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The two most popular candidates for dark energy, i.e. a cosmological constant and quintessence,
are very difficult to distinguish observationally, mostly because the quintessence field does not have
sizable fluctuations. We study a scalar field model for dark energy in which the scalar field is
invariant under reflection symmetry φ → −φ. Under general assumptions, there is a phase transition

at late times (z
<
∼ 0.5). Before the phase transition, the field behaves as a cosmological constant.

After the phase transition, a time-dependent φ-condensate forms, the field couples with dark matter
and develops sizable perturbations tracking those of dark matter. The background cosmological
evolution is in agreement with existing observations, but might be clearly distinguished from that
of a cosmological constant by future Supernovae surveys. The growth of cosmological perturbations
carries the imprint of the phase transition, however a non-linear approach has to be developed in
order to study it quantitatively.

PACS: 98.80.Cq, 98.80.-k, 95.35.+d

I. INTRODUCTION

In the past few years, an increasing wealth of data has
been shaping a consistent picture of the present state of
the Universe: it is spatially flat, mostly made of non-
conventional matter –baryons being allowed only up to
∼ 5% of the total energy content– and accelerating. The
physical models accounting for such a picture generally
contain two basic ingredients: pressureless dark matter
(DM), responsible for the growth of cosmological pertur-
bations via gravitational instability, and negative pres-
sure dark energy (DE), responsible for the accelerated
expansion. The approximate ratio of between DM and
DE is around 1:2 today [1].

The simplest model along these lines is ΛCDM, in
which the role of DE is played by a cosmological con-
stant. It fits very well all the data related with the cos-
mological background and the perturbations in the linear
regime (see for instance [2]). Another possibility widely
discussed in the literature is quintessence, in which DE
has some dynamics, modeled by a scalar field [3].

In principle, one would like to have clear signatures to
distinguish quintessence from ΛCDM in present or future
experiments, but this is not so straightforward. First of
all, existing data already push the present DE equation of
state, w ≡ p/ρ, very close to the cosmological constant
value, w = −1 ± 0.2 at 95% c.l., with at most a very
mild evolution up to redshift z ∼ 1 [2]. Secondly, in
order to avoid fine-tuning on the initial conditions, the
quintessence scalar field is usually taken to be extremely
light, with a Compton wavelength corresponding to the
present value of the Hubble radius. As a consequence,
the scalar field is homogeneous on all observable scales,
much like a cosmological constant [3].

Quintessence models suffer from a more theoretical
problem, namely the fact that radiative corrections in-
duced by the couplings with the matter fields would
generically induce huge corrections to the tree-level mass,
thus spoiling the required lightness [5]. So a fine-tuning

on the radiative corrections is generally required in these
models to keep the scalar field light, besides the one nec-
essary to keep the cosmological constant small.

The purpose of this paper is to try and challenge the
general picture of a universe in which two thirds of the
universe (the DE) are smoothly distributed, while it is
only the remaining third which clumps in structures.

We will discuss a model containing two main ingre-
dients: a scalar field φ coupled to matter (dark, bary-
onic, etc.), and a discrete, Z2, symmetry acting upon
it, φ → −φ. Under very general conditions, the scalar
field may experience a phase transition. At high matter
number density, the Z2 symmetry is restored, the field
decoupled, and its fluctuations damped. At low number
density the Z2 symmetry is broken by a φ condensate, φ
and matter couple very efficiently, and the field fluctua-
tions can grow very large.

In the broken phase, in which we live today, the back-
ground energy densities in DE and DM scale with a fixed
ratio and both have an effective equation of state in the

range −0.73
<∼ w

<∼ −0.5. Moreover, DE is not smooth
on large scales, but has energy density fluctuations track-
ing the matter number fluctuations.

So, if one defines DE as the smooth component of the
Universe, then in this model –after the phase transition–
there is no DE. If one defines it as the negative pressure
component, then there is only DE!

There is, however, a difference between the fluctua-
tions in DM and those in DE. While the former can grow
and become non-linear, the latter stop growing when the
number density inside the collapsing structures reaches
the critical value above which the Z2 symmetry is re-
stored and the coupling between matter and the scalar
field vanishes. As we will discuss in sect. IV, this effect
is missed by linear perturbation theory, which very soon
becomes unreliable after the phase transition.

We will work in the framework of scalar-tensor theories
of gravity. The choice is motivated by the better status
of radiative corrections in this models as compared to
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minimally coupled quintessence, but from a cosmologi-
cal point of view, the coupling between the scalar field
and dark matter can be much more generic than that
prescribed in this class of theories. The only crucial re-
quirement is a (discrete or continuos) symmetry broken
by a φ condensate.

The action of the model is given by

S = Sg + Sφ + Sm . (1)

Sg is the usual Hilbert action of General Relativity

Sg =
M2

p

2

∫

d4x
√−g R ,

where Mp = (8πGN )−1/2 is the reduced Planck mass, Sφ

the action for a real scalar field,

Sφ =

∫

d4x
√
−g

(

1

2
gµν∂µφ∂νφ − Vtree(φ

2)

)

,

and Sm is the action for all the remaining fields, that is,
quark, leptons, DM particles, gauge bosons, GUT parti-
cles, etc. which we will call ‘matter’ for simplicity. We
assume the following form for Sm,

Sm =

∫

d4x
√

−g̃Lm(χ1, · · · .χN , g̃µν) , (2)

where the χ′
is represent all the fields of the model. All

the non-gravitational couplings between the scalar φ and
the rest of the world are encoded in the metric

g̃µν ≡ exp

(

2b
φ2

µ2

)

gµν . (3)

What we have defined is a scalar-tensor theory (formu-
lated in the Einstein-frame) with a Z2 symmetry imposed
on the scalar: φ → −φ.

The paper is organized as follows. In sect. II we discuss
radiative corrections to the scalar field effective action.
In sect. III we study the background cosmology and in
sect. IV the growth of cosmological perturbation. Fi-
nally, in sect. V, we summarize our findings and discuss
their implications.

II. RADIATIVE CORRECTIONS

Before discussing the cosmology, let’s analyze radiative
contributions to the scalar field action∗. The contribu-
tion from all the loops containing matter fields can be
obtained by integrating out the χ′

is fields in (2). The

∗For a discussion of the case of minimally coupled
quintessence, see ref. [4]

resulting effective action then depends on g̃µν only, and
its form is dictated by general coordinate invariance as,

Sm →
∫

d4x
√

−g̃
[

Λ4
0 + Λ2

1R̃ + · · ·
]

, (4)

where Λ0 and Λ1 are ultraviolet (UV) cutoff, R̃ is the
Ricci scalar built out of the metric g̃µν and the ellipses
stand for subdominant logarithmically divergent and fi-
nite terms. In terms of the metric gµν we have,

∫

d4x
√−g

[

e4bφ2/µ2

Λ4
0+

e2bφ2/µ2

Λ2
1

(

R − 6b

µ2
2φ2 − 24b2φ2

µ4
gµν∂µφ∂νφ

)

+ · · ·
]

,

(5)

Taking the φ field on its expectation value, the first
term contributes to the cosmological constant, and has to

be fine-tuned to Λ0
<∼ 10−3 eV. Derivatives of this term

with respect to φ give corrections to the tree-level terms
in Vtree(φ). In particular, we will focus on the corrections
to the tree-level mass term which, as we will see (see
eq. (12)) is O((103eV)4/µ2). The correction proportional
to Λ4

0/µ2 is then subdominant as a consequence of the
same fine-tuning mentioned above.

The terms proportional to Λ2
1 include corrections to

the tree-level kinetic terms. We require Λ1
<∼ µ in order

to keep them subdominant. The Λ2
1R ∼ Λ2

1H
2 term gives

also contributions to the mass of the scalar field, which

is however negligible if Λ1
<∼ Mp.

Summarizing, general coordinate invariance ensures
that, once a single fine-tuning is done on the cosmolog-
ical constant, all the radiative corrections coming from
the matter sector do not destabilize the lightness of the
scalar field. In other words, it forbids a Λ2

2φ
2 term in

eq. (5), with the UV cutoff Λ2 independent on Λ0. If,
for instance, we take µ = O(Mp) as in usual quintessence
models, the corrections to the mass of the scalar field
today are smaller than H2

0 ≃ 10−33eV, without any fur-
ther fine-tuning. For comparison, in minimally coupled
quintessence models the lightness of the scalar field gen-
erally requires a further fine-tuning besides that for the
cosmological constant [5], or a new symmetry principle,
as in [6].

Scalar field self-interactions coming both from the tree-
level action and the effective one, eq. (5), can be shown
not to destabilize the tree-level mass provided the UV

cutoff is
<∼ µ. Taking µ larger than, say, a TeV, this

implies no fine-tuning on the scalar-sector.
Finally, graviton loops have to be considered. Calling

Λg the UV cutoff for this kind of contributions, one can
see that the most dangerous terms involve couplings from
eq. (5), of the form

e2bφ2/µ2

Λ2
1

(∂h)2

M2
p

, (6)
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where h is the metric fluctuation, gµν = ηµν + hµν/Mp.
These terms give a quartically divergent contribution
both to the cosmological constant and to the scalar field
mass. Requiring that the correction to the cosmologi-
cal constant is smaller than O(10−3eV), one obtains the

bound (Λ1/Mp)
2(Λg/10−3eV)4

<∼ 1, which, again, en-
sures that the mass correction is subdominant.

III. BACKGROUND EVOLUTION

In the Einstein frame the field equations have a simple
form. The Friedmann equation is the usual one for a flat
universe with radiation, matter, and a canonical scalar
field, provided the energy densities of radiation and mat-
ter satisfy the modified Bianchi identity

d(ρa3) + pda3 = (ρ − 3p)a3 d

(

bφ2

µ2

)

,

from which we read that matter scales as ρm ∼
exp(bφ2/µ2)a−3, while radiation has the usual behavior
ρrad ∼ a−4.

The scalar field dynamics is governed by the equation

φ̈ + 3Hφ̇ = −dVtree

dφ
− 2bφ

µ2
ρb(1 − 3wb) (7)

where ρb ≡ ρrad + ρm and wb ≡ pb/ρb.
At early times, when ρb ≫ Vtree, only the second term

in the RHS matters. This would have the effect of driving
the field towards the symmetric point φ = 0, but is pro-
portional to the trace of the energy momentum tensor,
which vanishes for a Universe dominated by a confor-
mally invariant gas of non-interacting relativistic parti-
cles. However, in the real world, conformal invariance is
broken even during radiation domination, by two effects.

The first is the presence of mass thresholds [7]. Each
time a particle in thermal equilibrium becomes non-
relativistic, it gives a non-vanishing contribution to the
trace of the energy momentum tensor,

ρA − 3pA

ρrad
≃ 15

π4

gA

g⋆
y2

AF [yA] , (8)

with yA ≡ mA/T , gA the number of degrees of freedom
of the particle A, g⋆ the number of relativistic degrees of
freedom and

F [yA] ≡
∫ ∞

0

dx
x2

εA[exp(εA) ± 1]
, (9)

where εA ≡ (y2
A +x2)1/2 and the minus (plus) sign in the

denominator of the integrand holds for bosons (fermions).
The function F [yA] is O(1) around T = mA, quadrati-
cally suppressed at high temperatures and exponentially
suppressed at low ones.

The second source of breaking of conformal invariance
is given by radiative corrections which, for a plasma of

the SU(Nc) gauge theory with coupling g and Nf flavors,
give the following trace anomaly [8]

1 − 3wb|t. a. =
5

6π2

g4

(4π)2
(Nc + 5

4Nf )(11
3 Nc − 2

3Nf )

2 + 7
2 [NcNf/(N2

c − 1)]
,

leading to a constant contribution which, for typical
gauge theories, can be of order 1 − 3wb ∼ 10−2 − 10−1.
At high temperatures, this effect dominates over that of
mass thresholds, which is suppressed by the number of
relativistic degrees of freedom, g∗.

The joint effect of these two contributions was studied
for instance in ref. [9], where it was shown that the field
can have a sizable evolution during radiation domina-
tion, reaching phenomenologically acceptable values well
before nucleosynthesis. In the present case, the field will
be driven to the symmetric point φ = 0 with an efficiency
increased with respect to ref. [9] by the fact that we will
take µ much lower than the Planck mass. This provides
a post-equivalence initial condition which is completely
independent on the conditions of the field at a early time,
e.g., after inflation.

We now concentrate on the epoch of matter domina-
tion and on the contributions to (2) from non relativis-
tic cosmological relics, in particular DM particles, simi-
lar contributions (though subdominant) arising also from
baryons and neutrinos. The action for a single, non-
relativistic, particle of mass m is

−m

∫

ds̃ = −m

∫

ebφ2/µ2

ds , (10)

which corresponds to a field dependent mass mebφ2/µ2

.
To facilitate the discussion we will absorb the second

term in the RHS of eq. (7) into the effective potential for
φ,

V (φ) = Vtree(φ
2) + mebφ2/µ2

n + . . . (11)

where the average number density is defined as n =
∑

i mini/m, with m =
∑

i mi, and the sum runs over all
the non relativistic particles. The ellipses represent the
radiative contributions, which, based on the discussion
in the previous session, we assume to be subdominant.

If the curvature of the effective potential (11) is always
positive at the symmetric point φ = 0, then the scalar
field is always fixed at that point, its coupling with mat-
ter, 2bφ/µ2 is zero, and the cosmology is that of a ΛCDM
model.

We will instead consider the case in which the tree level
effective potential has negative curvature in φ = 0, while
b > 0. For definitness, we will use the potential

Vtree(φ
2) = V0 e−φ2/µ2

, (12)

however, using other forms will not change our main re-
sults considerably, since, as we will see, during all the
cosmological evolution the field samples only a limited
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range of values, |φ/µ| <∼ 1, so that the two parameters
V0 and µ could be effectively traded with the value of
a generic, Z2-symmetric, potential at the origin and its
second derivative there.

The immediate consequence of our choice for Vtree and
b is a number density driven phase transition. At high
number density n, φ vanishes at the minimum of (11). In
this regime the relic particles’ masses are constant and
the two contributions in (11) scale as cosmological con-
stant and matter, respectively. As the universe expands,
if the number density drops below the critical value

n̄ ≡ V0

bm
, (13)

the effective potential is minimized by

φ2

µ2
=

1

b + 1
log
( n̄

n

)

( n ≤ n̄) . (14)

Thus, on the minimum, we have the two regimes for
the effective potential,

〈V 〉 = V0

(

1 +
1

b

n

n̄

)

(n ≥ n̄), (15)

V0
b + 1

b

(n

n̄

)
1

b+1

(n ≤ n̄), (16)

where, as we anticipated in the Introduction, after the
phase transition DM and DE get diluted at the same rate.
Notice that 〈V 〉 depends on three parameters (V0, n̄, and
b). The µ parameter disappears from the background
energy density if the field tracks the minimum and the
kinetic energy contribution is negligible, which happens

for µ
<∼ 10−2Mp, as we will see.

To study this parameter space (which, lacking a the-
oretical motivation for a particular value for b, contains
one more parameter than ΛCDM) we proceed as follows.
First, by going to the high density regime of (16), we
require that the matter density at recombination agrees
with the result from WMAP [10]. Trading the critical
density n̄ with the redshift of the phase transition, z̄,

(1 + z̄) ≡ (n̄/n0)
1/3, we obtain

(1 + z̄) =
[

(b + 1)Ω0
M

]−(b+1)/3b
, (17)

which fixes z̄ (n̄) as a function of b and the measured
Ω0

M = 0.27± 0.04 [10]. Armed with this relation, we can
compute two observables: the CMB shift parameter [11],

R =
[

(b + 1)(1 + z̄)3b/(b+1)
]−1/2

∫ zdec

0

dz′
H0

H(z′)
, (18)

which is measured to be R = 1.716 ± 0.062 by WMAP
[10], and the luminosity distance -redshift relation mea-
sured using type Ia supernovae (SNeIa) [12,13],

H0dL(z) = (1 + z)

∫ z

0

dz′
H0

H(z′)
. (19)

Notice that both these observables are independent on
the absolute scale of H0, that is, they do not depend on
the parameter V0. Then, once (17) is used, the CMB
shift parameter and the SneIa luminosity distance mea-
surements depend on the parameter b only.

The measurements of R constrain b to be
>∼ 0.5, cor-

responding to z̄
<∼ 1.47. On the other hand, the require-

ment that the phase transition takes place before today,
gives the upper bound on b, b ≤ 1/Ω0

M − 1 = 2.7.
In Fig. 1 we plot the luminosity distance vs red-

shift, normalized to a fiducial flat ΛCDM model with
Ω0

M = 0.27, for different values of b. The value of z̄ has
been fixed in order to have the same Ω0

M , according to
eq. (17). We also plot, with the dotted line, the result
for a quintessence model with constant equation of state
w = −0.8.
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FIG. 1. Ratios of the luminosity distance to that of a refer-
ence ΛCDM model with ΩM = 0.27. The continuos lines cor-
respond, from bottom to top, to b = 0.5, 0.8, 1, and 1.3. The
dotted line corresponds to a flat model with ΩM = 0.27 and
the rest in a fluid with constant equaion of state, w = −0.8.

The SNeIa data turn out to give a stronger constraint
than R. We tested the distance-redshift relations of our
models against the “gold” set of 157 SNeIa of ref. [13],
using flux-averaging statystics as implemented in [14].
We find b ≥ 1 (corresponding to z̄ ≤ 0.51) at 95% c.l. †

Summarizing, the background and CMB measure-

ments are compatible with a late time (z̄
<∼ 0.5) phase

transition from a high density phase in which the dy-
namics is that of a ΛCDM model to a low density one in
which the background evolves according to eq. (16). In
this scenario, the energy density of the Universe today is
dominated by a DM-DE fluid in which the two compo-
nents scale at a fixed ratio ΩM/ΩV = b and are diluted as
(1 + z)3/(b+1), that is with an effective equation of state
w = −b/(b + 1). The bounds on b discussed above cor-

†I thank Luca Scarabello for providing help on this part of
the analysis.
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respond to −0.73
<∼ w

<∼ −1/2 today. For comparison,
assuming a constant w, the SneIa limit is w < −0.78 at
95% c.l. [13].

The analysis above assumed that after the phase tran-
sition the field adiabatically follows the moving mini-
mum. In Fig. 2 we plot the field evolution as resulting
from the equation of motion for different values of µ/Mp.
For large values of µ there is basically no evolution of
the field expectation value before today. So, the only
feature of the model in this case is an extremely flat po-
tential, giving a decoupled scalar field in the spectrum

with mass
<∼ H0 ∼ (10−33eV). As µ is decreased, say, for

µ/Mp
<∼ 0.01, the field follows the minimum while kinetic

terms do not contribute to the energy density sensibly.
Notice the oscillations around the moving minimum. As
µ decreases, the frequency of the oscillation increases due
to the increased scalar field mass,

m2
φ = 〈V ′′(φ)〉= 2V0

µ2

(n

n̄
− 1
)

, (n ≥ n̄)

=
4V0

µ2

(n

n̄

)1/(b+1)

log
n̄

n
, (n ≤ n̄)

(20)

which is M2
p /µ2 times O(H2). On the other hand, the

amplitude decreases, since the field starts moving earlier
after the phase transition.

We have verified that, for µ/Mp
<∼ 0.01, the field os-

cillations leave no observable imprint in the luminosity
distance-redshift relation, since they get averaged out in
the integral of eq. (19).
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FIG. 2. Evolution of the square of the scalar field for differ-

ent values of the µ/Mp ratio (for µ/Mp
>
∼ 0.05 the field does

not move sensibly). We set b = 1, the lowest value allowed by
SnIa data, which corresponds to z̄ = 0.51.

IV. COSMOLOGICAL PERTURBATIONS

More dramatic signatures, potentially such as to allow
a clear distinction from ΛCDM, may come from pertur-
bations. In particular, the phase transition turns on a

coupling between the scalar field and matter which in-
duces large perturbations of φ.

Linear perturbations in DE-DM coupled systems have
been already discussed in the literature [15,16,18,19].
Non linear approaches have been attempted in [20–22].

As compared to the uncoupled case (normal
quintessence scalar fields) two main additional effects
have to be taken into account:

1) particles’ trajectories may deviate from geodesics:

θ̇ +

(

ȧ

a
+ 2b

φφ̇

µ2

)

θ = 2bk2 φδϕ

µ2
, (21)

where δϕ is the field fluctuation, θ = ikjvj is the di-
vergence of the comoving velocity, and we work in syn-
chronous gauge, see for instance [17]. Notice that, as a
consequence of the Z2-symmetry the field is decoupled
from matter in φ = 0, so the particles follow geodesics
in the high-density phase, that is, for z > z̄ and inside
objects with number density n > n̄. For comparison,
in the models considered in ref. [15], the RHS is always
active, which gives strong constraints on the strength of
the coupling;

2) the field’s fluctuations have a new source term on
the RHS:

δϕ̈ + 2
ȧ

a
δϕ̇ + (k2 + a2m2

φ)δϕ =

−1

2
ḣφ̇ − 2b

φ

µ2
ebφ2/µ2

m δn a2 , (22)

with m2
φ given in eq. (20). The last term in the RHS

induces potentially large field fluctuations after the phase
transition.

δϕ

φ
≃ −2

V0

µ2(k2/a2 + m2
φ)

(n

n̄

)1/(b+1) δn

n
. (23)

For subhorizon scales with H < k/a < mφ these are of
the same order as δn/n,

δϕ

φ
≃ −

(

2 log
n̄

n

)−1 δn

n
. (24)

Notice the minus sign, implying that the DM particles’
mass is smaller in overdense regions. The divergence as
n → n̄ is cured by the k2/a2 term in (23), and is a general
manifestation of second order phase transitions, that is,
the presence of large fluctuations on large scales close to
the transition point.

In Fig. 3 we plot the field average and fluctuation
in linear perturbation theory (upper panel). After the
phase transition, fluctuations grow until they become
larger than the field average and perturbation theory is
no longer reliable. Correspondingly, the fluctuation in
number density, δn ≡ δn/n blows up at late time (Fig. 4,
curve ‘Not improved’, where we plot d log δn/d log a).
The behavior of the perturbations seems then very dif-
ferent than for ΛCDM and in strong disagreement with
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the result extracted from 2dF survey, from which one
extracts [23,24]

d log δn/d log a = 0.51 ± 0.11, (25)

at the effective redshift of the survey, z ∼ 0.15.
However, linear perturbation theory misses a crucial

physical effect, which drastically affects the results. In-
deed, when a number overdensity grows beyond the crit-
ical value n̄, the Z2 symmetry gets restored and matter
and the scalar field decouple again. As a consequence,
above the critical value, there is no contribution from
the scalar force and the overdensity grows under the stan-
dard effect of gravity alone. On the other hand, in linear
perturbation theory, the strength of the DM-scalar cou-
pling is always proportional to the background value of
φ, which is non-vanishing for z ≤ z̄, independently of the
value of the overdensity.

As a first step towards a more realistic description of
the growth of perturbations in this model, we ‘improved’
the equation of motion for the average field by substitut-
ing n with n(1+ δn) in the effective potential of eq. (11).
The results are plotted in the lower panel of Fig. 3 and
on Fig. 4 (‘Improved’). As we see, at late times the field
fluctuations are smaller than the average, and the growth
of density perturbations is damped much like in ΛCDM,
signaling a better behavior of the improved perturbation
theory. However, considering smaller length scales, the
effect of the scalar force becomes more and more impor-
tant (see the RHS of eq. (21)) and the improved pertur-
bation theory fails as well.
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FIG. 3. Evolution of the field and its fluctuation in linear
perturbation theory (upper panel) and after substituting n
with n(1+ δn) in the effective potential (lower panel). We set
µ/Mp = 0.001, b = 1, k/aH = 1.
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Further insight on the growth of perturbations in this
model can be gained in a spherical collapse model. If
the mass of the scalar is much larger than the inverse
radius of the collapsing sphere, mφ ≫ R−1, that is, us-
ing eq. (20), for µ/Mp ≪ HR, the field inside the sphere
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deviates from the background value. In Fig. 5 we plot
the evolution of the field (squared) inside and outside a
collapsing spherical overdensity, and in Fig. 6 the cor-
responding growth of the energy overdensity, δρ/ρ =
ΩMδρM/ρM + ΩV δρV /ρV , where ρM = m exp(bφ2/µ2)n
and ρV = Vtree(φ

2). In this example, the phase transi-
tion inside the sphere takes place much later than in the
background. For slightly larger overdensities today, but

still in the range
<∼ 1, the phase transition inside does not

take place at all before today. Such a collapsing sphere is
always blind to the scalar force. While individual parti-
cles feel a strong effect from the scalar force, moderately
overdense structures collapse and attract each other as if
there were only gravity.

For larger values of b the background phase transition
takes place later and the behavior is more and more sim-
ilar to that of standard ΛCDM.

Inside our Galaxy, the number density today is ≫ n̄.
Then, the scalar field is decoupled from matter and is
not detectable via solar system – or laboratory– tests of
General Relativity. For the same reason, the Newton
constant and particle’s masses are not varying now and
have the same values they had at high redshifts z ≥ z̄,
in particular during nucleosynthesis and matter-radiation
decoupling. In this respect, the scalar field behaves sim-
ilarly to the ‘chameleon’ field introduced in ref. [27].

On the other hand, individual matter particles fluc-
tuating outside the overdense regions, have time-
dependent– and increasing– masses today.
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V. DISCUSSION

Models in which DE and DM have extra –
non-gravitational – interactions have been already
investigated in the literature (see, for instance,
[25,18,26,15,20,21,28]). The present model differs from
these works in two respects. First of all, in our model, the
extra-interaction has been silent for most of the cosmo-
logical history, allowing a close to standard background
evolution and growth of perturbation. By contrast, in
the previous literature the coupling was assumed to be
always effective (although evolving, as in [26]). As a con-
sequence, strong bounds on it were imposed by CMB and
Large Scale Structure ( [15,16]).

The second difference is in the scalar field mass, and
then on the scale of perturbations. The requirement of
being on an attractor solution implies a Compton wave-
length of order H−1 , and then basically no scalar field
perturbations on sub-horizon scales, much like in the case
of uncoupled quintessence [3]. On the other hand, in
this paper the Compton wavelength of the scalar field
is O(µ/Mp)H

−1, where µ can take values much lower
than Mp (actually, as we see from Fig. 2, the lower µ
the better the field follows the moving minimum). The
independence of the late-time cosmology on the initial
conditions is not achieved in this model by an attractor,
but by symmetry. The field is on the symmetric point
φ = 0 until the phase transition, and then tracks the
moving minimum.

A generic expectation from a phase transition of the
type described in this paper is a modification in the
growth of cosmological perturbations at low redshifts,
likely in the form of an oscillatory behavior of the growth
exponent, see figs. 4, 6. However, in order to extract re-
liable predictions, more work has to be done on a non-
linear approach incorporating the physical effect of sym-
metry restoration inside high-density regions.
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