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Abstract
We present a deliberative trajectory planning method to avoid collisions with traffic vessels. It also plans traversal across
wavefields generated by these vessels and minimizes the risk of failure. Our method searches over a state-space consisting
of pose and time. And, it produces collision-free and minimum-risk trajectory. It uses a lookup table to account for motion
uncertainty and failure risk. We also present speed-up techniques to increase performance. Our wave-aware planner
produces plans that (1) have shorter execution times and safer when compared to previously developed reactive planning
schemes and (2) comply with user-defined wave-traversal constraints and Collision Regulations (COLREGs)
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Introduction

Automated trajectory planning is a prerequisite for realiz-

ing autonomous unmanned vehicles. Collision avoidance

with static and dynamic obstacles under perception uncer-

tainty are basic requirements for generating useful trajec-

tories. The focus of this article is a framework for

deliberative trajectory planning in the presence of large

semipermeable dynamic obstacles and motion uncertainty.

Typically, trajectory planning for unmanned vehicles is

decoupled into two parts. First, a path planning problem

is solved to obtain a tentative path, ignoring dynamic obsta-

cles. Then, a motion planning problem is solved, this time

considering dynamic obstacles, using the tentative path as a

reference to yield a final trajectory. The motion planning

problem is conventionally solved using reactive planning

approaches like generalized velocity obstacles1 and velo-

city tuning.2–4 These methods work well when the dynamic

obstacles are small, and the introduction of these dynamic

obstacles does not introduce drastic differences between

the true optimal path and the tentative path. Thus, in the

case of small dynamic obstacles, a reactively planned tra-

jectory is likely to be close to the true optimal trajectory

while following a tentative path computed while ignoring
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small dynamic obstacles. However, in the case of large

dynamic obstacles, it is generally likely for reactively

planned trajectories to be highly suboptimal. For instance,

on the one hand, reactively avoiding (i.e. going around)

large dynamic obstacles may introduce unnecessary slow-

downs and increase execution time. On the other hand,

punching through semipermeable dynamic obstacles may

decrease execution time but increase the risk of failure and

collisions. Therefore, handling large semipermeable

dynamic obstacles requires deliberative planning that can

carefully balance the competing priorities (i.e. reduce exe-

cution time, reduce failure/collision rate). For example,

reducing failure/collision rate should be the first priority.

When it is possible to have zero failures/collisions, reduc-

ing execution time is the next priority. In some situations

such as those that arise in the marine robotics domain,5

navigation around or through large permeable dynamic

obstacles is required (Figure 1).

The wavefield generated by a marine vessel is a good

example of a large semipermeable dynamic obstacle which

can either be traversed or be avoided altogether. In a major-

ity of practical scenarios, unmanned ground vehicles exhi-

bit significantly less motion uncertainty compared to

unmanned surface vehicles. Trajectory planning for

unmanned ground vehicles is a well-studied problem and

in the recent years, significant progress has been made in

solving it using a wide variety of methods such as graph

search,6 stochastic tree search,7,8 Markov decision pro-

cesses (MDPs), and optimal control.9,10 Graph search

methods like state lattice search are popular global plan-

ning methods due to optimality guarantees and efficiency

in large environments. Unmanned surface vehicles exhibit

more motion uncertainty due to significant external distur-

bances like waves and winds.11 Collision avoidance is more

challenging under these circumstances and it involves not

only staying a safe distance from static obstacles and

dynamic obstacles but also following COLREGs. COL-

REGs is a set of maritime navigation rules set by the Inter-

national Maritime Organization (IMO) to minimize

collisions and confusion among marine vessels. The effects

of motion uncertainty are pronounced in smaller

Unmanned Surface Vehicles (USVs) as they are more sus-

ceptible to wave disturbances. An MDP framework can

rigorously handle motion uncertainty for environments

with static obstacles. It requires a state transition model

of the USV. A state transition model to account for wave

disturbances is developed in Thakur et al.12 for use in path

planning amid static obstacles. In addition to ambient sea

waves, wavefields generated by the motion of dynamic

obstacles over the sea create yet another source of motion

uncertainty and adds to the number of failure modes. The

wavefield induces external disturbances that vary both spa-

tially and temporally. Trajectory planning for USVs in the

presence of dynamic obstacles needs to consider a state

vector that includes position, orientation, velocity, and

time. For time-varying environments, the regular MDP can

be converted to a time-extended MDP.13 Time-extended

MDP over high-dimensional state spaces are complex and

computationally prohibitive.14,15 On the other hand, per-

forming a search over a lattice of motion primitives

requires careful collision risk assessment and heuristics

tuned for dealing with dynamic obstacles in the presence

of significant motion uncertainty. Large-scale partially

observable Markov decision processes (POMDPs) can be

approximately solved only in a reactive online fashion

using methods developed in the literature.16,17

This article builds on the work in Rajendran et al.18 As

in Rajendran et al.,18 we only focus on the environmental

Figure 1. Handling large dynamic obstacles requires deliberative planning.
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disturbance caused by wavefields, and hence, the effects of

wind and water currents are not considered. In Rajendran

et al.,18 dynamic obstacle heuristics (DOHs) was used

requiring extensive precomputation for traffic vessels of

different sizes and velocities using off-line simulations.

This needs to be done for a planning scenario before the

search can be performed. Computing lookup tables takes

considerable amount of time. Therefore, this method can-

not be used in practice in new scenarios. The method

described in this article overcomes that limitation and uses

online heuristics instead of precomputed lookup tables.

Both methods lead to almost identical paths.

The new contributions of this article are the following.

(1) We adapt the idea of space–time heuristics19 to over-

come the limitations of DOH used in our exploratory work.

We also incorporate COLREGs rules into it to solve more

difficult problems involving many dynamic obstacles. (2)

We investigate the behavior of our method in four new

maps that capture the types of environments the USV may

be exposed to. (3) We characterize the behavior of our

method under different operating conditions involving

varying perception uncertainty, varying number of

dynamic obstacles, and varying wavefield parameters.

Related work

Trajectory planning

Precomputed state-transition probabilities over differing

sea states are used in Svec et al.11 to handle motion uncer-

tainty. Incorporating perception uncertainty turns MDPs

into POMDPs. In Agha-mohammadi et al.,20 the probabil-

istic road map idea is extended for belief spaces using

MDPs and feedback controllers. Feedback controllers are

designed to drive the agent into a sampled state in belief

space called a Feedback Information Road Map (FIRM)

node. Then, through the use of a precomputed policy for

the MDP over FIRM nodes, a sequence of controllers that

drive the agent from the initial state to the final state is

obtained. This way POMDPs become computationally

tractable for problems of larger scale involving only static

obstacles. However, it is hard to augment these methods to

work in domains with spatiotemporal disturbances. In

Blackmore et al.,21 chance constraints are used in the con-

text of static obstacle avoidance, guaranteeing prespecified

failure probability bounds. Belief-space (pose � covar-

iance space) search is used in static obstacle environments

to incorporate motion uncertainty and generate plans that

expedite arrival time and minimize final pose error covar-

iance.22,23 These works do not include dynamic obstacles.

Terrain variation causes trajectory tracking error. The error

characteristics of the controller are considered in the plan-

ning method proposed in Mellinger and Kumar24 where

tracking error is modeled as a function of terrain. The prob-

ability of successful navigation through the terrain is incor-

porated into the cost function. We take inspiration from

Mellinger and Kumar24 and introduce the notion of time-

varying terrain. We also account for risk of failure through a

robot-reliability model.25 We also use methods in Greytak

and Hover26 to model trajectory tracking uncertainty and

utilize low-level trajectory tracking error characteristics.

Trajectory and wave prediction

Accurate prediction of trajectories of moving obstacles is a

fundamental requirement for deliberative trajectory plan-

ning. Several threads of research work are in progress to

provide predictions. In the marine domain, automatic iden-

tification system (AIS) data27 can be used for coarse

grained trajectory prediction. AIS is susceptible to commu-

nication interruptions.28 However, when it is used in con-

junction with Gaussian Process Regression (GPR) based

trajectory prediction methods,8,29–31 it can produce good

estimates for long-term planning purposes.32 Waves gen-

erated by moving vessels can be forecast up to 180 s into

the future using radar systems.33,34 We assume such a sys-

tem is available in the sensor suite to aid deliberative

planning.

Preliminaries and problem formulation

Vehicle model

For trajectory planning purposes, we use a simplified kine-

matic vehicle model to describe the motion of the USV

_x ¼ f ðx; u;wÞ ð1Þ

¼
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The USV pose is x ¼ ðx; y;  ÞT where x and y denote the

position in North-East-Down coordinates,  denotes head-

ing with respect to north. The USV control variables are

u ¼ ðv; !ÞT and w is a zero-mean random process noise

capturing the effects of environmental disturbances. A state

s is defined by the tuple ðx; y;  ; t; psÞ encoding the USV

pose, the time stamp, and probability of being operational

up to a time duration t from the start time. A motion goal is

a tuple MG ¼ ðxf ; yf ;  f ; tf Þ encoding a pose ðxf ; yf ;  f Þ to

be reached at time instant tf. Given an initial state xi and a

final state xf ¼ ðxf ; yf ;  f ÞT specified by the motion goal

MG, and letting w ¼ 0, a nominal trajectory �xðtÞ satisfying

�xðtiÞ ¼ xi ; �xðtf Þ ¼ xf can be computed using trajectory

generation methods.9,35 We assume that the underlying tra-

jectory tracking controller of the USV will achieve the

target pose xf by the time deadline tf. In our work, we use

Dubins curves36 as the optimal trajectory between motion

goals. We also use only 70% of the maximum allowable

USV speed as the controller may need to saturate the throt-

tle occasionally to make up for lost time while rejecting

Rajendran et al. 3



disturbances. A motion goal set MGSr;ndirs
ðsÞ is a set of

motion goals that are a distance of r units away relative

to a particular state s and directed at ndirs different angles.

Each of the motion goals is given a label l corresponding to

its direction from s. Thus, MGSr;ndirs
ðsÞ ¼ fMGlg [MGO,

where l ¼ k � 360=ndirs ; k 2 ½0; ndirs � 1�. The label O

indicates a wait action of duration Dtwait at the same pose.

We assume a station-keeping controller37 is active for the

duration of the wait action. Figure 2 shows an example of a

labeled motion goal set MGSr¼30m;ndirs¼8ðsÞ where

s ¼ ðx ¼ 0; y ¼ 0;  ¼ 0; t ¼ 0Þ. r is adapted to have mul-

tiple resolutions depending on how congested the local

region is. This allows for high-resolution motion goals in

areas which are difficult.

Traffic vessel profiles

A traffic vessel profile (TVP) is a collection describing the

geometry and state of a traffic vessel underway. These data

are generated by a trajectory prediction system.31 A typical

traffic vessel profile TVPi made up of the following quan-

tities: (i) predicted trajectory �piðtÞ, (ii) instantaneous posi-

tion covariance matrix SiðtÞ, (iii) vessel zones fZkg3
k¼1

where each Zk is an ellipse attached to and defined in the

body frame of the vessel (see Figure 3). The vessel zones

move in unison with the traffic vessels. Vessel zone 1 is a

region with 100% probability of failure. Vessel zone 2 and

3 denote regions where significant wave disturbances are

expected. These zones also specify the local wave front

direction in that region. We assume that waves outside the

zones 1, 2, and 3 do not affect the USV. The sizes of these

vessel zones are application-dependent. In this work, the

length of zone 1 is fixed to three boat-lengths long, and it

can be made longer for vessels traveling at a higher relative

speed compared the USV. The length of zones 2 and 3 have

been chosen based on the attenuation of the wavefield and

where the wavefield poses no danger to the USV. A set of

TVPs is denoted by TVPS ¼ fTVPkgntv

k¼1.

Environmental disturbances

We assume environmental disturbances are specified para-

metrically through a parameter vector defined for each state

in the state space as in Figure 4. For example, at point D,

gD ¼ fseastate ¼ calm; nearvessel ¼ falseg where sea

Figure 2. Motion goal set with r ¼ 30m containing ndir ¼ 8
motion goals (in blue) directed toward cardinal and intercardinal
directions. Eight optimal trajectories (in red) from
ðx ¼ 0; y ¼ 0;  ¼ 0; t ¼ 0Þ to each of the motion goals is shown.
A ninth motion goal labeled O is also shown which corresponds to
a wait-action of duration Dtwait. The trajectories start with  ¼ 0
and end at the heading angle corresponding to the cardinal
directions.

Figure 3. (a) A wave pattern (Kelvin wave) for a traffic vessel
moving westward, operating at hull Froude number 0:5 and
waterline boat length 10 m. Crests are shown in yellow and
troughs are shown in red. Two local wave fronts near two
instances of the USV are labeled 1 and 2, (b) a simplified wave
pattern consisting of zones with different local wave fronts.

Figure 4. An illustration showing how parameter vector g is
defined over a trajectory at a few characteristic query points A, B,
C, and D.

4 International Journal of Advanced Robotic Systems



states are defined as in the Douglas sea scale.38 Point

C lies in a static obstacle region and hence,

gC ¼ finvalid ¼ trueg is left undefined and handled as a

special case. Whenever a traffic vessel passes through a

point, for example, point A at a certain time t, the parameter

vector is updated as gA ¼ fseastate ¼ calm; nearvessel ¼
true;wavezone ¼ Z2g. Similarly, at point B, gB ¼
fseastate ¼ rough; nearvessel ¼ true;wavezone ¼ Z3g.
In both cases A and B, the local wave amplitude and

wave direction can be determined given the wave zone

and the pose of the traffic vessel at t. The field near

vessel in g indicates that the point is in some zone of

some traffic vessel.

In this work, TVPs and environmental disturbances are

modeled with the help of basic wave models. In practice,

the wave interaction is more complex and estimation of

wave parameters is required. With recent advances of com-

puter vision and deep learning, it is possible to construct a

method of wave parameter estimation from vision. This

method does not have to be very accurate for use in a failure

assessment module.

Failure model

We seek to model failure probabilities using a robot

reliability model.25 The probability that a robot remains

functional up to time t is given by psðtÞ ¼ e�t=M where

M is the mean-time-between-failures (MTBF), which is

estimated as

M ¼ Total observation duration

Number of failures during observation
ð3Þ

the ratio of number of failures to the total number of

attempts within an observation time window. Developing

a precise model of the failure (i.e. capsize) of the USV in

varying sea-states and waves is difficult. It involves allow-

ing the robot to fail in the process of counting the number of

failures within an observation time window. This is not

practical. A safer alternative is to measure how close to

failure the robot got to when exposed to a certain local

disturbance. In this work, a local disturbance is described

parametrically as the tuple consisting of sea-state and prox-

imity to a vessel. Two sea-states are considered calm

(undisturbed waters) and rough (choppy waters due to wind

conditions/multiple traffic vessels). And, proximity to ves-

sel is a Boolean flag that is determined by whether the USV

happens to be in any of the wavezones around the traffic

vessel (see Figure 5). If the USV is in proximity to a vessel,

then the wavezone is also part of the local disturbance

parameter. USVs typically have certain design limits such

as roll limits or pitch limits. We define a failure event as an

event when any of these design limits is exceeded. Thus,

given a set of trajectory samples fskðtÞgnk

k¼1 as in Appendix

A of duration t1. For each trajectory sample, we count the

number of failure events during t1. With failure events

labeled and counted, compute M as in equation (3) for each

trajectory sample. We aggregate the MTBF over trajectory

samples for each combination of local disturbance para-

meter g. In this way, a lookup table that is indexed by g
can be generated (see Table 2). Once MTBF estimates are

computed for an USV operating in different local distur-

bance parameters, it can later be used in the robot reliability

model to compute failure probabilities.

Problem formulation

Given: (i) Initial state si ¼ ðxi; yi;  i; ti; ps ¼ 1Þ, (ii) a

region G around the goal state sf ¼ ðxf ; yf ;  f Þ, (iii) a set

of TVPs, TVPS ¼ fTVPkgnv

k¼1, sensed by the perception

system, (iv) a set of static obstacles defined by a set of

polygons SO.

Compute: A sequence of states fskgp
k¼0 such that (i)

s0 ¼ si, (ii) sp 2 G, (iii) the trajectory is COLREGs com-

pliant, (iv) probability of success ps at sp is maximized, (v)

expected time of execution is minimized.

Approach

The problem is an implicit graph search problem. We use

the Theta* graph search algorithm39 to solve it. We

describe the essential aspects of the Theta* graph search

implementation.

Node expansion and cost functions

A node n is a tuple defined as n ¼ fs; g; h; f g where g is the

cost-to-come, h is the cost-to-go, f is the total cost

(f ¼ g þ h), s is the state. An initial node ni is constructed

as ni ¼ fsi ; 0; hðsi; sf Þ; 0þ hðsi; sf Þg. When a parent node

np is visited, a set of child nodes fnc;kgNc

k¼1 that contain with

states corresponding to the nearby motion goals are

Figure 5. Determining wave incidence angle and relative position
from a traffic vessel.

Rajendran et al. 5



assigned. Here Nc is the total number of child nodes

expanded for np. Each of the child nodes also contains the

reference trajectory �xðsp; sc;kÞ composed of the Dubins

curve linking the parent state to the child state. During

execution, there is motion uncertainty as the controller

tracks the reference trajectory. This uncertainty is handled

while evaluating the cost function. To describe the cost

function, we focus on the expansion of an arbitrary parent

node np resulting in a child node nc ending in the state sc as

in Figure 6. Let us assume the reference trajectory �xðsp; scÞ
starts at t ¼ tp and ends at t ¼ tc. To evaluate the cost

function, the reference trajectory must be discretized into

temporal segments. Performing regular discretization, we

obtain a sequence of time samples TS ¼ ftqgnts

q¼1 where

tq 2 ½tp; tc�, tqþ1 � tq ¼ Dt. Suppose that for a �t 2 TS, the

reference trajectory puts the USV state at �s with the 2D

position being �p and time being �t. And, similarly, all of

traffic vessels are moved to �t on their mean predicted tra-

jectory. The uncertainty in the predicted trajectory will be

considered in Cost assessment. Having moved the traffic

vessels to their positions in the environment map, the local

disturbance vector �g is obtained by looking up �p on the

environment map and identifying which of the characteris-

tic scenarios apply (see Figure 4). We will now see how �g is

used in the trajectory evaluation process.

Obtaining tracking error and failure model parameters. Local

environmental conditions (such as local sea state) and

being in the vicinity of a moving vessel affect the trajectory

tracking performance of the USV as it moves along a ref-

erence trajectory. These conditions are encoded into �g (Fig-

ure 4) and can be used to obtain tracking error and failure

model parameters. If the USV were to be controlled in an

open-loop configuration, the trajectory tracking error

would build up over time. However, in the presence of a

low-level stabilizing feedback controller, the tracking error

can be bounded within an envelope around the reference

trajectory.40 Environmental disturbances and controller can

be extensively studied off-line by either using Monte Carlo

simulations. This way the various realizations of the transi-

tion trajectories can be obtained.12 These trajectories can

also be obtained by empirically evaluating them in real

scenarios. With either approach, the goal is to characterize

the USV motion as it is commanded to move in a straight

line from an initial state s0 toward a motion goal under

parameterized disturbances in the environment. Appendix

A outlines a simple procedure to identify tracking error

parameters. We seek to model the tracking error and the

probability of successful navigation along the reference

trajectory as a function of the local disturbance parameter

vector �g . The tracking error can be characterized by

observing cross- and along-track errors (see Figure 7).

The cross-track error at any point in time is the deviation

in a direction normal to the reference trajectory (i.e. lat-

eral deviation). The along-track error at any point in time

is the difference in the track-projected current position

and the target point on the trajectory (i.e. lag or over-

shoot). The probability of successful navigation can be

characterized by measuring MTBF under different condi-

tions. To this end, we conducted preliminary experiments

with a 16-foot Wave Adaptive Modular Vehicle (WAM-

V) USV37 in the Stranahan River, near Dania Beach, Flor-

ida. We chose the WAM-V platform due to its robustness

under wave action. We could safely perform the physical

experiments while not risking the total loss of the robot.

However, this work is applicable to platforms that are not

specifically designed to withstand waves that may cause

hull damage. We collected data using wave gauges and the

navigation sensors (Inertial Measurement Unit (IMU),

GPS, Compass) of the USV (Figure 8) and studied the

effect of the waves generated by a traffic vessel on the

Figure 6. Collision cost calculation for a trajectory between a
parent node and a child node.

Figure 7. (a) Error envelope of trajectory tracking defined by sct

and sat for a trajectory starting at pq ¼ ð0; 0; 0Þ, tq ¼ 0 and

reaching east under a particular sea state g, (b) the 3s error
ellipse at an intermediate time �t along the nominal trajectory.
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WAM-V. Due to the difficulties of controlling sea-state,

only two states calm and rough were considered. Calm

condition refers to a situation when water level across the

test area is roughly constant, and no wind effects are seen

on the surface of the water. Rough condition refers to a

situation when water levels are changing due to interact-

ing waves generated by passing traffic vessels and wind.

In both conditions, the USV was made to traverse a 20 m

linear path 10 times and the cross-track sct and along-

track sct error standard deviation in the tracked trajectory

was used to populate Table 1. Similarly, in both sea-state

conditions, the pitch and roll angles recorded and the pro-

cedure in Determining MTBF is used to compute Mr and

Mc in Table 2. Mt is not generated using physical experi-

ments instead we use a surrogate model defined by equa-

tion (4). In a very rough sea-state, the data from IMU are

likely to be noisy and other sensing modalities might be

needed for producing better estimates. Since we per-

formed experiments in a water channel, our experiments

were shielded from disturbances and did not experience

noisy IMU measurements and we were able to observe

roughly sinusoidal variations as the waves passed by.

Tables 1 and 2 are indexed by the local disturbance para-

meters in g and they are briefly explained below.

Determining tracking error parameters. As for the tracking

error model, when the query state lies over calm waters

and is not in the vicinity of any traffic vessel, we use

nominal values for tracking error parameters. Otherwise,

the tracking error parameters are doubled.

Determining MTBF. Since traffic-free calm waters are very

safe, Mc ¼ 1. Since rough waters are not safe regardless

of traffic, Mr ¼ 600. Determining MTBF over calm

waters near traffic vessels involves determining the angles

between the waves and the heading of the USV as shown

in Figure 5. If the query state is located within any zone of

the traffic vessels, we determine the relative position pd

from the center of the traffic vessel and the incidence

angle qi between the USV heading and the wave direction

of zone Z 0 (see Figure 5). pd is calculated in the body-

fixed coordinates of the traffic vessel and d ¼ 1 0½ �pd .

Sailors typically prefer the incidence angle to be around

45, reducing the risk of broadside rolling as well as pitch-

poling.41 Adhering to this notion, we use the following

assignment for MTBF

a ¼
1:0; � p

8
� qi �

p
4
� p

8

0:25; otherwise;

8<
: ð4Þ

Mt ¼
0; pd 2 Z1

aMZ 0d=Lz; 9k 2 f2; 3g; pd 2 Zk

Mc; otherwise:

8><
>: ð5Þ

Here MZ 0 is the MTBF value associated with the zone Z 0

and is defined as MZ1
¼ 0, MZ2

¼ 1000, MZ3
¼ 3000.

And, Lz is the maximum trailing length of the traffic vessel

zones.

In this work, the MTBF model was generated using a

combination of simulation and physical experiments. These

were done in an off-line manner. In future, these can be

performed in an online manner as well. We envision that it

will work in the following manner. Initially, we assume a

conservative MTBF model. Using this conservative MTBF

model, the USV can navigate safely. And, based on an

explore-exploit tradeoff, we can explore unknown wave

conditions and update MTBF model appropriately using a

Bayesian inferencing scheme. This will enable exploring

new wave conditions while safely updating the MTBF

model parameters.

Cost assessment. Having determined the tracking error and

the MTBF parameters using �g , we proceed to evaluate the

cost function along the reference trajectory �xðsp; scÞ. Track-

ing error parameters sat and sct encode the deviation along

the path and the normal deviation from the position �p,

Figure 8. Wavefield experiment setup.

Table 1. Tracking error model.

Trajectory tracking error
standard

Disturbance parameter g Along-track Cross-track

fsea state ¼ calm, near vessel ¼ falseg sat sct

fsea state¼ rough, near vessel¼ falseg 2sat 2sct

fsea state ¼ any, near vessel ¼ trueg 2sat 2sct

Table 2. Mean-time-between-failure (MTBF) model.

Disturbance parameter g MTBF

fsea state ¼ calm, near vessel ¼ falseg Mc

fsea state ¼ rough, near vessel ¼ true/falseg Mr

fsea state ¼ calm, near vessel ¼ true, wave zone ¼ Z 0g Mt

finvalid ¼ trueg 0

Rajendran et al. 7



respectively (see Figure 7). Thus, the actual position p of

the USV at �t is given by

p ¼ �p þ c N ½�p� þ a T ½�p� ð6Þ

where c*Nð0;sctÞ and a*Nð0;satÞ. N ½�p� and T ½�p� are

the normal and tangent unit vectors at �p. An ellipse E�t
centered at �p and aligned to the tangent direction T ½�p� and

normal direction N ½�p� with axis lengths 6 sat and 6sct

describes a 99:7% confidence region within which the USV

can be expected to be at t ¼ �t (99:7% comes from the 68-

95-99.7 empirical rule associated with the normal

distribution).

For each ellipse Etq
, the probability of failure pf ;q is

computed as

pf ;q ¼ 1� exp � Dt

Mq

� �
ð7Þ

where Mq is computed by averaging the MTBF values over

a uniform set of points in Etq
. More specifically, these

MTBF values are computed by looking up each point in

G and then using Table 2 to find the MTBF. Assuming

independence of the failure events, the final probability

of success for executing �xðsp; scÞ is given by

ps ¼ Pnts

q¼1ð1� pf ;qÞ.
Thus, the probability of success imparted to the child

state is psðncÞ :¼ psðnpÞ � ps where psðnpÞ and psðncÞ are

the probabilities of success of the parent and child states,

respectively. The child node nc is then assigned a cost-to-

come gðncÞ where

gðncÞ :¼ gðnpÞ þ ð1� !f Þct � !f Ff logðpsÞ þ ccFc ð8Þ

the time cost is ct ¼ tc � tp, Ff is a large constant with units

of time discouraging risky motion causing failure, and Fc is

a large constant with units of time discouraging moves that

violate COLREGs. Parameter cc 2 f0; 1g encodes the vio-

lation of COLREGs computed using.42,43 Parameter

!f 2 ½0; 1� is a user defined weight parameter.

Accounting for perception uncertainty. To account for the per-

ception uncertainty in the measurement of the TVPs, a

Monte Carlo sampling scheme44 is utilized. The Monte

Carlo sampling approach is used as it is a general method

and amenable to parallelization. In the previous section, �g
was computed using only the mean position of traffic ves-

sels at �t. However, to account for uncertainty, covariance

information needs to be used. We pick one TVP,

TVPi 2 TVPS, to illustrate the process. A set of possible

instantaneous positions PSi ¼ fpkg
nps

k¼1 is sampled from the

distribution Nð�pið�tÞ;Sið�tÞÞ. We move the traffic vessel to

each possible position pk 2 PSi and then look up gk as in

Figure 4. We compute the corresponding Mk using Table 2

and Figure 5. Finally, we compute the average M over all

the computed Mk. This average M is used in place of the

original MTBF in equation (7).

Speed-up techniques

We describe some techniques to improve the search

performance.

Static obstacle heuristics. The cost function includes the time

duration of moving from one position to another (i.e. ct).

And, static obstacles do not move between planning cycles.

In such a scenario, a time-to-goal map (also known as

arrival time map) is beneficial. This map is termed Static

Obstacle Heuristic (SOH) and it stores the lower bound on

the time cost of going from any position in the workspace

to the goal position g. This map is computed using the fast

marching method (FMM) to approximately solve an Eiko-

nal equation.45,46 The level sets of the solution of the

Eikonal equation correspond to the frontiers of a wave

emanating from the goal position. The speed of the wave

is set to the maximum speed of the USV. As the frontier

(i.e. the open set in Dijkstra’s algorithm) bends around

corners, the time-to-goal estimate is more informative

than the naive Euclidean distance-based estimate. The raw

time-to-goal values given by the FMM are naturally not

admissible unless they are scaled down by a factor that

depends on the discretization used in computing the map.6

After the appropriate scaling is applied, each cell in this

map contains an underestimate of the time to reach the

goal from that cell location. This value is used to compute

an estimate of ct to be accumulated until the goal is

reached. For a given query position s, a heuristic value

hsðs; gÞ is looked up from the SOH.

Space–time exploration heuristics. Developing admissible

heuristics to handle dynamic and static obstacles is challen-

ging and can often be just as hard as the original problem.

However, by relaxing the original problem, effective

heuristics can be generated. We follow Chen et al.19 and

drop to 3D configuration space by excluding  (i.e. we use

only x� y� t space) to generate a heuristic trajectory

using a point robot kinematic model (relaxed version of

the USV kinematic model) from initial state si to the goal

region G. Maximum speed vmax of the point robot is the

same as that of the USV. We also ignore zones 2 and 3 of

traffic vessels such that only zone 1 is considered as a

dynamic obstacle. In other words, for the purpose of heur-

istics generation, we allow the point robot to move freely

across zone 2 and 3 without any penalty. Suppose the

point robot is at the initial state pi � ðxi; yiÞ at the query

time ti (see Figure 9(a)). We observe that set of all points

this point robot can reach in Dt is given by a cone Ci with

apex at ðxi; yi; tiÞ, perpendicular height Dt, and radius

vmaxDt. We choose Dt such that it is as large as possible

without the cone touching any configuration space obsta-

cle. Suppose dcðtÞ is the clearance distance between pi and

any workspace obstacle at time t. Then

Dti ¼ min
t2½ti;tiþDt;max�

dcðtÞ=vmax

8 International Journal of Advanced Robotic Systems



This cone represents a collision-free volume in the 3D

configuration space. To explore the space, the idea is to

grow new cones at the top face of cone Ci and continue this

process until the goal region is reached by a certain cone. In

this way, we generate a sequence of overlapping cones

forming a collision-free volume in configuration space,

which connects the initial state and the goal region.

Nodes are described using tuples of the form

nk ¼ ðxk ; yk ; tk ; rk ;Ck ; gk ; hk ; f kÞ. Ck is the cone situated

at ðxk ; yk ; tkÞ with radius rk ¼ vmax=Dtk . The cost-to-

come gk ¼ tk þ ccFc is the sum of time elapsed and COL-

REGs violation cost. And, the cost-to-go is the value from

the SOH lookup table, hk ¼ hsðpk ; gÞ. The total cost is

f k ¼ gk þ hk . The space exploration process proceeds in

an implicit A* graph search manner as in Algorithm 1 by

first pushing the start node ni in to the open set Sopen. The

open set Sopen stores the nodes to be explored in a sorted

order with respect to the cost f in ascending order and it is

implemented using a priority queue. For as long as Sopen is

nonempty, the node with the lowest f value is chosen

for further expansion. In this context, an expansion of a

node involves the creation of new child nodes at the top

face of Ck. The perimeter of the top face is equally sampled

to form candidate locations for new child nodes. These

locations indicate constant velocity motion. Furthermore,

an additional candidate location is sampled at the center of

the top face. This candidate location captures the notion of

a wait state (Figure 9(a)). For each candidate location

ðxc; yc; tcÞ, a new cone Cc is constructed with apex at

the candidate location such that it has the largest

height and does not collide with configuration space

obstacles. If such a cone can be constructed, a new

node nc ¼ ðxc; yc; tc; rc;Cc; gc; hc; f cÞ is generated where

gc ¼ tc þ ccFc, hc ¼ hsð ðxc; ycÞ; gÞ, f c ¼ gc þ hc. Incor-

poration of COLREGs constraints through the term ccFc

improves the effectiveness of the heuristics. Once Algo-

rithm 1 ends, a sequence of cones CS ¼ fCqg starting at

the initial state and ending in the goal region is obtained.

Let t be the sequence of apexes of the cones in CS and it

represents a coarse-grained trajectory in the ðx; y; tÞ space

that avoids static and dynamic obstacles (see Figure 9(b)).

We describe how the heuristic value is computed. We first

project t to ðx; yÞ space and denote it as tp. For a given a

query state s, we use the position component p of s to find

the closest point pc on tp. The heuristic is computed as in

Chen et al.19 It is the sum of time difference between the

end point of t and the closest point on t and time required

to reach pc (i.e.
jp�pcj

vmax
þ tend � tc where tðtcÞ ¼ pc and tend

is the time stamp of the end point of t).

Adaptive motion goal set. To accelerate the Theta* graph

search, the resolution of the motion goal set r and ndirs is

modified depending on the distance of the parent node

position from moving vessels and static obstacles. We use

Figure 9. (a) Generation of heuristic space–time path, (b) an
example of a heuristic path t connecting start and goal points
generated by a sequence of cones.

Algorithm 1. Heuristic space–time path
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a precomputed Euclidean distance transform to query the

shortest distance from any of the static obstacles. Shortest

distance from any of the traffic vessels is computed online.

ðr; ndirsÞ ¼

ð3Lu ; 16Þ; if within 10Lu of a moving vessel

or within 5Lu of a static obstacle

ð5Lu ; 8Þ; if within 25Lu of a moving vessel

or within 10Lu of static obstacle

ð8Lu ; 8Þ; otherwise

8>>>>>><
>>>>>>:

In open waters, longer strides are made and the progress

toward the goal is faster.

Selection of parameters

Table 3 summarizes the list of parameters used in the plan-

ner. These parameters are chosen by the user.

User preference parameters. User preference parameters bal-

ance safety and performance. The failure penalty Ff can be

chosen as the duration of time required to dispatch a func-

tional USV in lieu of the failed USV. This choice roughly

captures the real time impact a failed USV will cause. The

COLREGs violation penalty Fc should be much smaller

than Ff to favor COLREGs noncompliant trajectories over

trajectories that lead to a collision or failure. The extent to

which large time delays are accepted to minimize failure is

controlled by !f . The closer to !f is to 1, the more conser-

vative the trajectories are in terms of avoiding failure.

Planning speed parameters. r; ndirs: Decreasing r and increas-

ing ndirs creates a denser motion goal lattice and thus

increases planning times. Dtwait: Using longer wait state

durations, Dtwait may introduce undesirable looping beha-

vior as the cost of gyrating about a point may be cheaper

than waiting at the same point for a duration of Dtwait.

Introducing an extra cost term in equation (8) capturing

energy cost will remove this behavior (e.g.

cp ¼ PathLengthðnp; ncÞ).

Results

We implemented the wave-aware trajectory planner

(WA-TP) in MATLAB on a PC with Intel Xeon 3.5

GHz CPU and 32 GB RAM. A set of simulation experi-

ments were conducted. We discuss the experiments and

their results below.

Simulation experiments

We generated four different maps to test the trajectory

planner. Traffic vessels at t ¼ 0 are shown in Figure 10.

The USV and traffic vessels were simulated using three

degrees-of-freedom dynamic model as in Klinger et al.47

In the USV pose observations used for planning, noise was

added following the distribution in equation (6). The

response of traffic vessels to the motion of the USV is not

simulated. Only the USV is allowed to react to the traffic

vessels. Some of the important parameters used are map

size ¼ 600 m � 600 m, USV length ¼ Lu ¼ 5 m, traffic

vessel length ¼ Lv ¼ 10 m, traffic vessel speed ¼
1� 2 m =s. The turning radius and maximum speed of

the USV are 5 m and 2 m/s, respectively. The other para-

meters are presented in Table 3. The traffic vessels are

positioned to result in interesting dynamic obstacle avoid-

ance, as well as wavefield crossing behavior. We com-

pare our approach (WA-TP) with three different

configurations of the planning stack. These configura-

tions are summarized in Table 4. Global path planner

(G-PP) does not consider the dynamic obstacles and gen-

erates only kinematically feasible paths to the goal. It is

realized by removing dynamic obstacles and removing

the time dimension from the implementation of WA-

TP. Conservative trajectory planner (C-TP) takes into

consideration the traffic vessels along with their wave-

fields as a nonpermeable dynamic obstacles. This yields

conservative trajectories. C-TP is realized by setting

M ¼ 0 within the wavefield in the implementation of

WA-TP. The configuration G-PP þ C-VO follows the

generated path and avoids traffic vessels using conserva-

tive velocity obstacles (C-VOs). C-VO considers traffic

vessels along with their wavefields as large obstacles.

Velocity obstacle (VO) was not designed to handle

waves. Therefore, combining G-PP with VO will lead

to the vehicle going over the waves and a high rate of

failures. Therefore, we only evaluated G-PP þ C-VO

combination instead of G-PP þ VO.

The configuration C-TP þ VO follows the conservative

trajectory generated by C-TP and avoids traffic vessels

using regular VO.

Table 3. Parameters and their values.

Parameters

Symbol Description Value

r Motion goal spacing 5 m_30 m
ndirs Number of directions f8; 16g
Dtwait Wait state duration 10 s
M Failure probability model parameter 500–6000 s
Lu Length of USV 5 m
Lv Length of traffic vessel 10 m
Lz Maximum extent of the wavefield

extending behind vessels
10 Lv

sct Trajectory tracking cross-track s *1 m
sat Trajectory tracking along-track s *1 m
Ff Time penalty for failure *300 s
Fc Time penalty for COLREGs violation *300 s
!f Weight parameter favoring collision

avoidance over travel time
0:5

nps Sample size for handling perception
uncertainty

30
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We tested random start and goal poses sampled from

the sampling regions, as shown in Figure 10. For each

sampled pair, we collected aggregated performance

metrics for 20 runs of different configurations of the plan-

ning stack. Table 5 presents the execution time, collision

count, and success probability. For each run, normalized

execution time is computed relative to the execution time

of WA-TP. Success probability is computed after each run

by using the executed trajectory as in Cost assessment.

The results show that WA-TPþVO generally reduces exe-

cution time with the exception of M1. However, G-PP þ
C-VO incurs collisions in M1 as planning without the time

dimension results in situations where collision is inevita-

ble. This is also the case in M3 as well. Going into the

busy channel just because it is a shorter route to the goal is

dangerous and time-consuming. Furthermore, the success

probabilities are greatly reduced in G-PP þ C-VO as the

USV traverses wavefields without proper alignment. On

the other hand, C-TP þ VO plans longer routes to prevent

collisions and ensure higher success probability. This

results in increased execution time compared to WA-TP

þ VO. This is especially evident in M3 where the USV

has to cross a busy channel to reach the goal point. C-TPþ
VO waits for a completely clear channel, whereas WA-TP

þ VO waits for an opportune moment where the wave-

fields are traversable.

Figure 10. Illustration of test maps. Magenta arrows on traffic vessels indicate the direction of motion. Sampling regions for start and
goal poses are also shown. An example of a planned trajectory is shown as a red curve. The colored dots in front of the USV represent
the set of velocity vectors that considered by the velocity obstacle avoidance method.

Table 4. Planning stack configurations.

Is feature enabled?

Traffic vessel sensing Wavefield VO Resulting configuration

O O P G-PP þ C-VO
P P (M ¼ 0) P C-TP þ VO
P P P WA-TP þ VO

G-PP: global path planner; C-VO: conservative velocity obstacle; VO:
velocity obstacle; WA-TP: wave-aware trajectory planner; C-TP: conser-
vative trajectory planner.

Table 5. Comparison of performance.

Metric (avg.) Map
G-PP þ
C-VO

C-TP þ
VO

WA-TP þ
VO

Normalized execution time M1 0.87 1.34 1.0
M2 1.26 1.60 1.0
M3 1.74 2.04 1.0

Collision count M1 2 0 0
M2 3 0 0
M3 17 0 0

Success probability M1 0.18 1.0 1.0
M2 0.32 0.99 0.97
M3 0.0 0.99 0.98

G-PP: global path planner; C-VO: conservative velocity obstacle; VO:
velocity obstacle; WA-TP: wave-aware trajectory planner; C-TP: conser-
vative trajectory planner.

Table 6. Impact of speed-up techniques on performance.

Speed-up technique

Expansion count Planning time Solution cost

M1 M2 M3 M1 M2 M3 M1 M2 M3

Baseline 1 1 1 1 1 1 1 1 1
SOH 0.257 0.702 0.224 0.224 0.855 0.229 1.016 1.000 1.003
STEH 0.219 0.403 0.132 0.285 0.621 0.162 1.034 1.048 1.032
STEH þ AMGS 0.191 0.161 0.103 0.275 0.403 0.116 1.041 1.088 1.054

SOH: static obstacle heuristics; STEH: space–time exploration heuristics; AMGS: adaptive motion goal set.
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Sensitivity to speed-up techniques. The planner was invoked in

the test maps (M1, M2, M3) enabling and disabling subsets

of these techniques to study the effects of speed-up tech-

niques. Twenty start and goal points were randomly

sampled in the sampling regions corresponding to each

map. The baseline configuration of the planner uses Eucli-

dean distance-based time heuristic (i.e. hðs; gÞ ¼ time taken

using straight-line path from s to g using maximum speed).

Also, the finest motion goal set and a sample size of

nps ¼ 30 is used. The results are presented in Table 6. SOH

greatly reduces expansion count and planning time.

Among the two heuristics (SOH and space–time explora-

tion heuristics (STEH)), the effect of SOH and STEH is

roughly equivalent in maps that do not have heavy

dynamic obstacle traffic (M1, M2). In fact, there is an

overhead of computing STEH, and it may increase plan-

ning time. However, in M3, where the dynamic obstacle

traffic is heavy, STEH provides better heuristics com-

pared to SOH due to the added time dimension. In M3,

SOH guides the search through the busy channel, whereas

STEH guides the search to go around the congestion and

head south toward the central channel. In environments

with heavy dynamic obstacle traffic, the overhead of com-

puting STEH is justified. Using adaptive motion goals

reduces the expansion count further and increases the

solution cost at worst by 9%.

Sensitivity to MTBF parameter. We illustrate the effects of

changing the MTBF parameter of the failure model sum-

marized in Table 2. Figure 11 shows the initial configura-

tion of USV and traffic vessels in the islands map. Traffic

vessels were initialized to speeds between 1 m/s and 2 m/s.

The USV was set up to use WA-TP þ VO and commanded

to cross the busy channel (Figure 11). In this experiment,

the parameter controlling the danger level of the wave

region (i.e. MTBF value Mt) is changed. Two different

values of Mt are used to simulate two different levels of

danger. In Figure 12(a), the wavefields are made to be

dangerous by assigning a lower MTBF parameter

(Mt ¼ 1000). This results in the USV take a longer trajec-

tory to reach the goal point while altogether avoiding any

contact with the wavefield. In Figure 12(b), the wavefields

are made to be permeable by assigning a high MTBF para-

meter (Mt ¼ 3000), making the traversal of the wavefield

less dangerous. Thus, in this case, the USV attempts cross-

ing the wavefield at an appropriate angle as it makes it way

to the goal point.

Sensitivity to number of dynamic obstacles and perception
uncertainty. We also studied how the algorithm scaled when

the number of dynamic obstacles was varied. We used the

map M4 and varied the number of dynamic obstacles. Ran-

dom start and goal poses were sampled from the sampling

Figure 11. Scenario to illustrate the effects of changing the MTBF
parameter Mt. USV is positioned at the start point and com-
manded to reach the goal point. The colored dots in front of the
USV represent the set of velocity vectors that considered by the
velocity-obstacle avoidance method. MTBF: mean-time-between-
failures.

Figure 12. (a) Case Mt ¼ 1000. At t ¼ 75:0, the USV avoids crossing the wavefield and takes a longer route to the goal point. Finally, it
reaches the goal point at t ¼ 166:1. (b) Case Mt ¼ 3000. At t ¼ 62:0, the USV crosses the wavefield at the appropriate angle and
reaches the goal point at t ¼ 139:1.
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regions. We used this random sampling scheme to ensure

the USV interacts with the dynamic obstacles. Figure 13

shows the mean planning time increasing roughly linearly

in the number of dynamic obstacles. We used the scenario

in Figure 14 to study how our method performs under dif-

ferent levels of perception uncertainty. Figure 15 illustrates

the different behaviors exhibited by our method. In

Figure 15(a), the USV stops at the mouth of the channel

waiting for the traffic vessel to clear the channel. This

behavior is due to the high perception uncertainty associ-

ated with the sensing of the traffic vessel. Entering the

channel in this situation is a risky move. If the channel is

entered without an accurate state estimate of the traffic

vessel, a collision might be inevitable when the USV is

unable to maneuver around the traffic vessel. This behavior

is avoided. In Figure 15(b), the USV enters the channel and

keeps to the right lane while the traffic vessel is underway.

This behavior is due to the low perception uncertainty asso-

ciated with the sensing of the traffic vessel. The USV

avoids the traffic vessel and also complies with COLREGs.

Physical experiments

Experimental setup. A set of physical experiments using a 16

feet WAM-V USV at North Lake, Hollywood, Florida (see

Figure 16), was performed to verify the effectiveness of the

proposed approach. In place of real static and dynamic

obstacles, we introduced virtual obstacles. They were given

to the navigation system in lieu of the perception subsys-

tem. This was done to perform the experiments without

risking the loss of the WAM-V platform.

Figures 17 and 18 show the scenario and the trajectory

obtained by WA-TP and C-TP. In these scenarios, dynamic

obstacles were moving at constant speeds between 1.0 m/s

and 2.0 m/s. During experiments, there was gentle south-

easterly winds ranging between 10 and 12 KTS. From

Table 7, the execution times are observed to have reduced

by as much as 25:1% under the proposed approach. A video

clip showing some simulation and physical experiments is

located at https://youtu.be/_VGxb4nRUwU.

Figure 13. Sensitivity to number of dynamic obstacles.

Figure 14. Scenario to illustrate the effects of perception
uncertainty.

Figure 15. (a) Case: High perception uncertainty. For 75 � t � 153:1, the USV waits at the entrance of the channel until the traffic
vessel passes through the channel, (b) case: Low perception uncertainty. The USV enters the channel and takes the right lane as the
traffic vessel is passing through the channel.
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Conclusion

Our approach plans trajectories over long distances

while avoiding static obstacles and traffic vessels. It

also avoids waves generated by them. Our approach

executes these trajectories faster and safer. The execu-

tion times are reduced by at least 25% when compared

to other methods. The proposed approach is able to

react safely to varying levels of perception uncertainty.

The incorporation of wavefields into the planning pro-

cess improves the success probability of the planned

trajectory. By using heuristics and adaptive motion goal

sets, the planning effort and time has been reduced.

However, further reduction is required for practical

deployment in congested harbors. Harbors have speed

limits ranging between 1.8 m/s and 5 m/s and reacting

to traffic vessels potentially moving at those speeds

requires faster planning times than possible by the cur-

rent MATLAB implementation. In this work, simplify-

ing assumptions such as trajectory of traffic vessels, the

shape and size of the wave regions were made. How-

ever, these aspects of the planner can be changed and

tuned for specific applications that are not necessarily

in the marine domain. The heuristics and evaluation of

transition cost under motion/perception uncertainty

remain applicable in other domains where there are

large semipermeable dynamic obstacles. There are a

few potential directions of future work. The reactive

behavior of traffic vessels to the actions of the USV

was not captured in the planner. Furthermore, wind and

current effects were not included in the planning pro-

cess. These effects can be included when good esti-

mates of the currents and wind direction are available.

This will require development of new heuristics. Based

on the assumption that multiple traffic vessels may not

come very close to the USV, the interaction of wave-

fields by multiple traffic vessels was ignored. Including

this interaction in the planning problem is essential in

very congested environments. An optimized Cþþ
implementation can be done for a faster planning time

by utilizing GPU and multicore frameworks to perform

the computations in the Monte Carlo scheme used for

failure probability computations.

Authors’ note

Opinions expressed are those of the authors and do not necessarily

reflect the opinions of the sponsors.

Figure 16. Physical experiment setup.

Figure 17. A set of trajectories obtained in scenario P1 com-
paring wave-aware trajectory with a conservative trajectory.

Figure 18. A set of trajectories obtained in scenario P2 com-
paring wave-aware trajectory with a conservative trajectory.

Table 7. Comparison of execution time.

Scenario Planner type Execution time(s) Reduction (%)

P1 C-TP þ VO 148.9 —
WA-TP þ VO 136.5 8.3

P2 C-TP þ VO 163.6 —
WA-TP þ VO 122.5 25.1
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Appendix A

Identification of tracking error model

To characterize the motion of the USV, we first generate an

optimal control solution from an initial state s0 ¼
ðx ¼ 0; y ¼ 0;  ¼ 0; t ¼ 0Þ to s1¼ðx ¼ x1; y ¼ 0;  ¼ 0;
t ¼ t1Þ in the absence of disturbances and refer to it as

the reference trajectory �xðtÞ. Next, we want to characterize

how much deviation from �xðtÞ is expected in the presence

of disturbances. Let the initial position be p0. When the
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low-level controller is commanded a motion goal to s1, it

tries to track the reference in the presence of disturbances.

Thus, the target position to be achieved at t ¼ t1 is

p1 ¼ ðx1 ; 0; 0Þ. We assume the motion goal is conservative

enough to be feasible, even under heavy disturbances (i.e.

s1 can be reached by t1). The controller is able to achieve

the target position while absorbing the effect of distur-

bances (by temporarily maneuvering at faster or slower

speeds than the reference speed). Many trials are conducted

where the USV is repeatedly made to move from s0 to s1

under different conditions g (i.e. sea states and wave direc-

tions) and USV trajectory sðtÞ is recorded. The USV is

subjected to a superposed waves of varying frequency and

amplitude, as expected in a particular sea state as well as

varying local waves generated by traffic vessels. The kth

trial captures the evolution of the USV state under a par-

ticular realization of g. Given a set of trajectory samples

fskðtÞgnk

k¼1, the deviation from the optimal reference trajec-

tory can be characterized using two quantities: the maximal

cross-track error standard deviation (sct) and the maximal

along-track (sat) error standard deviation.

sct ¼ max
q2½0;t1�

s½fN q½tkðqÞ � �tðqÞ�gnk

k¼1�

sat ¼ max
q2½0;t1�

s½fT q½tkðqÞ � �tðqÞ�gnk

k¼1�

Here tk and �t denote the x� y path associated with sk

and �x, respectively. s½�� denotes the standard deviation

operator. Nq½�� and Tq½�� denote the normal projection

and tangential projection operator on the reference path

point �tðqÞ.
The maximal cross-track error standard deviation is

the maximum standard deviation of the normal distance

between the USV and the path over the entire time

interval t 2 ½0; t1�. The maximal along-track error stan-

dard deviation is the maximum standard deviation of

the tangential distance between the USV and the refer-

ence position over the entire time interval t 2 ½0; t1�. sct

and sat collectively capture the lateral position and

speed uncertainty experienced by the USV as it travels

toward a motion goal under influence of disturbance

parameter g.
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