [TY]. All three aim to replace n in Eq. (4) by a smaller n estimated 
through the number of items v, the degrees-of-freedom df, the, the number of free parameters q or the number of moments m (in that order: Eqs. 
(5)-(7)). Since v, df, q, and m estimate the model size, they also help overcome adverse ratios of sample and model size. 

n∗ = n −
v
3
−

2m
3

−
11
6

(Eq. A.2)  
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[
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12df
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(Eq. A.4) 

Non-normality corrections instead use a scaling factor c on T to account for non-normal data conditions that are based on an asymptotic robust 
estimator of a mixture of chi-square distributions with 1 df each (Satorra and Bentler, 2001) [TSB]: 

TSB =
TML

c
with c =

tr(M)

df
(Eq. A.5) 

Since the full rank of the sample fourth-order moment matrix (M) is not always available, Jiang and Yuan (2017) proposed a version based on the 
rank of M [TJY]: 

TJY =
TML

c
with c =

tr(M)

rank(M)
(Eq. A.6) 

As a consequence of inclusive results on the performance of the proposed indicators (TML, TB, TS, TY, TSB, TJY), Yuan et al. (2015) proposed three 
empirical corrections [TY1, TY2, TY3] based on 342 simulated conditions of n, v, q, and m: 

n∗
1 = n − (2.381+ .361v+ .003q) (Eq. A.7)  

n∗
2 = n − (2.229+ .365v+ .038m) (Eq. A.8)  

n∗
3 = n − (2.262+ .369v+ .052m − .002q) (Eq. A.9) 

Results showed that Eqs. (10) to (12) performed predominantly compared to all previous corrections if n ≥ max(50, 2v). This finding is confirmed 
by Shi et al. (2018), but a ratio of n ≥ 4v is recommended to achieve reasonable Type I error rates. Finally, McNeish (2020) recently introduced a 
variant of testing fit with T by replacing T with F by substitution with df [FN]: 

FN =
TML

df
(Eq. A.10) 

This correction is especially suited as an alternative to T and corrected Ts when n < 200 and n/df < 3 since the overall rejection rates for TML (Type 
I error) of correct models exceeded 5%. However, other sources of variation, such as model size effects (v, q, m), have not been investigated. 

Fit indices 

Root Mean Square of Error Approximation (RMSEA) relies on the estimated model (TT) and its degrees of freedom (df) and sample size (n) (Hu and 
Bentler, 1998, p. 428): 

RMSEA =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
max(TT − dfT 0)

dfT(n − 1)

√

(Eq. A. 11) 
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An alternative to RMSEA as an absolute badness-of-fit index is the Standardized Root Mean Square Residual (SRMR, Hu and Bentler, 1998, p. 428): 

SRMR =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Covo − Cove)
2/SDo

v(v + 1)/2

√

(Eq. A.12) 

SRMR is sometimes also termed SRMSR (Nye and Drasgow, 2011). Remarkably, SRMR is the lone badness-of-fit index that is based on the observed 
(Covo) and estimated (Cove) covariance matrices instead of T, standardized by the observed standard deviations (SDo). An example of an absolute fit 
index is the Goodness of Fit Index (GFI, Jöreskog and Sörbom, 1982, p. 407): 

GFI = 1 −
tr(Cove

− 1Covo − I)2

tr(Cove
− 1Covo)

2 (Eq. A.13) 

I is a unit matrix of the same dimensions as the covariance matrices. That is, GFI is the lone goodness-of-fit index not based on T. Additionally 
present in the main script are the Tucker Lewis Index (TLI) and the Comparative Fit Index (CFI, Hu and Bentler, 1998, p. 428): 

TLI =
TB
dfB

− TT
dfT(

TB
dfB

− 1
) (Eq. A.14)  

CFI = 1 −
max(TT − dfT, 0)

max(TT − dfT, TB − dfB, 0)
(Eq. A.15) 

The same notation as before applies (TT: T target model, TB: T base model, dfT: df target model, dfB: df base model). 
Finally, the Normed Fit Index (NFI) is simply (Hu and Bentler, 1998, p. 428): 

NFI =
TB − TT

TB
(Eq. A.16)  

TFSC studies included in the review  

ID Authors Title Year 

1 Hatak, I., Kautonen, T., Fink, M., Kansikas, J. Innovativeness and family firm performance: The moderating effect of family commitment 2016 
2 Chen, S.-C., Hung, C.-W. Elucidating the factors influencing the acceptance of green products: An extension of theory of planned 

behavior 
2016 

3 Yoon, S. N., Lee, D., Schiederjans, M. Effects of innovation leadership and supply chain innovation on supply chain efficiency: Focusing on 
hospital size 

2016 

4 Staub, S., Kaynak, R., Gok, T. What affects sustainability and innovation — Hard or soft corporate identity? 2016 
5 Cleven, A., Mettler, T., Rohner, P., Winter, R. Healthcare quality innovation and performance through process orientation: Evidence from general 

hospitals in Switzerland 
2016 

6 Cui, Y., Sun, C., Xiao, H., Zhao, C. How to become an excellent entrepreneur: The moderating effect of risk propensity on alertness to 
business ideas and entrepreneurial capabilities 

2016 

7 Khasar, S. M. S., Khosla, R., Chu, M. T., Shahmehr, F. S. Service innovation using social robot to reduce social vulnerability among older people in residential 
care facilities 

2016 

8 Blohmke, J., Kemp, R., Türkeli, S. Disentangling the causal structure behind environmental regulation 2016 
9 Staphorst, L., Pretorius, L., Pretorius, M. W. Technology forecasting in the national research and education network technology domain using 

context sensitive data fusion 
2016 

10 Huang, C.-Y., Lin, C.-P. Enhancing performance of contract workers in the technology industry: Mediation of proactive 
commitment and moderation of need for social approval and work experience 

2016 

11 Popa, S., Soto-Acosta, P., Martinez-Conesa, I. Antecedents, moderators, and outcomes of innovation climate and open innovation: An empirical study 
in SMEs 

2017 

12 Barnes, S. J., Mattson, J. Understanding collaborative consumption: Test of a theoretical model 2017 
13 Parguel, B., Lunardo, R., Benoit-Moreau, F. Sustainability of the sharing economy in question: When second-hand peer-to-peer platforms stimulate 

indulgent consumption 
2017 

14 Huang, M.-H., Chen, D.-Z. How can academic innovation performance in university-industry collaboration be improved? 2017 
15 Garcia Martinez, M. Inspiring crowdsourcing communities to create novel solutions: Competition design and the mediating 

role of trust 
2017 

16 Bogicevic, V., Bujisic, M., Bilgihan, A., Yang, W., 
Cobanoglu, C. 

The impact of traveler-focused airport technology on traveler satisfaction 2017 

17 Gkypali, A., Filiou, D., Tsekouras, K. R&D collaborations: Is diversity enhancing innovation performance? 2017 
18 Rahman, S. A., Taghizadeh, S. K., Ramayah, T., Alam, M. 

M. D. 
Technology acceptance among micro-entrepreneurs in marginalized social strata: The case of social 
innovation in Bangladesh 

2017 

19 Fotiadis, A., Stylos, N. The effects of online social networking on retail consumer dynamics in the attractions industry: The case 
of ‘E-da’ theme park, Taiwan 

2017 

20 Karikari, S., Osei-Frimpong, K., Owusu-Frimpong, N. Evaluating individual level antecedents and consequences of social media use in Ghana 2017 
21 Radeaelli, G., Lettieri, E., Luzzini, D., Boaretto, A. Users’ search mechanisms and risks of inappropriateness in healthcare innovations: The role of literacy 

and trust in professional contexts 
2017 

22 Santoro, G., Vrontis, D., Thrassou, A., Dezi, L. The internet of things: Building a knowledge management system for open innovation and knowledge 
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Established models (1:1 weighting) Novel models (1:4 weighting) 
CFA SEM CFA SEM CFA SEM CFA SEM 
(measurement 
model) 

(structural model) (measurement 
model) 

(structural model) (measurement 
model) 

(structural model) (measurement 
model) 

(structural model) 

Small sample 
(≤200) 

Large sample 
(>200) 

Small sample 
(≤200) 

Large sample 
(>200) 

Small sample 
(≤200) 

Large sample 
(>200) 

Small sample 
(≤200) 

Large sample 
(>200) 

Top 3 fit indices 
SRMRflex CFIfix SRMRflex SRMRflex CFIfix SRMRflex TSB & SRMRfix SRMRflex 
CFI & SRMRflex CFI & SRMRfix CFI & SRMRflex CFI & SRMRflex CFI & SRMRfix CFI & SRMRflex CFI & SRMRflex CFI & SRMRflex 
TSB & SRMRflex SRMRflex TSB & SRMRflex TSB & SRMRflex TSB & SRMRfix TSB & SRMRflex TSB & SRMRflex TSB & SRMRflex 
RMSEA & SRMRflex TSBflex RMSEA & SRMRflex TSB & SRMRfix CFI & SRMRflex TSB & SRMRfix RMSEA & SRMRflex TSB & SRMRfix 
TSB & SRMRfix CFI & SRMRflex TSB & SRMRfix RMSEA & 

SRMRflex 

RMSEA & SRMRflex TSBflex SRMRflex RMSEA & 
SRMRflex 

CFIflex TSBfix CFI & SRMRfix TSBfix TSB & SRMRflex TSBfix CFI & SRMRfix RMSEAflex 
TSBflex TSB & SRMRflex SRMRfix CFIflex SRMRflex CFIflex CFIfix CFIflex 
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