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We expand the theory of the inverse free electron laser �IFEL� interaction to include the possibility of energy
exchange that takes place when relativistic particles traversing an undulator interact with an electromagnetic
wave of a frequency that is a harmonic of the fundamental wiggler resonant frequency. We derive the coupling
coefficients as a function of the IFEL parameters for all harmonics, both odd and even. The theory is supported
by simulation results obtained with a three-dimensional Lorentz equation solver code. Comparisons are made
between the results of theory and simulations, and the recent UCLA IFEL experimental results where higher
harmonic IFEL interaction was observed.
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I. INTRODUCTION

With the simultaneous availability in many research labo-
ratories around the world of very high power laser systems
and high quality relativistic electron beams, a variety of tech-
niques has been developed in order to provide efficient en-
ergy and/or information exchange between the electrons and
the photons. One of the most successful solutions to this
problem is the inverse free-electron laser �IFEL� interaction
�1,2�. In an IFEL, relativistic electrons copropagate with a
laser beam through an undulator magnet. The undulator pro-
duces a small, oscillatory transverse velocity �wiggling mo-
tion� in a direction parallel to the electric vector of the elec-
tromagnetic wave so that energy can be transferred from the
wave to the particles. Efficient energy exchange takes place
when the electron phase slippage in the wave is such that its
transverse velocity changes sign synchronously with the la-
ser field �resonant condition �3��.

Together with the natural appeal of using the ultrahigh
electric field of an intense laser beam to accelerate the elec-
trons, the IFEL scheme offers the possibility to manipulate
the electron longitudinal phase space on the time scale of the
laser wavelength. Successful experimental demonstrations
achieved with the IFEL scheme include the microbunching
of the electron beam �4�, the phase-locking of an electron
microbunch train with a laser wave �5,6�, and, recently, the
high gradient acceleration of electrons �7�.

There are a wide variety of proposed schemes and experi-
ments involving laser and electron beam coupling that rely
ultimately on the IFEL mechanism: the modulator sections in
�FEL� high-gain harmonic-generation �8�, advanced accel-
erator prebunchers �9,10�, compact laser injectors for x-ray
FELs �11�, electron beam current enhancer �12�, optical sto-
chastic cooling �13�, and laser slicing methods �14�. For each
of these applications, it is of fundamental importance to un-
derstand and optimize the coupling and the efficiency of the
energy exchange between the laser wave and the electrons.

The IFEL resonance condition is ordinarily understood to
mean that efficient energy exchange between the transverse
EM wave and the electrons can only take place at electron
energies such that, in the electron rest frame, the wiggling
induced by the laser has the same frequency as the wiggling

induced by the undulator. However, when the motion in the
electron rest frame is not a simple dipole oscillation, reso-
nance can also occur if the laser frequency is a multiple of
the undulator wiggling frequency, that is, electrons of a fixed
energy may interact not only with the fundamental radiation
frequency but also with its harmonics �15�. From an alterna-
tive point of view, particles of different energies �r,n can
interact with the same laser frequency because they see the
EM wave as a higher harmonic of the fundamental frequency
which they are resonant with. In other words, for a given
laser wavelength and undulator magnet, there are multiple
resonant energies

�r,n =��w�1 + K2/2�
2n�

, �1�

where �w is the undulator period, K is the normalized undu-
lator amplitude, and � the radiation wavelength.

The higher harmonic interaction can be viewed as the
natural consequence of the fact that the spectrum of the spon-
taneous radiation emitted by a relativistic electron passing
through a planar undulator magnet presents peaks at different
frequencies that are harmonics of a fundamental resonant
frequency. In a quantum mechanic description of the interac-
tion, because of the presence of these strong lines in the
spontaneous radiation spectrum, stimulated emission �FEL
emission at higher harmonics� or absorption �higher har-
monic IFEL� of radiation at these frequencies is possible.

In the FEL literature, significant power at the harmonics
of the undulator resonant frequency has been both theoreti-
cally investigated �16� and then experimentally observed
�17�. Even though the possibility of IFEL harmonic coupling
follows directly from these results and even though the
simple one-dimensional theoretical model description allows
for IFEL harmonic interaction, most of the IFEL literature
and experiments have only considered coupling the laser and
the relativistic electron beam at the fundamental undulator
resonant frequency. Future proposals involving IFEL
schemes foresee the same coupling.

In this paper, we study in detail the possibility of IFEL
interaction between a relativistic electron beam and a high
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power laser beam with a frequency that is a harmonic of the
undulator fundamental resonant frequency. In the following
section, we derive the coupling coefficients for all the har-
monics. We obtain, as expected from symmetry consider-
ations, that even-harmonic coupling is suppressed in a per-
fectly aligned system. We show in the third section at least
two possibilities in which the symmetry is broken and even-
harmonic coupling becomes non-negligible. Numerical
simulations obtained with the three-dimensional code TREDI

confirm the results of the analytic calculations.
We then explore the possibilities opened up by this cou-

pling scheme showing that the higher harmonic interaction
adds flexibility and a new degree of freedom—the harmonic
number n—in the design of systems capable of coupling
relativistic electron beams and high power laser beams. We
apply our calculations to two practical examples where the
harmonic coupling can be important. We discuss a IFEL mi-
crobuncher where the higher harmonic interaction can ease
the undulator design, and in some cases be competitive with
the usual fundamental frequency IFEL coupling. In a second
case we analyze the effects of the higher harmonic coupling
in an IFEL accelerator where the undulator is strongly ta-
pered to compensate for the change in electron energy. The
study of this case allows us to benchmark the theory and the
simulations with experimental data from the recent Neptune
IFEL accelerator experiment, where the higher harmonic
IFEL interaction was first observed.

II. THEORY

To derive the higher harmonic IFEL equations of motion
we will closely follow the arguments that lead to the formu-
lation of the IFEL equations in �2�. Neglecting the effect of
the electron current on the evolution of the radiation �as-
sumption valid in the limit of very small beam charge�, the
IFEL interaction can be described by the equations that gov-
ern the electron motion in the combined field of an electro-
magnetic plane wave of a given frequency � and a planar
wiggler magnetic field,

m
d��v�

dt
= e�El +

v
c

� �Bl + Bw�� , �2�

where El= �E0 cos�kz−�t+�� ,0 ,0� and Bl= ẑ�El are the
electric and magnetic fields of the plane wave, Bw
= �0,B0 cos�kwz� ,0� is the magnetic field of the wiggler �in-
symmetry plane approximation�, and �= �1−�2�−1/2, �=v /c
are the familiar relativistic factors.

We can easily determine the transverse velocity if we ob-
serve that, in this simple case for the external fields, the
transverse canonical momentum is conserved:

pT = m�vT + e�Al + Aw� = const, �3�

where Al and Aw are the vector potentials, respectively, of
the laser and the wiggler fields. The constant is equal to the
value of the transverse momentum outside the undulator and
the laser fields. For electrons entering the interaction region
parallel to the laser propagation axis, the constant is equal to
zero.

We can introduce the normalized vector potential ampli-
tudes K=eB0 /mckw and Kl=eE0 /mc2k and note that, because
the large wavelength difference between the laser field and
the undulator field, for typical values of the laser electric
field and the magnetic field amplitude, we have K�Kl. We
can then use the approximation that the electron transverse
motion is dominated by the magnetic field of the undulator,
and write for the electron velocity the expression

� = �K

�
cos�kwz�

− �,0,�1 −
1 + K2 cos2�kwz� − 2��K cos�kwz� + �2�2

�2 	 ,

�4�

where � is the angle in the horizontal plane formed by direc-
tions of propagation of electrons and laser beam and, consis-
tently with the undulator field expression, we have restricted
ourselves to the study of the electron motion in the symmetry
plane of the magnet y=0. The latter is justified by the fact
that the electron motion in the vertical direction is un-
coupled from the horizontally polarized electromagnetic
wave and its only effect for the IFEL interaction would be a
modification of the longitudinal component of the velocity
�i.e., �2�2=�2��x

2+�y
2��.

The energy transferred between the laser beam and elec-
tron per unit length of the accelerator is given by

d�

dz
=

e

mc3vxEx = kKl� K

2�
�sin 	+ + sin 	−� − � sin�kz − �t�� ,

�5�

where 	±= �k±kw�z−�t. The terms oscillating at the EM
wave frequency in Eq. �5� have a very small effect on the
electron dynamics and will be neglected. Using the z com-
ponent of Eq. �4� and ��1, one can express the time t as a
function of the distance z,

ct = ct0 + z + 

0

z

dz
2 + K2 + 2�2�2

4�2 +
1

8

K2

�2kw
sin�2kwz�

−
K�

�kw
sin�kwz� . �6�

The last terms are approximations for
1
4�0

zdz�K2 /�2�cos�2kwz� and �0
zdz�K� /��cos�kwz�, respec-

tively. These approximations are valid when the changes of
all the system parameters over one wiggler period are small.

Using the expansion

sin�a + b sin � + c sin 
� = �
m=−�

�

�
p=−�

�

Jp�b�Jm�c�

�sin�a + p� + m
� , �7�

where Jn are Bessel functions, in the expression for sin 	+
+sin 	−, we obtain
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sin 	+ + sin 	− = �
m=−�

�

�
p=−�

�

Jm�G�Jp���sin�kwz�2m + p + 1�

− k

0

z

dz
2 + K2 + 2�2�2

4�2 − �0�
+ Jm�G�Jp���sin�kwz�2m + p − 1�

− k

0

z

dz
2 + K2 + 2�2�2

4�2 − �0� , �8�

where G=kK2 /8kw�2 and �=kK� /�kw.
We can then collect the terms that have the same phase

nkwz and changing the summation indexes, we get

sin 	+ + sin 	− = �
n=−�

�

�
m=−�

�


Jm�G��J2m+n+1���

+ J2m+n−1�����sin�kwzn

− k

0

z

dz
2 + K2 + 2�2�2

4�2 − �0� . �9�

For a small angle between the electron beam and the laser
propagating directions ��
1 or �
�kw /kK�, we can expand
the Bessel function for small arguments and Eq. �9� can be
approximated by

sin 	+ + sin 	− = �
n=−�

�

JJn
*sin�kwzn − k


0

z

dz

�
2 + K2 + 2�2�2

4�2 − �0� , �10�

where

JJn
*�− ��n−1�/2�J�n−1�/2�G� − J�n+1�/2�G�� for n odd

=�− 1��h+1�/2��J�n−2�/2�G� − J�n+2�/2�G�� for n even.

�11�

Efficient energy exchange can occur only for those terms
in the sum for which the argument of the sine function 	
+ �n−1�kwz is slowly varying with 	=kwz−k�0

zdz��2
+K2� /4�2�−�0. The accelerator can be designed in such a
way that only one term of all those appearing in the summa-
tion in Eq. �10� is important because of its slow variation
along the accelerator. For example in the case in which the
n=1 term is relevant, we recover the usual fundamental
IFEL accelerator equations

d�

dz
=

kKlK

2�
JJ sin 	 , �12a�

d	

dz
= kw − k

1 + K2/2

2�2 , �12b�

where JJ= �J0�G�−J1�G�� and G�K2 / �4+2K2�.

This case corresponds to demanding that the derivative of
the ponderomotive phase 	 vanishes, that is

kw − k0

1 +
K2

2

2�r
2 = 0, �13�

where k0=�0 /c is the fundamental resonant wave number.
At a closer look, this is merely an equivalent way of writing
the condition �1� for n=1.

If we now consider the terms with n�1 we have

d�

dz
=

kKlK

2�
�

n

JJn sin�	 + kwz�n − 1�� , �14a�

d	

dz
= kw − k

1 + K2/2 + �2�2

2�2 , �14b�

where JJn are the coupling coefficients for the nth harmonic
and are given by

JJn = �
m=−�

+�

Jm�G��J2m+n+1��� + J2m+n−1���� . �15�

It is not surprising, because of the symmetry of the radiation
emission and absorption processes, that these coefficients
have been already derived in the parallel FEL literature by
Colson and Dattoli �18� in the calculation of the power radi-
ated by a relativistic electron beam in the harmonics of the
fundamental wiggler frequency.

To find the terms that have a quasiconstant phase and can
yield a net contribution to the energy change of the particles,
we take the derivative of the argument of the sine function in
Eq. �14a�

d

dz
�	 + kwz�n − 1�� = nkw − k

1 +
K2

2

2�2 = 0. �16�

Maintaining the same undulator parameter and electron beam
energy, all the electromagnetic waves with frequency �
=n�0 can efficiently exchange energy with the electron
beam.

In Fig. 1 we show the calculated coupling coefficients for

FIG. 1. �Color online� Coupling coefficients JJn for n=1,3 ,5 vs
K.
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the odd harmonics as a function of K for a planar undulator.
In the next section we will discuss the mechanism of cou-
pling with the even harmonics.

For very small K �undulator magnet� the first harmonic
IFEL interaction is dominant. For larger values of K the other
coefficients grow to finite values and significant energy ex-
change can happen via higher harmonic IFEL interaction.

III. EVEN-HARMONIC COUPLING

It is known that the on-axis spectral content of the planar
undulator radiation presents peaks only at the odd harmonics.
The even harmonics, in fact, are suppressed by the symmetry
of the radiation emitting source. Only off-axis, the even har-
monic radiation is present.

Correspondingly, in the IFEL interaction, when the angle
� between the particles and the plane wave tends to zero, the
strength of the interaction between the relativistic electrons
and the even-harmonics radiation also vanishes. Mathemati-
cally, this can be stated as

lim
�→0

JJn�G,�� = 0 for n even. �17�

This can be understood more clearly if one examines the
acceleration of an electron during a single period of oscilla-
tion inside the wiggler �i.e., before period averaging�. In Fig.
2�a� we show the maximum beam energy as a function of
distance along the undulator for the first three harmonic
IFEL interactions. In the simulations, the beam injection en-
ergy has been tuned to the resonant values relative to the
different higher harmonic IFEL interactions, maintaining the
same undulator and laser parameters. Also shown is the wig-
gling beam trajectory �Fig. 2�c��. It is clear that, as could be
deduced by an inspection of Eq. �5�, the energy exchange
occurs in the regions where the electron transverse velocity
is nonvanishing and can couple to the transverse electric field
of the laser �not shown�. When the first harmonic resonance
condition is satisfied the electrons slip back in phase with
respect to the laser one radiation wavelength per undulator
period. In such a way, at the end of each period the phase
relationship is conserved and there is a net acceleration.
When the third harmonic resonance condition is satisfied, the
electrons slip back three laser wavelengths for each undula-
tor period. Also in this case, there can be a net energy gain
for the electrons. When the electrons slip an even number of
periods with respect to the laser wave, though, the energy
gained from the laser field in the first half of the trajectory is
subtracted in the interaction with an equal and opposite field
in the following part of the oscillation period, so that the net
energy gain is null. A similar argument for higher even-
harmonic IFEL interactions also dictates that they vanish due
to the cancellation of acceleration and deceleration over a
period.

In order to obtain finite coupling with the even-
harmonics, it is necessary to find a mechanism which breaks
the symmetry of acceleration and deceleration portions of the
undulator period. In the previous section we discussed one
obvious possibility for such a mechanism. If there is an angle
between the direction of propagation of the laser and the

incoming electron beam, there is a preferred direction for the
electrons to interact with the laser, and the amount of energy
gained in the first half of the oscillation period is not per-
fectly compensated by the energy lost in the other half �see
Fig. 2�b��.

Let us consider a practical example, an electron beam
interacting with an electromagnetic plane wave of wave-
length �=1.06 �m inside an undulator with period �w
=1.5 cm and normalized magnetic amplitude K=3. The fun-
damental resonant energy in this case is �r,1=200. To have a
finite even-harmonic IFEL coupling, we introduce a small
angle � between the electron beam and the laser propagating
directions. Note that the resonant energies are a function of
this crossing angle,

�r,n��� =� �w

2n� − �w�2�1 +
K2

2
	 . �18�

In particular, for the second harmonic IFEL interaction,
when �=2 mrad, we have ��0.6 and the coupling coeffi-
cient is JJ2�0.23, which is small but certainly not negli-

FIG. 2. �Color online� �a� Maximum energy gain �in units of
mc2� for an electron beam interacting with electromagnetic waves at
the first three IFEL resonant frequencies, followed through two wig-
gler periods. �b� Maximum energy gain �in units of mc2� for two
coupling schemes with non-negligible second harmonic IFEL inter-
action. �c� Electron beam trajectory inside the wiggler.
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gible when compared to the fundamental coupling JJ1
=0.73.

With the help of the three-dimensional simulation code
that we will describe more in detail in the next section, we
have verified the coupling coefficient analytical estimates. In
Fig. 3, the maximum energy gain for electrons injected in an
undulator tuned on the second harmonic IFEL resonance ��
=�r,2���� is shown as a function of the crossing angle �. The
laser intensity in these simulations is 3�1013 W/cm2. Note
that the maximum energy gain corresponds to the height of
the separatrix in the longitudinal phase space. This can be
written in terms of the relevant parameters of the IFEL inter-
action as �3�

��max

�
=�2KlKJJn

1 +
K2

2

. �19�

It is thus proportional to the square root of the coupling
coefficient. The simulation results �dots� agree quite well
with the theoretical prediction �line�.

It is instructive to see how the coupling coefficient for the
even harmonics depends on the value of the crossing angle �.
In Fig. 4 we show JJn with n=2 evaluated as a function of �
for two different values of K. The first thing to notice is that
the coupling can be significant �up to 0.7�. A second relevant
observation derived from Fig. 4 is that for a stronger undu-
lator �larger K� coupling to harmonics occurs for a smaller
value of the crossing angle �. This is in general true for all
the coupling coefficients as is seen also in Fig. 1. Coupling to
higher harmonic is favored by a stronger �larger K� undula-
tor.

The symmetry that suppresses the even-harmonic interac-
tion can be also broken when we consider the interaction of
the electrons with a laser mode having odd symmetry in the
oscillation plane, for example, a Hermite-Gaussian TEM10
mode. In this case, when an even harmonic resonance con-
dition is satisfied, the electrons can experience a net gain
energy because the laser field changes sign crossing the axis
�see Fig. 2�b��. This is the inverse counterpart of the well-
known fact that the even-harmonic radiation emitted by one
electron traveling through an undulator presents an odd sym-
metry profile in the wiggling plane �19�.

The electric field component of a Hermite-Gaussian laser
mode can be written as �20�

Emn

E0
=

w0

w�z�
Hm� �2x

w�z�
	Hn� �2y

w�z�
	e−�x2+y2�/w�z�2

cos �mn,

�20�

where the spot size evolution is

w�z� = w0�1 + � z − zw

zr
	2

, �21�

and the phase is given by

�mn = kz +
x2 + y2

w�z�2

z

zr
− �m + n + 1�arctan� z

zr
	 . �22�

Let us consider a mode that has an odd symmetry in the
oscillation plane, the TEM10 mode, where H0=1 and H1�x�
=2x.

Substituting the mathematical form for this mode into the
expression for the rate of energy exchange, at first order in
the transverse displacement from the axis, we obtain �assum-
ing �=0�

d�

dz
=

kKl�z�K
2�

K�2

kw�w�z�
sin�2kwz�sin�kz − �t� . �23�

By the use of the trigonometric identities, Eq. �6� for the time
t, and the Bessel function expansion �7� we can rewrite Eq.
�23� as

d�

dz
=

kKl�z�K
2�

�
even n

JJn
* sin�	 + kwz�n − 1�� , �24�

with JJn
* given by the same expression �for the even n� as

Eq. �11�, where now

FIG. 3. �Color online� Maximum energy gain �in units of mc2�
for second harmonic IFEL interaction vs input angle.

FIG. 4. �Color online� Coupling coefficient for second harmonic
IFEL interaction vs �.
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� =
K�2

kw�w�z�
. �25�

The parameter � is the ratio between the transverse wiggling
amplitude of the electron beam to the laser beam size �19�.
Note that in this case it is not physically relevant to extrapo-
late this result for ��1, since in this case the electrons
would oscillate out of the region where the electromagnetic
field is present.

Again, we consider a reference case with an electron
beam with energy E=72 MeV �tuned at the second harmonic
IFEL resonance� interacting with a TEM10 laser mode of
wavelength �=1.06 �m and power P=100 GW, inside an
undulator with period �w=1.5 cm and normalized magnetic
field amplitude K=3. For a Hermite-Gaussian modal param-
eter w=130 �m, from Eq. �25� we obtain �=0.56 and JJ2
=0.208.

The analytical estimates are benchmarked against the re-
sults from the three-dimensional simulations. In Fig. 5 we
show the maximum energy of the electrons as a function of
the spot size parameter w of the TEM10 mode. For small spot
sizes w, we observe some differences in the maximum en-
ergy gain between the simulation results and the value cal-
culated from the analytical estimate of the coupling coeffi-
cient. These discrepancies are due to the fact that when the
Rayleigh range is very short, the stable ponderomotive
bucket is disrupted by the sharp Guoy phase shift experi-
enced by the laser mode going through the focus �21�. In
such cases the maximum energy gain no longer corresponds
to the ponderomotive bucket height. In fact, the bucket
height itself is not a valid concept in this scenario, as the
parameters of the Hamiltonian describing the interaction
change too quickly.

Generally the coupling to the even harmonics is also non-
zero whenever the electrons sample a gradient of the electro-
magnetic wave intensity during the oscillation around the
axis and the symmetry is broken. This is the case, for ex-
ample, when there is a transverse offset of the beams trajec-
tories or hot spots in the electromagnetic transverse profile
are present. These forms of coupling are to be avoided, how-
ever, because they mix horizontal and longitudinal phase

spaces and introduce unwanted correlations that are difficult
to eliminate afterwards.

IV. SIMULATIONS

In order to model the IFEL interaction we employed the
TREDI simulation code �22�. The code pushes the particles
using the Lorentz equation of motion with a fourth order
Runge-Kutta integration method in a three-dimensional Car-
tesian reference frame under the influence of arbitrary exter-
nal fields. In its IFEL version �21�, it is used to simulate the
motion of the electrons in the combined field of an undulator
magnet, represented with a three-dimensional magnetic field
map and a laser wave, given by an analytical expression
representing the sum of Hermite-Gaussian modes.

The code is self-consistent since it computes the electron
self-fields based on the Lienard-Wiechert based formalism.
Calculating both the velocity and the radiation components
of the electromagnetic fields generated by each particle, the
code takes into account the important collective effects of the
space charge and of coherent radiation emission on the elec-
tron dynamics. Estimates of these effects can be also found
in the literature �23,24�. For a higher harmonic IFEL inter-
action in particular it is necessary to keep in mind that the
ponderomotive potential amplitude is reduced with respect to
the fundamental IFEL interaction because of a smaller higher
harmonic coupling coefficient. This in practice reduces the
amount of charge in one ponderomotive bucket before the
collective effect starts to make a significant contribution to
the longitudinal electron motion. For example, in the refer-
ence cases discussed in the previous section with a driving
laser of wavelength �=1.06 �m, we found that the collective
effects for the second harmonic interaction are negligible
provided that the peak electron current is less than 0.5 kA, or
equivalently that the amount of charge in one microbunch is
less than 0.1 pC. In what follows we assume a beam current
low enough that both space charge and coherent radiation
emission effects are negligible. Because of this, the CPU-

FIG. 5. �Color online� Maximum energy gain �in units of mc2�
for second harmonic IFEL interaction vs spot size of TEM10 mode. FIG. 6. �Color online� Maximum energy gain �in units of mc2�

of particles injected in a IFEL accelerator at different energies. The
vertical arrows indicate the higher harmonic IFEL resonant energies
�r,n with n=1,2 ,3.
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time-intensive Lienard-Wiechert calculation is turned off in
the TREDI simulations.

Since the code solves the Lorentz equations and it does
not suffer from any approximation due to the period-
averaging of the equations, we can check the analytical cal-
culations of the IFEL coupling coefficients against the nu-
merical solution for the electron motion. In Fig. 6 the energy
gain of electrons with different initial energies, injected with
a small angle �=1 mrad inside an undulator with a 1.5 cm
period and a normalized magnetic amplitude K=3 interact-
ing with an electromagnetic wave of wavelength �
=1.06 �m and intensity 1013 W/cm2, is displayed.

Multiple peaks near the energies corresponding to the dif-
ferent higher harmonic IFEL interactions �vertical arrows�
are observed in these simulations. The peaks correspond to
the regions where the interaction is stronger and an analysis
of the longitudinal phase spaces for the region of injection
energies around the peaks shows the existence of stable pon-
deromotive buckets. Note that the maximum energy gain, as
expected, reaches a larger value when the electrons are in-
jected with energy slightly below the resonant energy value.
In this case, in fact, the particles rotate in the longitudinal
phase space from the bottom of the ponderomotive bucket to
the top and gain almost twice as much energy. The amount of
energy gain of the electrons observed in the three-
dimensional simulations corresponds well to the height of
the ponderomotive buckets that can be calculated from Eq.
�19� using the coupling coefficients given in Eq. �15�.

V. IFEL MICROBUNCHER

Keeping in mind the possibility of the higher harmonics
IFEL interaction, we next turn our attention to the problem of
designing an IFEL buncher for a given laser wavelength and
electron beam energy. Such a device is used, for example, in
advanced accelerators in order to decrease the final energy
spread of a short wavelength high gradient accelerator, in-
jecting a phase-locked train of microbunches with the same
periodicity of the accelerating wave �6,9,10�. The same de-
vice finds also applications in light sources laboratories, as
the modulator section in FEL seeding experiments. The seed
radiation in this scheme interacts with the relativistic elec-
trons in a section of the undulator and imparts an energy
modulation on the electron beam that a subsequent disper-
sive section turns into spatial microbunching �8�.

An IFEL buncher undulator and a FEL modulator section
are usually tuned so that the radiation wavelength corre-
sponds to the fundamental resonant frequency of the undula-
tor. On the other hand, the energy of the electron beam is
normally constrained by the available radiofrequency accel-
erator. Building an undulator with the parameters required to
match the fundamental resonant frequency to the laser wave-
length available can often be an unfeasible task, especially
for lower beam energies. It is in these situations that the use
of the higher harmonic IFEL interaction to couple the elec-
trons and the photons can be very effective.

Another important and related point is that coupling to a
higher harmonic electromagnetic wave means that the nor-
malized amplitude K of the IFEL undulator can be larger.

Assuming K2 /2�1 and satisfying the resonant condition �1�,
when we couple a beam of fixed energy and the laser through
the nth harmonic interaction, K can be larger by a factor �n.
The important parameters of the IFEL interaction, such as
the synchrotron frequency and the height of the ponderomo-
tive bucket depend on the square root of the coupling
strength KJJn�K� �3�. A higher coupling strength implies a
higher frequency of the longitudinal phase space rotation
which makes the IFEL a stronger longitudinal lens.

We show in Fig. 7 the coupling strength KJJn�K� as a
function of the harmonic number for the test case with K
=3, �w=1.5 cm, �r,1=200, and �=2 mrad. The coupling de-
creases with the harmonic number n so that the fundamental
coupling is always more efficient, but because of its slow
dependency, there can be situations where coupling on a
higher harmonic has real advantages. In particular, the choice
is dependent on the spectrum of the electromagnetic power
sources available, since the total IFEL interaction strength
depends also on the input driving power �as Kl�, and a
smaller coupling strength is easily compensated by a higher
level of input power.

In an FEL seeding scenario, the possibility offered by
harmonic seeding—seeding with a harmonic of the undulator
resonant frequency—can be an interesting shortcut towards
shorter wavelength radiation produced with relatively low
energy accelerators. One scheme considered for FEL seeding
is to use the higher harmonics produced when focusing an
intense laser beam on a gas target �25�. The output radiation
has a spectrum with peaks at the odd harmonics of the input
radiation. It is then relatively easy, by selecting a particular
component of the frequency spectrum, to switch to a shorter
wavelength of the seed and of the electron beam mi-
crobunches periodicity, without changing the beam energy
and/or undulator parameters.

Another interesting possibility that we can analyze in the
framework of the higher harmonic IFEL is to drive the IFEL
with many different harmonics at the same time to obtain
shorter microbunches. It is known in fact, that the shortest
microbunch length achievable with an IFEL buncher is lim-
ited by the nonlinearities of the IFEL longitudinal lens �26�.
The cosinelike ponderomotive potential characterizing the
IFEL dynamics effectively gives rise to longitudinal emit-

FIG. 7. �Color online� Coupling strength K JJn�K� vs harmonic
number n.
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tance growth that limits the microbunch length to about 1 /10
of the laser wavelength. If the IFEL buncher is used only to
impart an energy modulation on the beam that a magnetic
chicane dispersive section subsequently converts into a den-
sity modulation, then the IFEL aberrations can be traded
against the aberrations of the �more easily fabricated� chi-
cane, potentially leading to shorter bunches. In the IFEL-
only case, which is characterized by a full microbunched
beam already at the end of the undulator, an aberration-free
dynamics would correspond to an equation of motion with
linear forces �corresponding to a parabolic potential�, where
the final microbunch length is determined only by the initial
longitudinal emittance, which is preserved in the interaction.

We can consider the use of different laser frequencies to
linearize the dynamical evolution of the electron longitudinal
phase space. In particular, a parabolic function can be Fou-
rier expanded as

Videal�	� = 1 −
	2

2
=

a0

2
+ �

n=1

+�

an cos�n	� , �26�

with the coefficients an being the Fourier components of the
parabolic potential. Using a multicolor driver for the IFEL
interaction with ratios of the harmonics an / JJn we may ob-
tain a longitudinal phase space evolution that is a better ap-
proximation to the ideal case and consequently obtain shorter
bunches out of the IFEL interaction.

In Fig. 8 we show the longitudinal phase spaces for an
IFEL interaction driven with five harmonics with optimal
ratios of intensities �gray�, and for a case where only the
fundamental frequency is present �black�. A figure of merit
for the microbunching is the bunching factor defined as B
=�ei�i /N, where N is the number of particles in the beam.
This quantity is equal to 0 for a uniformly distributed beam
and tends to 1 for a perfectly microbunched beam and it
represents the coherence enhancement factor for the radia-
tion emitted by the beam at the microbunching wavelength.
In the case where only the fundamental frequency drives the
IFEL, the bunching parameter reaches a value of 0.5. In the
multicolor IFEL case, the longitudinal phase space appears

more linear, and the bunching parameter correspondingly
goes up to 0.75. The application requirements of the mi-
crobunched electron beam should determine if the improve-
ments achieved with the multicolor IFEL buncher are worth
the experimental complexity of injecting into the undulator
multiple frequency components. We note that the creation of
harmonics of intense, near-optical wavelength lasers is ac-
complished straightforwardly through use of harmonic con-
version in crystalline materials �27�. For shorter wave-
lengths, one may consider gas target-based conversion, as
mentioned above.

VI. STRONGLY TAPERED UNDULATORS AND
COMPARISON WITH EXPERIMENTAL RESULTS

Let us consider now a final situation where the higher
harmonic IFEL interaction is relevant, a high-gradient high-
gain IFEL accelerator module. For this device, the undulator
magnet is strongly tapered to maintain the resonance condi-
tion along the interaction region with the accelerating par-
ticles. The tapering of the undulator defines multiple reso-
nant curves, one for each harmonic number. If there is
sufficient laser intensity, electrons can be trapped in each of
the stable longitudinal phase space regions and accelerated
along the corresponding resonant curve. To maximize the
energy exchange, the undulator is usually built in such a way
that the design trajectory corresponds to the fundamental
resonant energy.

In an ideal IFEL accelerator, the injected beam is mi-
crobunched with the periodicity of the laser wavelength and
all the particles are trapped inside the ponderomotive bucket
separatrix. In this case the energy spectrum of the beam re-
mains relatively narrow and peaked around the design reso-
nant energy. Practically, there are a number of reasons to find
particles along the undulator at energies much different than
the design resonant energy. In particular, even though quite
high trapping efficiency has been experimentally demon-
strated, it is effectively impossible to inject a train of
bunched electrons phase-locked with the driving laser with
100% trapping efficiency. Consequently some or most of the
injected particles �depending on the initial capturing section�
do not get trapped inside the design resonant ponderomotive
bucket. Moreover, along the interaction region, trapped
eletrons can become detrapped because of trajectory mis-
alignment, or because of a mismatch between the design ta-
pering and the available ponderomotive gradient. All the
nontrapped, weakly interacting electrons propagate in the un-
dulator with energies smaller than the design resonant value,
until at some point along the interaction region their energy
coincides with the monotonically increasing energy associ-
ated with a higher harmonic resonant curve. At this point
significant energy exchange between the particles and the
laser can occur again via the higher harmonic IFEL interac-
tion.

This was in fact the situation of the Neptune IFEL experi-
ment. For a more detailed description of the experiment, we
refer to �7�. In this high-gradient high-gain experiment, the
50 cm long undulator was strongly tapered both in period
and amplitude to accept electrons initially at 14.5 MeV and

FIG. 8. Longitudinal phase space and bunching factor improve-
ments for a multicolor-driven IFEL.
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accelerate them to over 50 MeV. In Fig. 9 we show the first
three higher harmonic resonant energies along the undulator.

Because of a mismatch between the design and real laser
intensity distribution along the undulator, the device had to
be operated with the laser focus moved upstream of its nomi-
nal position at the center of the undulator. In Fig. 10 we
show two measured energy spectra �histograms in Fig. 10�
obtained with the laser focus at two different positions, re-
spectively 5 and 2 cm upstream of the undulator midpoint.
The laser power for these shots was 350 and 400 GW, re-
spectively. The IFEL energy spectra are reconstructed from
single-shot calibrated images of the fluorescent screen lo-
cated at the exit of a wide band spectrometer. The dispersion
�=�x /�p is not constant along this screen, and it grows
from 1 cm/MeV for the lower energies end to 4 cm/MeV
for higher energies. The resolution is sufficient to fully dis-

tinguish different peaks in the high energy part of the spectra.
The camera noise level sets a minimum detectable charge
density. Converting this threshold with the use of the screen
calibration into the graph units, we obtain a minimum detec-
tion threshold below 10 counts.

When using the experimental parameters, TREDI simula-
tions �lines in Fig. 10� agree quite well with the measured
energy spectra, especially in reproducing the peaked struc-
ture appearing in the high energy side. Experimentally, the
relative amplitudes of the peaks oscillated shot-to-shot
changing with the fluctuating input laser power, but the po-
sition of the peak centroids was very reproducible, ruling out
the possibility of being caused by microstructures present in
the electron beam or in the laser beam.

To have an insight on this, we can follow the evolution of
the maximum-energy particle in the simulations and obtain
the solid curves shown in Fig. 9�b�. A few cm after the un-
dulator center, the particles fall off the resonance curve �first
harmonic resonance, n=1 dashed curve in Fig. 9�a�� because
the driving laser intensity has decreased below the trapping
threshold. Some distance later, their energy is a factor of �2
less than the first harmonic resonant energy at that point of
the undulator, and therefore the electrons are resonant with
the n=2 dotted curve and can exchange energy with the
10.6 �m photons via the second harmonic IFEL interaction.
Later on, the electrons have energies such that energy ex-
change with the laser can start even via the stronger third
harmonic coupling �n=3 dash-dotted curve�. In the Neptune
IFEL case, though, the tapering of the undulator is designed
to match the coupling and the intensity of the first harmonic,
so the particles cannot be accelerated along the higher har-
monic resonant curves because of the lack of a stable accel-
erating region in the phase space. A small energy exchange
takes place, enough to modulate the final energy distribution
and this corresponds to the peaked microstructure observed
reproducibly in the experimental spectrum.

Different factors contribute to the second harmonic cou-
pling observed in the Neptune IFEL experiment. This experi-
ment was characterized by the fact that the laser beam was
coupled in the undulator with a short Rayleigh range com-
pared to the undulator length. Thus three-dimensional effects
dominated the dynamics of the IFEL interaction. In particu-
lar, the laser waves have an intrinsically large angular spread
characterized by the diffraction angle. Unavoidable angular
misalignments, as well as trajectory offsets of the electron
and the laser beams, possibly contributed to the second har-
monic interaction coefficient. Moreover, the laser mode used
in the experiment is not a purely Gaussian TEM00 mode, as it
was assumed in the design and in the simulations. After pass-
ing in the final amplifier, the transverse profile of the CO2
pulse experimentally shows a supersaturated Gaussian pro-
file, with a content of different higher order Hermite-
Gaussian modes. The higher harmonic interaction is weak,
but the energy exchange is significant because the laser is
still somewhat intense ��1010 W/cm2� and the wiggling pa-
rameter K is large at the end of the undulator.

It is interesting to compare two different experimental
cases. In the 30 MeV case �Fig. 10�a��, the structure of the
peaks is more pronounced. In this case, in fact, the particles
fall off the first resonant curve at z=25 cm �see solid curves

FIG. 9. �Color online� Resonant energies for the first three har-
monic IFEL interactions along the Neptune IFEL undulator, and
evolution of the simulated electron beam maximum energy for two
different laser focus positions.

FIG. 10. �Color online� Measured and simulated output energy
spectrums for the Neptune IFEL accelerator experiment for two
different laser focus positions. The simulated spectra have been
normalized to the same area as the measured ones.
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in Fig. 9� and the laser wave can exchange energy with the
electrons via the second and third harmonic interaction for a
longer distance thus imparting a stronger energy modulation
on the phase space. In the 35 MeV shot case �Fig. 10�b��, the
higher harmonic interaction is turned on only in the last
10–15 cm of the undulator in a region where the laser inten-
sity is weaker, so the induced energy modulation is reduced.

VII. CONCLUSIONS

We have expanded the theoretical description of the IFEL
interaction, including one aspect often overlooked in previ-
ous models, the interaction inside an undulator magnet of an
electron beam and a laser wave of a frequency that is a
higher harmonic of the undulator fundamental resonant fre-
quency. We have calculated the IFEL coupling coefficients
and explored the possible configurations where this coupling
has the strongest effect. The suppression of the even har-
monic coupling is a reflection of the fact that the on-axis
spontaneous radiation spectrum of a planar undulator does
not contain even harmonics of the undulator fundamental
resonant frequency. A nonvanishing even-harmonic coupling

can be achieved when the transverse symmetry of the IFEL
interaction is broken, allowing net acceleration or decelera-
tion to occur over an undulator period at such harmonics.

In some cases, the strength of the higher harmonic IFEL
coupling can be comparable to the fundamental coupling and
efficient energy exchange can take place in higher harmoni-
cally tuned undulators. In general, this offers a new degree of
freedom when designing systems capable of coupling high
power laser beams and relativistic electron beams. The Nep-
tune IFEL high-gain high-gradient experiment offers an ex-
perimental example where the higher harmonic IFEL inter-
action played an important role and produced observable
effects on the measured electron beam energy spectrum.
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