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Abstract. We study properties of the energy minima obtained by quenching equilibrium
configurations of the Sherrington–Kirkpatrick (SK) mean-field spin glass. We measure the
probability distribution of the overlap among quenched configurations and the quenched energy,
looking at the dependence on the starting equilibrium temperature, and performing a systematic
analysis of finite-size effects.

1. Introduction

The local energy minima properties are analysed in several works on glass-forming liquids and
they are allowing a better understanding of the behaviour of these systems. The importance
of potential energy landscape in the physics of super-cooled liquids has already been pointed
out by Goldstein [1]. More recently Stillinger and Weber [2] formalized the idea that the
multidimensional energy surface can be partitioned into a large number of local minima, so-
called inherent structures (IS), each one being surrounded by its attraction basin. It is now
clear [3] that the low-temperature dynamics (i.e. for temperatures below the mode-coupling
critical temperature TMCT [4]) can be subdivided into intra-basin motion and crossing of energy
barriers by activated processes, taking place on a significantly longer time-scale.

A system in equilibrium below TMCT is ‘almost always’ trapped in one of the basins
accessible at this temperature. The huge number N ∝ exp(N�) of these ‘valleys’,
exponentially diverging with the system size N , suggested the scenario of an underlying
thermodynamic transition due to an ‘entropy crisis’ at the Kauzmann temperature TK < TMCT

where the configurational entropy � goes to zero [5], which was supported by recent analytical
work [6–8]. By looking at IS one can evaluate � numerically [8–10]. Moreover, the IS
energy turns out to be an interesting quantity for studying both the static and the dynamical
behaviour [9–13]. Differences between fragile and strong glasses were recently proposed to
be explainable within an energy landscape description, too [14].

The outlined picture of glass-forming liquids is reminiscent of that characterizing
generalized mean-field spin-glass models such as those involving p-spin interactions [15],
which display a dynamical ergodicity breaking at the temperature TD ≡ TMCT [16] (in this case
the barriers between basins are also infinite in the thermodynamic limit for TK < T < TMCT

because of the mean-field approximation), and a thermodynamic entropy-driven transition
at a lower temperature TK , corresponding to a one-step replica symmetry breaking (1RSB)
scenario. For T < TK one finds a non-trivial probability distribution of the overlap between
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states P(q) = mδ(q) + (1 − m)δ(q − qEA). Here qEA is the self-overlap of a state with itself,
whereas different states are orthogonal and have zero mutual overlap.

Several years ago, Kirkpatrick, Thirumalai and Wolynes [17] suggested that 1RSB
spin-glass models could be a paradigm of vitreous systems. The numerical study of out-
of-equilibrium dynamics in glass-forming liquids gives intriguing results [18–21]. The
measurement of P(q) among ‘glassy states’ is a subtle task [22–24], since one faces both
the problem of thermalizing the system down to very low temperatures and that of avoiding
possible crystalline minima whose basin of attraction could be non-negligible for small systems.
As recently proposed by Bhattacharya et al [23], to look at the inherent structures is helpful
also from this point of view, since it allows a more precise definition of the overlap and
make it easier to distinguish between glassy minima and crystalline or quasi-crystalline
configurations.

On the other hand, it is not completely clear a priori which kind of behaviour one
should expect for the Pquench(q) measured among energy minima obtained by quenching
equilibrium configurations instead of among equilibrium configurations themselves. To the
best of our knowledge, such a quantity has never previously been studied in a spin-glass model
(which is not surprising, since in this case equilibration is still feasible without difficulties
for moderate system sizes). More generally, little is known about properties of ‘inherent
structures’ in spin glasses, which (apart from analogies with glass-forming liquids) have their
own interest even in the well understood Sherrington–Kirkpatrick (SK) mean-field model.
In a previous work [25] one of the authors studied the energy minima of the SK model
obtained starting from random initial configurations (i.e. by quenching from infinite initial
temperature), whereas recently Crisanti and Ritort [26, 27] have performed both for a 1RSB
spin glass and for the SK model a numerical analysis of the static and dynamical properties
within the energy landscape description similar to that proposed in [9, 13] for a glass-forming
liquid, by looking, in particular, at the IS energy and at the configurational entropy. Their
results confirm the close similarities between 1RSB spin glass and structural glass energy
landscapes and the usefulness of this kind of approach, further suggesting a systematic
analysis.

In this paper, we perform an extensive numerical study of energy minima properties in
the SK model, considering initial equilibrium configurations both in the high-temperature
(paramagnetic) region and deep in the glassy phase. We look first of all at the behaviour
of the appropriately defined Pquench(q) which is compared with the corresponding (usual)
equilibrium one. Then we extend the analysis to the overlap of the IS with the configurations
from which they are obtained, which measure the (quite strong) correlations between them,
and we study systematically finite-size effects on the behaviour of the IS energy.

2. Model, observables and simulations

The Sherrington–Kirkpatrick spin-glass model [28] is described by the Hamiltonian

HJ =
N∑

i<j=1

Jijσiσj (1)

where σi = ±1 are Ising spins, the sum runs over all pairs of spins and Jij are random
independent variables with mean value Jij = 0 and variance 1/N . We take Jij = ±N−1/2.

This model is exactly solvable (since interactions have infinite range) and has a glassy
phase with full replica symmetry breaking (FRSB). In the case of zero magnetic field (the
one we consider here), taking into account the symmetry under inversion of the spins, the
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P(q) changes at the critical temperature TC = 1 from a δ-function at q = 0 (characteristic of
the paramagnetic phase) to the FRSB two δ-functions in q = ±qEA with a non-zero plateau
joining them. The transition is also continuous in the order parameter (at variance with 1RSB
models), i.e. limT →T −

C
qEA(T ) = 0, and there is no distinction between the dynamical and the

static transition [29], i.e. TD = TC .
The SK model is particularly suitable for the kind of study we are interested in, since its

behaviour is well understood and, on the other hand, by using optimized Monte Carlo methods
[30] one is able to thermalize large system sizes down to low temperatures, which allows us
to study finite-size effects systematically. We simulated N = 64, 128, 256, 512 and 1024,
averaging over 2048, 1024, 512, 384 and 192 different disorder realizations, respectively. The
program was multi-spin coded on different sites of the system (we store 64 spins in the same
word) and we used parallel tempering (PT) [30, 31], running simultaneously two independent
sets of copies (replica) of the system for each sample. Up to 50 (for the two largest sizes)
different temperatures between Tmin = 0.65 and Tmax = 3 were used, and we performed
from 100.000 PT steps for the smallest value of N = 64 to 300.000 for the largest value of
N = 1024.

The PT acceptance for the exchange of nearest-neighbour temperatures was never smaller
than 0.6. In the second half of the run we computed the specific heat both as the derivative
of the energy density with respect to temperature c ≡ d〈e〉/dT , and from fluctuations
c ≡ N(〈e2〉 − 〈e〉2)/T 2, looking for compatibility of results. This means comparing one-time
and two-time quantities, respectively, which is an effective way of checking thermalization,
particularly when using PT (note that in this case fluctuations involve different replicas
evolving at the same temperature at different times during the run). Nevertheless, we also
divided the second half of the run into (four) equal intervals, checking that there were no
evident differences in the values of the considered observables, P(q) and Pquench(q) in
particular. A further confirmation of the system being well thermalized comes from the
perfect symmetry with respect to the exchange q → −q probability distributions that we
obtained.

For each disorder realization and for each temperature, in the second half of the run, we
saved 1500 + 1500 equilibrium configurations from the two independent sets of replicas which
were subsequently quenched by a zero-temperature dynamics. The observables were computed
from these configurations and the corresponding energy minima, errors being evaluated from
sample-to-sample fluctuations. One should note that both P(q) and Pquench(q) are strongly not
self-averaging in the glassy phase, wherefore it was necessary to average over a large number
of samples even for large system sizes. The whole simulations would have taken about 2 years
of CPU time on a usual alpha-station, i.e. a few days when using 128 processors simultaneously
on a Cray T3E (the code is easily parallelized with an efficiency of close to 1 by running a
different disorder realization on each processor).

A subtle point concerns the quenching procedure. We are considering even values for
N , which means that the local field acting on each spin because of the other ones can
never be zero. Moreover, it is known [25], from the analysis of properties of quenched
configurations obtained starting from infinite temperature (i.e. a random initial configuration),
that different zero-temperature dynamics give qualitatively identical results. The ‘greedy
algorithm’, where the spin corresponding to the largest energy decrease is flipped at each step,
seems to stop more frequently in local high-energy minima than the ‘reluctant algorithm’,
where one flips the spin which gives the smallest energy decrease (i.e. the opposite of the
previous case). We choose to use an ‘intermediate’ zero-temperature dynamics, which is also
easy to implement. At each step, a randomly chosen spin is suggested to flip and at least
20N steps are performed after the last successful one before stopping. The probability that
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the final configuration is not a local energy minimum (under single spin flip) is therefore
∼ e−20, i.e. practically negligible. As a last remark, it should be stressed that such a quenching
procedure could possibly give energy minima which are not the ‘nearest’ IS to the starting
equilibrium configurations, i.e. which are less correlated but not more correlated than in the
analoguous glass-forming liquid case, where one generates ISs by following the path of steepest
descent.

Labelling by {σi}, {τi} the spins belonging to two configurations, the overlap is defined as

Q = 1

N

N∑
i=1

σiτi . (2)

The spin-glass order parameter, i.e. the equilibrium probability distribution of overlap among
states P(q, T ), is usually evaluated numerically as the histogram of the instantaneous overlap
Q between two replica (with the same disorder configurations) which evolve simultaneously
and independently at temperature T

P (q, T ) = PJ (q) = 〈δ(q − Q)〉 (3)

where the thermal average 〈·〉 corresponds to an average over time in the simulation, whereas
(·) denotes the average over Jij realizations. PJ (q, T ) can be equivalently measured from
two given sets of equilibrium configurations belonging to the two replicas, by considering the
overlap of each configuration of one set with all the configurations of the other. In this work we
evaluated PJ (q, T ) both during the simulation and from the saved configurations, obtaining
perfectly compatible results, which confirm that these configurations sample the phase space
accurately enough.

We define the quenched probability distribution of the overlap as

Pquench(q, T ) = 1

N 2
IS

NIS∑
ia ,ib=1

δ(q − QIS) (4)

where the sum runs over the NIS = 1500 energy minima obtained starting from the equilibrium
configurations at temperature T for each of the two replica sets. This definition, which
is analogous to that introduced in [23] for a Lennard-Jones glass-forming binary mixture,
implies that we are weighting each IS with the Boltzmann factor of the corresponding basin
at temperature T , as is usual in numerical studies on super-cooled liquids.

3. Results

3.1. The behaviour of Pquench(q)

We present in figure 1 data for the equilibrium overlap distribution P(q) (on the left) and for
the quenched overlap distribution Pquench(q) (on the right) at a temperature very close to the
critical temperature T = 1.05 = 1.05 TC , but still in the paramagnetic phase, for different
system sizes. It was shown in [25] that the Pquench(q) obtained from infinite-temperature
configurations becomes more and more concentrated in q = 0 for increasing N and it goes to
a δ-function in the thermodynamic limit. We find the same qualitative behaviour in the whole
high-temperature region T > TC = 1. It is very clear from figure 1 that there is no evidence
for replica symmetry breaking in the probability distribution of overlap between IS reachable
from equilibrium configurations at T � TC and weighted with the Boltzmann factor of the
corresponding basin at this temperature.
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Figure 1. The equilibrium P(q) (on the left) and the quenched one (on the right) at T = 1.05, a
value of the temperature slightly higher than TC = 1, for different values of the system size.

In other words, we know that for T < TC there is RSB, but we cannot detect it by looking
at the probability distribution of the overlap obtained with a fast quench starting from T � TC .
This result implies that also in the case of a glass-forming liquid the analogously defined
Pquench(q, T ) will be trivial when quenching from the paramagnetic (liquid) phase, even when
quenching down to a T value where RSB occurs (if it does). This is in agreement with the
behaviour reported in [23] for a Lennard-Jones binary mixture starting from T � TMCT .

In glass-forming liquids the overlap among IS is easier to define than the equilibrium
overlap: its use releases one from the careful consideration of possible crystalline or quasi-
crystalline configurations. Nevertheless, the quantity Pquench(q, T ) does not provide any
evidence for the existence or absence of RSB when avoiding the hard task of thermalizing
a super-cooled liquid down to low temperatures. One should also note that in 1RSB models
both P(q, T ) and Pquench(q, T ) are also expected to be trivial in the region TMCT > T > TK

(apart from finite-size effects), just because of the very large number ∼ eN� of ‘valleys’ (and
corresponding IS) which are almost all orthogonal [32], with zero overlap in the thermodynamic
limit.

After clarifying this point, we note that a more careful analysis of the data shown in
figure 1 (right) suggests the presence of a weak RSB, as already observed in Pquench(q, T = ∞)

[25]. In the whole paramagnetic phase, the ‘quenched’ probability distribution of the overlap
approaches its delta function limit δ(q) for N → ∞ much slower than the equilibrium one.
To quantify the N dependence, we introduce the function

f (q) ≡ − lim
N→∞

1

N
ln
[
PN,quench(q)

]
. (5)

The replica symmetry is broken in a weak sense if f (q) is zero in an extended region I though
Pquench(q) is a δ-function in the thermodynamic limit. This implies that PN,quench(q) is going to
zero slower than exponentially in this region and that therefore, by adding to the Hamiltonian a
quantity of order N (for instance, by using appropriate boundary conditions), one could obtain
any given value of the ‘quenched’ overlap q ∈ I . Our best numerical evidence for such a
behaviour comes from the study of

rN(q, T ) ≡ 1

Nν
ln

(∫ 1

q

dq ′ PN,quench(q
′, T )

)
. (6)

We obtain a practically T -independent estimate of the exponent for T > TC , ν = 0.68 ± 0.05.
This value is compatible with ν � 2

3 obtained from T = ∞ data in [25]. Though one observes
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Figure 2. rN (q) for the different system sizes at the
highest considered temperature T = 3 (top left), at
T = 1.8 (top right) and at T = 1.2 close to TC (bottom).
The data plotted by using our best numerical estimate
ν = 0.68 ± 0.05 display a small dependence on N in all
of the paramagnetic phase.

Figure 3. The equilibrium P(q) (left) and the quenched one (right) at T = 0.65 = 0.65 TC (the
lowest T -value we have considered) for different system sizes.

some deviations at large q, the weak N dependence of rN shown in figure 2 and the value of
ν that is significantly smaller than 1, strongly suggest that f (q) is zero on a finite interval I ,
where possibly I = [0, 1], i.e. Pquench(q) displays a weak breaking of replica symmetry.

On the other hand, at temperatures lower than TC , Pquench(q, T ) clearly shows the
characteristic behaviour corresponding to a full replica symmetry breaking. This is what
one would expect since RSB was already evident in the P(q) of the configurations we were
starting from. The qualitative similarities between P(q) and Pquench(q) are remarkable (see
figure 3). They are present for each disordered configurations: for instance, the number of peaks
found in a one-sample equilibrium PJ (q, T ) at a given T is preserved in the corresponding
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Figure 4. The Binder parameter from the equilibrium P(q) (left) and from the quenched one (right)
as a function of temperature for different system sizes.

PJ,quench(q, T ) too. FRSB features are even more evident when looking at Pquench(q): in
particular, the presence of a continuous plateau between the two self-overlap peaks is clearer
in figure 3 on the right than in figure 3 on the left, since the ‘quenched’ self-overlap takes larger
values, though it goes to one only for T → 0.

Finite-size effects play a similar role in the equilibrium and quenched cases: for instance,
it is clear from figure 3 that also the ‘quenched’ zero overlap probability Pquench(0, T ) does
not depend on N in the glassy phase, this being a well known test when looking for FRSB
[33]. To further investigate this point, we plot in figure 4 the ratio of cumulants,

B(T ) = 1

2

(
3 − 〈q4〉

〈q2〉2

)
(7)

as a function of T . We recall that this is the usual quantity one calculates in order to locate the
critical temperature, since finite-size scaling predicts that curves for different sizes intersect
at TC : this is the behaviour observed in figure 4 (left) (apart from corrections to scaling
when considering the smaller system sizes). Surprisingly enough, we find that the same kind
of finite-size analysis can be performed on cumulants obtained from probability distribution
among IS (figure 4 (right)). Though corrections to scaling are slightly more important in this
case, we see from figure 5, where the intersection points TC(N1, N2) for the different pairs N1,
N2 of considered system sizes as a function of N1 + N2 are plotted, that one obtains the correct
TC = 1 for N1, N2 → ∞.

We conclude that Pquench(q) is an interesting quantity to study. The results we have
shown could be particularly relevant when looking at glass-forming liquids, but the observed
behaviour suggests that this quantity could also help in further clarifying the glassy phase
properties of finite-dimensional realistic spin glasses (this is a very long-standing subject, see
for instance [33, 34]).

3.2. Correlations between equilibrium configurations and IS

After noting the similarities between P(q) and Pquench(q) one expects the presence of strong
correlations between equilibrium configurations and corresponding IS, particularly in the low-
temperature phase. To quantify them, we measure the probability distribution of the overlaps
qqt between each energy minimum and the configuration from which it is obtained, Pqt (q, T ).
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Figure 5. The intersection temperature of the
quenched Bquench(T ) for the different pairs N1,
N2 of considered sizes as a function of N1 + N2.

Figure 6. The probability distribution of the overlap
between equilibrium configuration and corresponding
IS Pqt (q, T ) for different sizes in the high-temperature
region at T = 3 (top left), at T = TC = 1 (top right) and
in the glassy phase at T = 0.65 (bottom).

As is shown in figure 6, we find a Gaussian-shaped distribution which goes toward a
δ-function in the thermodynamic limit both in the paramagnetic and in the glassy phase. We
observe that below TC , at variance with P(q) and Pquench(q), this probability distribution is
a self-averaging quantity, which is easily understandable since we are substantially looking at
overlaps between configurations related to the same state.

It is intriguing to note that there is no clear evidence for the underlying phase transition
when looking at this quantity. The mean value qqt (T ) (see figure 7) is increasing when the
temperature is decreasing, and limT →0 qqt (T ) = 1. The N dependence appears to be more
pronounced in the high-temperature region, where data are well fitted by the power law

qN,qt = q∞,qt +
C

Nα
. (8)
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Figure 7. qqt (T ) for different sizes as a function of
temperature.

Figure 8. q∞,qt (T ) as obtained by fitting data for different system sizes (left) and our best fit by
using data on the overlap between random initial conditions and the corresponding minima found
(right), which give limT →∞ q∞,qt (T ) � 0.1.

We show in figure 8 our estimates for q∞,qt (T ) (left), which gives, in particular ,q∞,qt (TC) ∼
0.4, and our best fit using data for the overlap between random initial conditions and
corresponding minima (right), i.e. limT →∞ qqt (T ). Also in this case, we obtain a non-zero
value (∼ 0.1) in the thermodynamic limit. Nevertheless, it should be stressed that we are
confined to a relatively small range of system sizes, which makes a reliable estimation of the
error of q∞,qt very hard.

It would be interesting to understand how much these correlations vary when looking
at different models. In agreement with our results, in [26], for the considered volumes it
was quoted qqt ∼ 0.4 for the SK slightly above TC , to be compared with the higher value
qqt ∼ 0.94 found for the 1RSB model (ROM) at a temperature higher than the mode coupling
TMCT , which suggests the presence of stronger correlations between equilibrium configurations
and corresponding IS in the glass-forming liquid case, and therefore a Pquench(q, T ) with a
behaviour even closer to the one at equilibrium.

3.3. The IS energy

In figure 9 we show the equilibrium energy e(T ), as a function of the temperature T (only
weakly dependent on the system size). In figure 10 (left) we present data on the IS energy
equench(T ), i.e. the mean energy of the minima accessible from equilibrium configurations
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Figure 9. The equilibrium energy as a function of T for the
different system sizes.

Figure 10. The quenched energy (left) and its derivative with respect to the temperature (right)
as a function of T for the different system sizes N . In the inset on the right, the temperature
corresponding to the maximum of dequench/dT is plotted as a function of 1/N .

at a given temperature and weighted with the Boltzmann factor of the corresponding basin.
The behaviour of this quantity changes abruptly from a nearly T -independent value (in the
high-T regime) to the approximately ∝ T decreasing of the low-temperature region, where
the IS energy continuously goes towards the ground-state value (which is known analytically,
e0 = −0.7633). Correspondingly, the derivative dequench(T )/dT , which is plotted in figure 10
(right), displays a maximum and takes very small high-T values (note the logarithmic scale).

Data on the position Tmax(N) of the maximum of dequench(T )/dT as a function of N are
shown in the inset and give evidence for limN→∞ Tmax(N) = 1 = TC . Our finite-size analysis
therefore confirms [26] that in the N → ∞ limit equench(T ) takes the constant threshold value
[29] eth for T > TC . The behaviour in this region agrees well with the power law

eN = eth + C/Nα (9)

giving a constant eth = −0.7145±0.004, which is our best numerical estimate for the threshold
energy, down to T ∼ 1.1 near to the critical temperature (and also still compatible with this
value at TC). We note that this estimate is in perfect agreement with eth � −0.715 quoted
in [25] that was obtained by fitting data on IS reached from random initial conditions by a
sequential quenching procedure (this value could depend on the considered zero-temperature
dynamics). The exponent α is increases slightly when going to lower temperatures and varies
between α = 0.34 ± 0.04 at T = 3 and α = 0.43 ± 0.06 at T = TC .

It is interesting to stress that finite-size corrections to the asymptotic behaviour look
very important, as shown by the small α value we have found. Correspondingly, for all the
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considered sizes (up to the quite large volume, N = 1024) the IS energy becomes roughly
constant only at temperatures definitely higher than TC . A similar behaviour with strong
finite-size corrections is found in [26] for the considered 1RSB model at T > TMCT too.

Conclusions

We have presented numerical results about the properties of energy minima in the SK model.
The probability distribution of the overlap between IS weighted with the Boltzmann factor of
the corresponding basin at temperature T , Pquench(q, T ), turns out to be qualitatively similar to
the equilibrium overlap distribution P(q, T ) at the same temperature T . We found a trivially
shaped Pquench(q, T ) over the whole paramagnetic (T > TC = 1) phase, whereas the FRSB
behaviour characteristic of the glassy phase is evident from data on Pquench(q, T ) only when
looking at energy minima obtained from equilibrium configurations at a temperature definitely
lower than TC . A finite-size analysis of the Binder parameter for Pquench(q, T ) gives the same
estimate of the critical temperature as the usual (equilibrium) one.

These results can be particularly relevant for glass-forming liquids, where the overlap is
more precisely definable between IS [23], but they also imply that numerical evidence for
replica symmetry breaking cannot be extracted from data on Pquench(q, T ), which have been
obtained from configurations at equilibrium at temperatures above the possible glass transition
temperature (in that case TK < TMCT ).

The analysis of finite-size corrections to the IS energy confirms [26] that it is approaching
the expected thermodynamic limit behaviour eIS = constant = eth for T > TC , whereas it
appears to be continuously decreasing for T < TC .
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