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String ratchets: ac driven asymmetric kinks
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We simulated numerically the time evolution of a one-kink bearing, damped elastic string sitting on noise-
less periodic substrates of two types:~I! asymmetric, time independent,~II ! symmetric, periodically deform-
able. An asymmetric kink subjected to an ac drive is shown to drift steadily with finite average speed inde-
pendent of its initial kinetic conditions. In the overdamped regime the resulting net kink transport can be
attributed to the rectification of the Brownian motion of a pointlike particle with oscillating mass. For inter-
mediate to low damping completely different features show up, due to the finite size of the objects being
transported; in particular, the kink current hits a maximum for an optimal value of the damping constant,
resonates at the kink internal-mode frequency and, finally, reverses sign within a certain range of the drive
parameters.
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I. INTRODUCTION

A transport mechanism of potential relevance both to
plied physics and nanobiology is the so-called ratchet ef
@1#. In its simplest instance a ratchet device can be ass
lated to a Brownian particle with coordinatex(t) moving in
an asymmetric periodic potentialV(x), with V(x1a)
5V(x), subjected to viscous damping and ac drive~rocked
ratchet @2#!: The natural direction and the intensity of th

ratchet current̂ ẋ& results from a rather intricate interplay o
particle inertia, spatial asymmetry, and time correlation
the forcing terms~including fluctuations when present!. A
similar mechanism is expected to operate also when ins
of a pointlike Brownian particle one considers a fluctuati
~one-dimensional! elastic stringf(x,t) @3# and replaces, ac
cordingly, V(x) with a periodic substrate potentialV@f#,
such thatV@f1a#5V@f#. The kinks and antikinks born by
the string as it connects adjacent substrate valleys ten
glide apart, so that the string center of mass advances e
tively in the natural ratchet direction@4#. In rocked ratchets
noise is required either to aid the escape of the Brown
particles over the potential barriers or to nucleate kin
antikink pairs along the string, directed parallel to the su
strate valleys. In both cases a sufficiently large drive am
tude can activate a net ratchet current even in the absen
fluctuations.

In the present paper we address the ratchet dynamics o
elastic string diffusing on a periodically tilted substrate.
order to catch the essence of the mechanism at work
ignore the spatiotemporal fluctuations responsible for
thermalization of unperturbed string@3#; instead, we impose
that the string always bears at least one kink, that
f(`,t)2f(2`,t)5a. The initial problem is thus reduce
to the question as how each individualdampedkink ~anti-
kink! responds to an external periodic drive. In the case o
symmetric substrate (V@2f#5V@f#, like in the sine-
Gordon theory! and a sinusoidal tilt, it has been noticed@5#
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that an isolatedfrictionlesskink may travel in either direc-
tion depending on the tilt parameters and, most importan
on its initial conditions~momentum modulus and phase!.
Such an effect follows from the spontaneoussymmetry
breaking induced by the external tilt; indeed, on averagi
over all initial conditions the kink current vanishes, as o
would expect on the ground of simple symmetry argumen
Furthermore, adding damping, no matter how small, ma
this effect vanish completely.

As stated in the earlier ratchet literature@1#, the onset of a
kink ratchet current requires a sufficient amount of asymm
try in the system. In this paper we address two classe
asymmetric kink dynamics:~I! Ratchet Potential (RP): V@f#
is intrinsically asymmetric and time independent; the kink
asymmetric also in the absence of a tilt~unperturbed kink!
due to the asymmetry of the barrier separating any two
jacent potential valleys;~II ! Deformable Potentials (DP):
V@f# is symmetric at all times; its shape is modulated so t
its valleys broaden and shrink~with constant height! periodi-
cally in time @6#; the tilt is phase locked to the substra
modulation, thus providing for an effective cycle asymmet
To avoid further complications, we assume that the strings
both classes bear one species of kink, only; this implies
all V@f# valleys are degenerate and have the same curva
Entropic rectification effects like those described in Re
@7,8# are thus ruled out.

The main conclusion of our study is that strings of clas
I and II possess sufficient asymmetric coupling to the
drive to sustain steady kink transport even in the presenc
finite damping. The rather complicated dependence of
kink ratchet current on the damping constant and the
parameters makes a detailed analysis of the system at
worthy our extensive numerical simulation effort reported
here. Our presentation is organized as follows. In Sec. II
introduce an example for each class of asymmetric stri
RP and DP; we then estimate the effect of a small perio
tilt on the relevant kink dynamics in the adiabatic limit, thu
explaining why we expect a finite kink current. In Sec. III w
©2002 The American Physical Society03-1
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present the outcome of our simulation work and focus on
kink current dependence on the damping constant and th
frequency; intriguing effects like non-Smoluchowski ove
damped laws, optimal ratchet damping and parametric re
nant current inversions are thus revealed. Finally, in Sec
we outline a summary of the results and conclusions, as
as an outlook of potential extensions of this work.

II. ASYMMETRIC SUBSTRATES

A damped elastic stringf(x,t) moving on a periodic sub
strate is described by the classical field equation@9–11#

f tt2c0
2fxx1v0

2V8@f#52af t1F~ t !. ~1!

Here,c0 andv0 are the parameters of the unperturbed str
equation; the potentialV@f# is periodic in f, i.e., V@f
1a#5V@f#, and its amplitude was set to one following a
appropriate choice ofv0; the potential minima~valleys! are
located atf50~moda) and separated by barriers centered
f5f0~mod a) with 0,f0<a depending on the degree o
asymmetry of the substrate;a denotes the string dampin
constant and the periodic tiltF(t) is taken sinusoidal, i.e.
F(t)5F0 sin(Vt), for simplicity.

The unperturbed string@F(t)50,a50# bears both ex-
tended~phonons! and localized solutions~solitons! @9–11#.
Localized solutions can be conveniently approximated to
ear superpositions of moving kinksf1

(0) and antikinksf2
(0) ,

x2X~ t !56S 12
u2

c0
2D 1/2 c0

v0
E

f0

f6
(0)

„x2X(t)… df

A2V@f#
, ~2!

provided that the separation between their centers of m
X(t)5x01ut(x01 and u are integration constants! is very
large compared with their sizec0 /vmin with vmin

2

5v0
2V 9 @0# ~dilute gas approximation!. As anticipated in Sec

I we ignore the kink-antikink pair nucleation mechanis
where thermal fluctuations would play a central role@3#, and
focus on the response of a single preexisting~geometrical!
kink f1

(0) subjected to the perturbation on the right-hand s
of Eq. ~1!, i.e., in the absence of noise. Note that the ratc
current off2

(0) is necessarily opposite to that off1
(0) ; more-

over, the string center of mass advances by one full stepa to
the right as a kink travels all the way fromX5` to X5
2` ~or vice versa for an antikink!.

A static (u50) perturbed kinkf1(x,t) can be regarded
as an extended quasiparticle@12# of radiusc0 /vmin and mass

M ~ t !5E
2`

`

@f1~x,t !#x
2dx ~3!

~throughout the present paper@ . . . #x denotes a spatial de
rivative; here thet dependence accounts for the kink sha
modulation!. The time dependence ofM (t) is induced by the
periodic tilt F(t); however, it takes an intrinsic asymmetry
a tilt-dependent deformation of the substratev0

2V@f# for the
kink mass modulation to cause a rectification of the k
dynamics as shown in the following section.
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A. Ratchet potentials

The RP model used in our simulations is the benchm
potential of the current literature on rocked ratchets@1,4#,
namely,

V@f#5k sinF2p

a
~f2f̄ !G1

k

4
sinF4p

a
~f2f̄ !G , ~4!

with k215(31A3)(A3/2)1/2a/8p and f̄5(a/2p)
3cos21@(211A3)/2#. Substrate~4! can be regarded as th
most straightforward variation of the sine-Gordon~SG!
theory that allows for spatial anisotropy. Such an occurre
has been considered, for instance, in the context of dislo
tion theory@4,13# and long Josephson junction array desi
@14,15#.

In Fig. 1~a! and throughout the present paper we sea
52p. The asymmetry of the substrate~4! is apparent as the
potential barriers are located atf0~mod 2p) with f052f̄
and 0,f0,p. The resulting unperturbed kink solutionf1

(0)

is stable under small perturbations due to the degenerac
the V@f# minima; its massM0 is a constant inverse propo
tional to the kink sizec0 /vmin .

In the presence of the tiltF(t), the minima of the effec-
tive potentialv0

2V@f#2F(t)f shift back and forth around
their unperturbed position 0~mod 2p); as a consequence, th
curvature of the tilted valleysvmin

2 (t) oscillates in time with
amplitude proportional toF0. An explicit calculation carried
out in the adiabatic limitV→0 and for small tilt amplitudes
F0!v0 yields

vmin
2 ~ t !5vmin

2 F11S 12
1

A3
D F0

v0
2k

1•••G , ~5!

FIG. 1. Substrates~a! RP of Eq.~4!; ~b! DP of Eq. ~7! in the
absence of tilt,F050. In the snapshots of~b! the deformation pa-
rameters(t), Eq. ~11!, has constant amplitudes050.5 and decreas
ing phase, corresponding tos50.5,0,20.5, respectively. Note tha
the natural ratchet direction of the double-sine potential plotted
~a! is positive~see text!.
3-2
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with vmin
2 5v0

2k(3A3/2)1/2. Accordingly, being M (t)
}vmin(t), one sets the maximum amplitude of the kink ma
oscillation to

dM

M0
5

1

4 SA3

2D 1/2F0

v0
2 . ~6!

@Notice that for a regular SG potential the time modulati
of vmin

2 (t) would be quadratic inF(t).# Our derivation of Eq.
~6! clearly hints at a coupling mechanism between kink c
ter of mass and kink internal mode, as invoked in Ref.@15#.

B. Deformable potentials

The class of the soliton-bearing DP strings was introdu
by Peyrard and Remoissenet@6# as an improved model o
real one-dimensional atomic chains where typical poten
wells and barriers have different curvature, as opposed to
oversimplified Frenkel-Kontorova~or discrete SG! model
@11#, which is invariant under ‘‘inversion,’’ i.e.,V@f1a/2#
52V@f#. Following Ref.@6# with minor notation changes
we define@Fig. 1~b!#:

V@f;s#5
1

2 F ~11s!2~12cosf!

~12s!212s~12cosf!
21G , ~7!

with usu,1 and string constanta52p. The curvature of the
substrate valleys and barriers are, respectively,

vmin
2 ~s!5v0

2V9@0#5
v0

2

2 S 11s

12sD
2

~8!

andvmax
2 (s)5v0

2uV 9 @p#u5vmin
2 (2s). Note that the DP~7! co-

incides with a SG potential fors50 and isf→2f sym-
metric for any allowed value ofs.

The mass of the DP kinkf1(x;s) has been derived in th
original papers@6#; in our notation

M ~s!

M0
5

m~s!

Aum~s!221u
H tanh21Aum~s!221u, s<0,

tan21Aum~s!221u, s>0,
~9!

where m(s)[vmin(s)/vmin , vmin[vmin(0) and M0 is the
mass of the SG kinkf1

(0)(x)[f1(x;0), i.e., M05M (0)
58vmin /c0. On assuming thatusu!1 the cumbersome ex
pression~9! can be approximated to

M ~s!5M0S 11
2

3
s1••• D . ~10!

In our simulations—we depart here from the modelization
Ref. @6#—it was assumed that the deformation parametes
oscillates in time,s→s(t), with amplitudes0,1 and angular
frequencyV. Moreover, the relative phase of the potent
modulations(t) and the external tiltF(t) was set arbitrarily
in such a way that, whenV@f;t#[V@f;s(t)# is tilted to the
right @F(t).0#, its valleys~barriers! get narrower~broader!
and vive versa, namely,

s~ t !5s0 sin~Vt !, F~ t !5F0 sin~Vt !. ~11!
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Accordingly, fors0!1 the kink massM (t)5M „s(t)… oscil-
lates around its unperturbed valueM0 with maximal ampli-
tudedM /M052s0/3.

Of course thes-F phase may be changed thus altering t
kink ratchet current in a predictable fashion~see, for in-
stance, Sec. III C, bottom!; some of the simulation result
reported in Sec. III for our DP model may depend indeed
the choice~11!, whereas the underlying physical interpret
tion does not. More importantly, one should notice tha
time-dependent DP model may have practical applicatio
for instance, in dislocation theory. Equation~1! is known to
describe the motion of a noiseless linear defect~or disloca-
tion! f gliding on a Peierls-Nabarro substratev0

2V@f# under
the action of an external uniform periodic stress fieldF(t)
@13#. If one assumes that the applied stress can perturb p
odically the lattice substrate, too, then compressions and
latations are likely to affect the curvature of the Peier
Nabarro barriers differently, as suggested in Ref.@6#.

C. Kink ratcheting

We are now in the position to argue why we expec
nonvanishing kink ratchet current for both potentials~4! and
~7!. A simple perturbation approach@12,16# valid in theadia-
batic limit V→0, only, leads to state that a single kink~an-
tikink! moving along the elastic string~1! obeys the noiseles
Langevin equation~LE!

ṗ52ap7aF~ t !, ~12!

wherea52p, p5M (t)c0 /A12(u/c0)2 denotes the kinetic
momentum of the kink andu5Ẋ is the velocity of its center
of mass. ForF0!v0 and a@v0 the modulus ofu(t) is
much smaller thanc0 and, therefore, the LE~12! can be
rewritten in nonrelativistic form,p.M (t)u and

M ~ t !Ẍ52aM ~ t !Ẋ7aF~ t !. ~13!

It follows immediately that kinks and antikinks are pulle
apart with stationary speedu(t)57aF(t)/aM (t); in par-
ticular, when the substrate is tilted to the right,F(t).0, the
kinks move to the left with negative velocity and vice vers

In the same parameter regime,F0!v0 , a@v0, and V
→0, the massM (t) of both the RP and DP kinks oscillate
with time according to Eqs.~5!,~6!, and ~10!,~11!, respec-
tively: A kink with a negative velocity, i.e., forF(t).0, is
more massive, or slower, than a kink with positive veloci
i.e., for F(t),0; hence,

ū5^u~ t !&5
1

TV
E

0

TV
u~ t !dt.

aF0

2aM0
2 dM , ~14!

with TV52p/V anddM /M0.0.23(F0 /v0
2) for the RP~4!

anddM /M0.0.67s0 for the DP~7!. In Fig. 2~a! we display
the average ratchet velocityū F0 for a kink of either class: as
predicted in Eq.~14!, ū}F0

b with b51 ~DP! andb52 ~RP!.
We make now an important remark. As mentioned ear

in this section, by pulling the kinks to the right,X(t)→`,
and the antikinks to the left,X(t)→2`, thestring center of
3-3
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mass drifts with negative average velocitŷ̂ ḟ&&,0,
^^•••&& denoting the double average off(x,t) with respect
to time and space. A negative string current is to be expe
for the RP of Fig. 1~a!: On replacingf with x in Eq. ~4! one
obtains the standard double-sine potential of Ref.@2#, which
in the overdamped regime corresponds to a rocked rat
with negative natural direction. The case of the DP in F
1~b! is more intriguing. A particle with coordinatex moving
along the periodic potentialV(x;s), obtained by settingf
→x in Eq. ~7!, and subject to the modulation of Eq.~11!,
would obey the equation of motion

ẍ52a ẋ2V8~x;s!1~s/usu!F0 . ~15!

As V(x;2s)52V(x2p;s), one can easily prove that in th
stationary regime ẋ(t;s)ª2 ẋ(t;2s) „i .e., x(t;s) and
2x(t;2s) obey the same equation of motion…, for any con-
stant value ofs, and therefore, after averaging over an ent
deformation cycle ofs(t), ū5^ẋ„s(t)…&50. Note that this
property of Eq.~15! depends crucially on the choice~11! of
the s2F phase. The observed net string ratchet curr
Š^ḟ&‹Þ0 should remind us that in our DP model asymme
comes into play only because of the finite extension of
ratchetet objects, namely, the kinks and antikinks born by
string.

III. NUMERICAL ANALYSIS

We simulated@17# a one-kinkbearing chain (x→ iDx)

f̈ i2c0
2D2f i1V8@f i #5F2a0ḟ i1z i~ t !, ~16!

with i 51,2, . . . ,N, where Dx51, D2f i5f i 111f i 21
22f i , andV@f# denotes either on-site potential~4! or ~7!.
The chain$f i% is free-end (f05f1 ,fN115fN) with f1

FIG. 2. Kink ratchet velocityū in the overdamped regime:~a!
dependence on the tilt amplitudeF0 at a550; ~b! dependence on
the damping constanta at F050.5. Other simulation parameter
c0550 andV5831023. The asymptotic laws~dashed lines! have
been drawn for the reader’s convenience.
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50 andfN52p to accommodate one kink and long enou
for the moving kink not to experience boundary forces@3#.
Details of the integration code employed in our numeri
study are reported in Refs.@16,17#. Here we limit ourselves
to noticing that, due to the presence of the viscous damp
term 2aḟ t , the kink ratchet velocityū does not depend
appreciably on its initial conditions. This might be an issue
extremely smalla values, where the string dynamics is e
pected to turn chaotic. In such a limit, however, the stri
configuration would be no longer separable into a linear
perposition of stable kinks and antikinks and the present
proach would become untenable~see Sec. III B!.

A. The overdamped regime

The numerical results of Fig. 2~b! already show that in the
limit a→` the kink ratchet velocityū decays likea2(112b)

with b51 ~DP! andb52 ~RP!, as opposed to the standa
Smoluchowski lawb50 applicable to stationary dynamics

A qualitative explanation of such an asymptotic behav
lies beyond the reach of the adiabatic limitV→0 adopted so
far. For small amplitude modulations the kink massM (t)
oscillations are expected to conform to the linear respo
theory, i.e.,

M ~ t !.M01dM ~V!sin@Vt2w~V!#, ~17!

wherew(V→0)501 is a phase lag and

dM ~V!

dM ~0!
;F 1

11~Vt!2Gb

, ~18!

with t[a/vmin
2 anddM (0)[dM given in Eq.~6! for the RP

kink and in Eq.~11! for the DP kink.
The result of Eq.~18! was derived through the following

perturbation argument@9,18#. Let df(x,t)5O(F0) quantify
the amount of deformation the static kinkf1

(0)(x) underwent
because of the perturbationF(t), i.e., f1(x,t)5f1

(0)(x,t)
1df(x,t). On employing definition~3! the perturbed kink
mass reads

M ~ t !.M012E
2`

`

@f1
(0)~x!#x@df~x,t !#xdx

1E
2`

`

@df~x,t !#x
2dx. ~19!

TheO@df# term on the rhs of Eq.~19! is of the same order
as the potential deformation factor 2(v0 /c0)2*(V@f1

(0)#
2V@f1#)dx. Recalling that for thenondeformableRP ~4!
this quantity is O(F0

2) @18#, we conclude that dM
5O(udfub).

In order to estimate the magnitude ofdf one can replace
f in Eq. ~1! with f1

(0)1df and then solve the ensuing pho
non equation@9#

df tt2c0
2dfxx52v0

2V9@f1
(0)~x!#df2adf t1F~ t !.

~20!
3-4
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The kink deformations that contribute the most to the act
value of M (t) are the so-called kink internal mode~s! @15#,
whose characteristic frequency is typically close tovmin . In
the overdamped limit,df tt.0, and forV!v0, one imme-
diately recovers the linear response formu
udf(V)u/udf(0)u;@11(Vt)2#21 and, eventually, Eq.~18!
for dM (V).

Finally, inserting Eq.~18! into the velocity expression
~14! @with dM→dM (V)# leads to the asymptotic power la
ū}a2(112b) that fits the simulation data of Fig. 2~b! for a
@v0

2/V ~or Vt@1).

B. Damping constant dependence

Our analysis of the kink ratchet velocity dependence
the damping constant is summarized in Fig. 3 for a DP s
strate and in Fig. 4 for a RP substrate, respectively. Curve
ū a have been drawn at increasing values of the tilt f
quency in order to highlight a few important properties
kink ratchets:

~i! The ū(t) peak. The curvesū(a) peak for an optimal
valueā of the damping constant. At variance with Ref.@15#!,
we relate this effect to the relativistic nature of the ki
dynamics, as on loweringa the nonrelativistic approxima
tion p.M (t)u is no longer tenable. In the parameter regim
F0!v0 and V→0, but with no restrictions ona, LE ~12!
yields immediately the relativistic version of Eq.~14!,

ū~a!

c0
5K aF~ t !/aM ~ t !c0

A11@aF~ t !/aM ~ t !c0#2L , ~21!

plotted in Fig. 3 for the reader’s convenience. In the ov
damped regimea@vmin , Eq. ~21! tends to the Smolu-
chowski limit ~14!; as a matter of fact, we know from Se
III A that this law only applies forvmin!a!vmin

2 /V, that is
as long as the adiabatic approximationVt!1 holds. In the

FIG. 3. Kink ratchet velocityū vs a ~logarithmic scale! on the
DP substrate~7! for different values of the ac frequencyV. Dashed
curve: adiabatic approximation~21! with M (t) given by Eq.~10!
with s(t) of Eq. ~11!. Other simulation parameters:s050.5, c0

550, andF050.3.
05110
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underdamped regimea!vmin , the kink velocity ū grows
quadratically witha, ū(a)/c0.a2dM (c0 /aM0F0)2; hence,
the appearance of a peak in theū(a) curve at an intermedi-
ate valueā of the damping constant.

~ii ! The ū(a) plateau. The quadratic branch ofū(a) pre-
dicted by Eq.~21! is actually observable only at fairly sma
values of the tilt frequencyV; instead, the curves of Figs.
and 4 approach a plateau asa is decreased below a chara
teristic value of the order ofV.

The explanation of this property touches upon the mec
nism of phonon damping@19,20#, viz. the interplay of dis-
creteness and relativistic effects. At extremely lowa values,
the kink responds to an external tilt by raising the modulus
its speed up close toc0; as a result its effective size, see E
~2!, contracts until it becomes of the order of the discretiz
tion constantDx introduced in Eq.~16!, no matter how large
the static kink size c0 /vmin . At this point the kink starts
radiating phonons, thus dissipating the excess kinetic en
being pumped into it by the external forcing term; as a co
sequence, the kink speed levels off, growing insensitive
any further decrease ofa; this means that fora→0 the
effective dampingaph acting on the moving kink is cause
mostly by phonon radiation, that isaph@a @17#. As phonon
radiation is essentially a resonant process taking place a
bottom of the substrate valleys, we expect the underdam
limit of the phononless law~21! to fail us for a&V @17#, in
agreement with our numerics.

One might wonder why in Figs. 3 and 4 theū(a) plateaus
increase withV. In the limit a→0, the effective kink damp-
ing constant boils down to the phonon damping const
aph ; accordingly, each plateau valueū(0) is expected to res
close to the corresponding ideal valueū(aph), obtained from
Eq. ~21! by replacinga with aph in the absence of phono

FIG. 4. Kink ratchet velocityū vs a ~linear scale! on the RP
substrate~4! for different values of the ac frequencyV. Other simu-
lation parameters:c0550 andF050.3.
3-5
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radiation. Moreover,aph increases withV ~stimulated pho-
non radiation! and so does the relevant kink velocity plate
ū(0), aslong asaph&ā.

One might also argue that the properties ofū(a) due to
discreteness are a mere numerical artifact, as we actu
integrated Eq.~1! instead of Eq.~16! ~namely, the dynamics
of a chain instead of a string@16#!. Although more sophisti-
cated simulation algorithms may be especially devised
eliminate such a difficulty, most of the physical systems
can model by means of an elastic string, are indeed disc
on the microscopic scale@17#, such as like dislocations in
crystals, magnetic flux lines through layered type II sup
conducting films, etc. Therefore, the discreteness effects
ported here have a physical interest of their own, beyond
moot question of their numerical explanation.

~iii ! ū(a) inversions.At higherV values instability effects
start playing an important role. In Fig. 3 for the DP substr
we notice that an abrupt dynamics change occurs arounV

.0.2: When on increasingV the corresponding plateauū(0)
attains the maximum of the idealū(aph) curve~21!, all of a
sudden the actualū(a) peak shifts to highera values. The
same behavior was detected for the RP substrate, too@see
Fig. 4~a!#. In the case of a DP kink we could not increaseV
any further ~over the entirea domain!, as a fast kink-
antikink nucleation phenomenon sets in, thus making us
able to monitor the time evolution of the tagged kink;
other words, kink and antikink become unstable, thus sig
ing a route to the chaotic string dynamics. The RP kink
more stable towards periodic tilting~see Sec. III A! and,
therefore, we did manage to see what happens on increa
V: In the limit a→0, ū(a) drops fast but continuously to
wards negative values, namely, a kink current inversion ta
place whenaph&ā ~not an unusual occurrence in the unde
damped particle rocked ratchets@1,2,21#!. The V depen-
dence ofū(a.0) in the adiabatic regime is shown in th
inset of Fig. 5.

C. Frequency dependence

The dependence of the kink ratchet velocityū on the
modulation frequencyV is also interesting. In Fig. 5 we
display three curvesū(V) for the RP kink in the low damp-
ing regime. Thea values were chosen in order to explore t
V dependence of theū(a) peak of Fig. 4~a!. All curves in
Fig. 5 exhibit a main~positive! resonance peak atV5vb
with vb.0.8vmin ; the peak height increases with decreas
a. At the lowesta value, a secondary~negative! peak shows
up at half the fundamental resonance frequency, i.e., forV
; vb/2. The onset of such a negative peak is clearly rela
to the ū inversion shown in Fig. 4~b!.

The fundamental frequencyvb lends itself to a simple
interpretation in terms of the perturbation Eq.~20!. By means
of standard numerical integration~see also Ref.@15#!, one
can prove that the RP kink admits of one internal mode~or
bound state! whose eigenfrequency coincides right withvb .
In the presence of the periodic kink mass modulationM (t),
Eq. ~17!, such an internal mode gets easily excited, hence
05110
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main resonance peak of Fig. 5. When accounting for hig
order corrections, Eq.~19!, one soon recognizes that th
time-dependent kink profile sustainsnV harmonics of the
drive frequency~with amplitude decreasing with increasin
n); therefore, for sufficiently smalla values, the kink defor-
mationdf ~viz. the kink mass! may appear to resonate und
the parametric condition 2V;vb @22#. In the limit of van-
ishingly small ac frequencies the ratchet current turns p
tive again as explained in item~iii ! of Sec. III B.

The argument above, while locating correctly the positi
of the resonance peaks ofū(V), fails to explain the current
inversion corresponding to the onset of the parametric re
nance 2V;vb . This question would require a sophisticate
perturbation analysis@23# capable of reaching beyond th
leading order approximation adopted throughout the pres
work. On the other hand, current inversions in partic
rocked ratchet at low damping and/or high frequen
@1,2,21# have never been related to a resonant dynamics

IV. CONCLUSIONS

In the present work we addressed the problem of
driven asymmetric kinks. The kink ratchet current has be
shown to exhibit nontrivial dependence on both the str
damping constant and the drive frequency. More importan
we have analyzed two classes of asymmetric kinks:~I! The
RP kinks, whose asymmetry is built-in due to the anisotro
of the substrate. In such a case the kink shape~and mass!
gets modulated in second order and, consequently, the
evant kink ratchet velocity decays likea25 in the over-
damped regime. The existence of a ratchet mechanism
this class of kinks is largely expected in view of the rock
ratchet theory for pointlike Brownian particles;~II ! The DP
kinks, supported by a deformable symmetric substra
whose valleys and barriers change continuously in time; s
strate modulation and external tilt are arbitrarily pha
locked. The ensuing kink mass modulation is of the fi

FIG. 5. Kink ratchet velocityū V on the RP substrate~4! for

different values of the damping constanta. Note thatū has been
rescaled by the relevant factora. Inset: the extremely underdampe
casea51023 in the adiabatic regime of smallV. Other simulation
parameters:c0550 andF050.3.
3-6
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order in the substrate perturbation, as proved by
asymptotica23 decay of the corresponding kink ratchet v
locity. The ratchet mechanism for a string on a symmetric
substrate has no counterpart in the theory of particle ratch

As stated in the Introduction, we neglected the prese
of noise sources, otherwise required for the string to therm
ize. The role of thermal fluctuations as the trigger of kin
antikink nucleation has been mimicked by simulating aone-
kink bearing string. In our strategy a full understanding of t
dynamics of an individual ac driven kink ought to allow us
E

05110
e

P
ts.
e
l-

-

e

reconstructa posteriori the corresponding time evolution o
the entire string. Noise, however, is capable of influenc
the diffusion of a single kink, as well, a possibility ignore
altogether in the present study. It is believed, though, tha
low temperatures~i.e., in the presence of low intensity fluc
tuation sources!, the ratchet efficiency is only marginally af
fected by noise. The diffusion of an ac driven asymmet
kink in equilibrium at finite temperature and, eventually, t
ab initio simulation of athermalizedstring diffusing on a
rocked asymmetric substrate are certainly topics that des
more accurate investigation.
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