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ABSTRACT

We study low- and high-latitude fast solar wind data from the Ulysses spacecraft from 1992 to 1994 using for the
first time a systematic method to analyze the anisotropic content of the magnetic field fluctuations beyond second-
order correlation functions. We investigate all available frequencies, 1-10~° Hz, for both high- and low-latitude
data sets in which mean magnetic field points parallel and perpendicular to the mean flow, respectively, and we are
able to quantify the relative importance of the anisotropic versus the isotropic fluctuations. We analyze, up to sixth
order, longitudinal, transverse, and mixed magnetic field correlations. Our results show that strongly intermittent
and anisotropic events persist even at high frequencies/small scales, indicating the absence of a complete recovery
of isotropy. Our study shows for the first time the existence of intermittent anisotropic contributions at all scales in
solar wind. Analyses of anomalous scaling of quantities that mix isotropic and anisotropic fluctuations, like
longitudinal structure functions, may therefore be flawed by systematic uncontrolled errors. Anisotropic scaling
properties are compatible for high- and low-latitude data, suggesting a universal behavior in spite of the different
rate of evolution of the fast solar wind streams in the two environments.

Subject headings: interplanetary medium — methods: data analysis — methods: statistical — solar wind —

turbulence

1. INTRODUCTION

The solar wind is an inhomogeneous, anisotropic, and com-
pressible magnetized plasma in which both velocity and mag-
netic fields fluctuate over a broad range of frequencies and
scales; see, e.g., the reviews of Tu & Marsch (1995) and Horbury
& Tsurutani (2001). Fluctuations may originate either from the
nonlinear interactions between solar wind structures, such as the
velocity streams (Coleman 1966, 1968; Matthaeus et al. 1990),
or via interacting Alfvén waves produced close to the Sun and
carried by the wind (Belcher & Davis 1971; Dobrowolny et al.
1980; Leamon et al. 1998). Observations of the radial evolution
of magnetic fields in the inner heliosphere show the presence of
fully developed turbulent spectra within a frequency range of
10~* to 10-1 Hz (Bavassano et al. 1982).

The spectral index depends on the frequency range and on
the distance from the Sun, varying from —1.2 to —1.7. Low-
frequency measurements are performed ataround 10> to 1072 Hz
(Coleman 1968), while high-frequency measurements sample the
range closer to 1072 to 10~! Hz (Bavassano et al. 1982; Leamon
etal. 1998; Horbury & Balogh 2001). The spectral index tends to
flatten closer to the Sun, indicating that turbulence is evolving in
the solar wind.
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Anisotropy in terms of the solar wind turbulence may mean
different things: on the one hand there is the fact that the tur-
bulence is Alfvénic; i.e., the correlation between magnetic and
velocity field fluctuations in the solar wind corresponds to out-
wardly propagating Alfvén waves. In addition, the fluctuations
in total magnetic field magnitude are small compared to the
magnitude of the field fluctuations, implying that the magnetic
field vector moves approximately on a sphere. Finally, there are
preferred axes due to the overall solar wind expansion and the
effect of solar rotation, which effectively causes the average
magnetic field to become orthogonal to the radial at large dis-
tances from the Sun: this should happen preferentially at low
heliomagnetic latitudes (i.e., the ecliptic plane), although a simi-
lar effect may occur even in the high-latitude heliosphere due to
very low frequency transverse magnetic field fluctuations (i.e.,
the very low frequency part of the Alfvénic spectrum).

Phenomenological theory of hydrodynamic turbulence
(Kolmogorov 1941) predicts a value of —5/3 for the spectral
index, while the theory of Alfvén wave-driven magnetohydro-
dynamic (MHD) turbulence of Iroshnikov (1963) and Kraichnan
(1965) predicts a slope of —3/2. Neither prediction takes into
account the possible influence of anisotropies and the presence of
intermittence (Burlaga 1991, 1992; Marsch & Liu 1993; Carbone
1993; Feynman & Ruzmaikin 1994; Carbone et al. 1995b; Horbury
& Balogh 1997; Ruzmaikin et al. 1995; Bruno et al. 2003; Hnat
et al. 2003; Bershadskii & Sreenivasan 2004) in a systematic way.

The presence of anisotropy makes it difficult to compare
observed data with the two predictions, while the presence of
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intermittence tells us that the characteristics of the spectrum
are not sufficient to characterize the system: higher order sta-
tistics need to be taken into account. In particular, spectral in-
dices alone are insufficient to discriminate amongst turbulence
models.

Anisotropy has been measured by various techniques in-
volving the calculation of second-order moments of the field
either in the real or Fourier space, such as the variance matrix or
the power spectra (Belcher & Davis 1971; Carbone et al. 1995a).
The eigenvector of the variance matrix corresponding to the
minimum eigenvalue is usually known as the minimum variance
direction. This direction is aligned with the large-scale mean
field, indicating suppression of turbulence in that direction
(Leamon et al. 1998; Bruno et al. 1999). Several MHD models
and numerical simulations incorporate at various levels the asym-
metry of the spectral indices in the field-aligned (longitudinal) and
transverse directions (Shebalin et al. 1983; Zank & Matthaeus
1992; Ng & Bhattacharjee 1996; Goldreich & Sridhar 1997;
Matthaeus et al. 1998; Oughton et al. 1994). Although this is a
possible way to characterize anisotropy, second-order longitudi-
nal and transverse structure functions contain both anisotropic and
isotropic contributions, as is detailed in § 2. Those two contribu-
tions, always mixed, need proper treatment to be disentangled. A
more systematic approach for analyzing anisotropy is therefore
important. Moreover, the relation between anisotropy and inter-
mittence has not been investigated so far.

We present in this paper a method for extracting in a sys-
tematic way, from the one-dimensional spacecraft data, infor-
mation on the anisotropy and intermittence of the magnetic field
fluctuations, and the interplay between them. We base our anal-
ysis on the behavior of both diagonal and nondiagonal compo-
nents of higher order structure functions. We have systematically
compared isotropic and anisotropic fluctuations at different scales
and for different magnetic correlation functions. We measure how
fast isotropy is recovered at small scales, concerning both typical
fluctuations of the order of the mean standard deviation and highly
intermittent events, affecting more the tails of the magnetic field
probability density atall scales. We use Ulysses data of high-speed
streams at two different points along its orbit, at high and low lat-
itudes, in order to assess the dependence on the large-scale prop-
erties of the small-scale anisotropic fluctuations, i.c., the issue of
small-scale universality.

The paper is organized as follows. In § 2 we present the set of
observables needed to have a systematic control on the isotropic
and anisotropic ensembles. In § 3 we present our data set and in
§ 4 the main results for both the low- and high-latitude data.
Section 5 summarizes our findings suggesting further possible
investigations.

2. ANISOTROPY AND STRUCTURE
FUNCTION ANALYSIS

In the solar wind, as in other magnetized plasma, a strong
mean magnetic field component is present. The idea of dis-
tinguishing between isotropic and anisotropic fluctuations arises
naturally when one separates out the mean field component B’
and the fluctuating part B from the total field b,

b=B"+B.

The mean field component acts as a source of anisotropy for the
spatiotemporal evolution of the fluctuations. A key question is to
understand how these “external” causes influence the anisotropic
content of the field fluctuations at different spatial and temporal
scales. The only way to do it in a systematic— controlled—way is
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to decompose the field correlation functions over a suitable set
of eigenfunctions that incorporate information about anisotropy.
Such eigenfunctions are the eigenfunction of the group of rotation
[SO(3)] and correspond to the spherical harmonics decomposition
in the simple case of scalar functions.

Structure function decomposition into isotropic and aniso-
tropic components has already been exploited with success in
hydrodynamics, both for experimental and numerical data anal-
ysis (Arad et al. 1998, 1999; Kurien & Sreenivasan 2000;
Biferale & Toschi 2001; Biferale & Vergassola 2001; Shen &
Warhaft 2002b; see also Biferale & Procaccia 2005 for a recent
review). For magnetized flows, it has been fruitfully employed
in the simple case of MHD systems in which the magnetic field
does not react back on the velocity, for a class of stochastic flows
known as Kraichnan flows (Falkovich et al. 2001; Lanotte &
Mazzino 1999; Arad et al. 2000). For both the case of pure
hydrodynamics and the MHD systems described above, it has
been shown that anisotropic fluctuations of the velocity and/or
magnetic fields are characterized by an anomalous scaling,
explaining the higher than predicted anisotropy found in the
gradient statistics (Shen & Warhaft 2000, 2002a; Biferale &
Vergassola 2001). It is desirable to check whether such a strong
small-scale anisotropy is also found in real world magnetized
plasmas such as the solar wind or if a full recovery of isotropy is
observed in that case.

The way to assess the relative isotropic/anisotropic content
at all scales is to perform a decomposition of the correlation
functions, of order 2 and higher, over the eigenfunctions of the
rotation group, as shown below. Spacecraft data are inherently
one-dimensional and therefore not directly suitable for an SO(3)
analysis, which requires the whole field in a three-dimensional
volume, to be systematically worked out. However, we show how
it is possible to extract, from the data, those correlation functions
that do not contain any isotropic contribution. Their measure can
be used to quantify the degree of anisotropy of the fluctuations
(Kurien & Sreenivasan 2000; Staicu et al. 2003; Jacob et al.
2004).

Our data analysis is based on a set of multiscale correlation
functions, built upon different combinations of magnetic field

Qy (r)’
depending on a single separation (r), is built from the n spatial
increments of magnetic field components:

S o (1) =(6:Ba, 6,Bq, - -

AYyenny

orBa,), (1)
where
6rBa = Ba(x + r) - Ba(x) (2)

is the difference between the values of component B,, at two
different points a distance » away. Angle brackets in equation (1)
indicate the average over the locations x. Note that in equation (1)
we have assumed homogeneity but not isotropy; i.e., the corre-
lation functions keep their explicit dependence on the full vector r.
The correlation function (eq. [1]) includes both isotropic and
anisotropic contributions:

S(n) .A,(yn(r) _ S(n),iso a,,(r) + S(n),aniso (r) (3)

ay,. Qpyeeny A,y .0

Let us remark that isotropic components are always present for
any field; i.e., it is not possible to define a field that only has
purely anisotropic statistical fluctuations, all projections on the
isotropic sector of all correlation functions vanishing. On the
other hand, fields with purely isotropic correlations do exist. We
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TABLE 1
Low-LATITUDE AND PoLAR DATA SETS

Latitude Distance Speed (B)

Data Set Days (HGL) (AU) (km s~ (nT)

Low-latitude................ 1992 209 to 1993 137 —15 to —30 53-4.7 750 0.47
Polar.......ovververinnn. 1994 245 to 265 —~79.7 to —80.2 2.37-2.23 760 1.3

are therefore interested in disentangling the anisotropic and the
isotropic contributions to the fluctuations. In principle, aniso-
tropic contributions can be further classified. In this study we
limit ourselves to disentangling the isotropic contribution from
the anisotropic one, without entering the more subtle problem of
separating out all the different anisotropies (the interested reader
may consult Arad et al. [1999] and Biferale & Procaccia [2005]
for a detailed illustration on how to proceed in this direction).

For n =2 and a; = oy in equation (1), we get the well-
known positively defined second-order structure function, con-
nected to the energy spectrum E, (k) = (|B,(k)|*) via a Fourier
transform. Another widely used form of equation (1) is the
longitudinal structure function, obtained by projecting all field
increments along the separation versor, 7: S} (r) = ((6,B *F)").
The general form of the tensor in equation (1) for n = 2 in the
case of a fully isotropic and parity invariant statistics, is given by
the combination of the separation vector r and the only isotropic
second-order tensor, the unity matrix 6, g:

S(Z)’iso(r) = <5rBOt| 6rBﬂz>iso = a(r)(salﬂz + b(}")l"m Tay, (4)

ar,00

where a(r) and b(r) are two scalar functions depending only on
the amplitude » = |r|. Similarly, the expression for the fourth-
order isotropic tensors, S{P° (r), comprises three scalar func-
tions, c(r), d(r), and f(r):

S(4),iso

Qap,00,003,004

(r) = <6rBDz1 6I‘Baz 57'3043 6VBD‘4>iSO

= f(r)roq TayVasVay + C(I")(éal es) 50&3-114 + perm.)
+ d(r)(0ay axasT oy + perm.). (5)

Analogous expressions hold for higher order isotropic correla-
tion functions. The key observation is that by a suitable choice of
the combination of indices ay, - - -, «, and of the orientation r,
one may have the isotropic components vanish at any order n in
equation (3). From now on, let us fix the separation distance in
the x-direction so that r = (r, 0, 0). For the case n = 2, when
a1 # ap, the resulting isotropic components vanish. We there-
fore have three different second-order correlation functions that
are purely anisotropic. When the order n of the correlation func-
tion is even, it is enough to take an odd number of field increments
in two different directions to have a purely anisotropic observ-
able. Therefore a possible set of purely anisotropic correlations
have the form

S = (6.B26.85) (p+g=m,  (6)

with both p and ¢ odd. The above nth-order correlation has a
vanishing isotropic component when the combinations of in-
dices « = x and 3 =y, z are taken.

Before presenting the results of our data analysis, let us briefly
comment on the translation from time series to spatial signals
in our data set. Of course, as is the case for all spacecraft data,
we only have access to the time evolution of the magnetic field

along the orbit. We therefore cannot make an explicit evalua-
tion of simultaneous field increments over space. Nevertheless,
the advecting velocity speed is so high (see next section for a
summary of the main physical relevant quantities) that in the
range of frequencies we are interested in, it is possible to safely
adopt the Taylor hypothesis and translate time increments into
spatial increments. The Taylor hypothesis consists of supposing
the three-dimensional field as frozenly advected by the under-
lying large-scale velocity field, ¥ (Frisch 1995). Field increments
in the same spatial point at two times, ¢,¢’, are considered equal
to the instantaneous field increments over two spatial locations, x
and x + r, with r = V(¢' — £). Therefore, for us, the r-direction
is fixed and given by the direction of the wind at the location of
the spacecraft that is, within a few percent, the spacecraft-Sun
direction. This direction, as noted above, we take as our reference
X-axis. Spatial homogeneity is translated via the Taylor hypothesis
into temporal stationarity.

3. ULYSSES DATA SET

The Ulysses orbit samples the interplanetary plasma at dis-
tances varying approximately from 1 to 6 AU, on a polar orbit. It
is therefore possible to follow the evolution of plasma charac-
teristics with distance and latitude. We use two different sets of
data: the first one was taken by Ulysses during 1992—1993, when
the spacecraft was at about 20° heliographic latitude and 5 AU
distance from the Sun. The second was taken at the end of 1994,
with Ulysses above the South Pole, at about 80° latitude and a
distance of about 2 AU from the Sun. The mean field direction
coincides with the radial direction in the case of the polar flows,
and it is perpendicular to it, close to the y-direction, for the low-
latitude data around 5 AU. This allows calculation of structure
functions where the mean field lies in two different direction,
parallel and perpendicular to the mean flow. This 1994 data set
has just recently been made available to the community by the
Ulysses team. Solar activity was, during the 1992—1993 period,
declining, after the 1990 maximum. In 1994, the cycle was ap-
proaching the minimum of 1996. Each daily data set provides
the magnitude of all three components of the interplanetary
magnetic field, taken at the rate of 1 or 2 s by the Vector Helium
Magnetometer on board (Balogh et al. 1992). In Table 1 we
report, for the two data sets, the interval of time considered, the
heliographic latitudes spanned, distance from the Sun, average
speed of the wind, and average magnetic field intensity.

We preprocess data in order to clean spikes due to instru-
mental problems or to large shocks. This is made by exclud-
ing those data for which the jump in the magnetic field between
two consecutive data points (usually 1 s apart) is larger than a
threshold, A B, of the order of the mean large-scale magnetic
field. A fraction of data points as small as 105 is discarded this
way. As a result, we can access magnetic field fluctuation on a
range of frequencies of almost six decades. In Table 2 we detail
the total number of data points in the data set, the number of data
points discarded, Ney, the fraction of the latter to the total, the
threshold on the maximum jump between magnetic field for
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TABLE 2
DATA SELECTION

AB  (B)

Data Set N Nexel Nexet/N (nT) (nT)

Low-latitude...................
High-latitude .................

3,915,792 78
1,476,051 36

2.0E-5 0.5 0.47
24E-5 1.2 1.30

consecutive data points, and the average field intensity for the
whole data set.

The availability of years of high-quality 1 s resolution records
of data from the Ulysses spacecraft and the efficient algorithm for
structure function calculation have made it possible to achieve
such a broad range of frequencies. In fact, differently from power
spectra, structure function calculations are insensitive to both
nonequally spaced data and, more importantly, gaps in the data,
originating either from instrumental failures or from the oscil-
latory character of the wind data. Thus, our algorithm calculates,
for each data point and a chosen time interval 7, the difference in
the magnetic field values between time ¢; and time ¢ 4 7. If no
data point is found at time ¢ + 7, the magnetic field is interpo-
lated between the values at the two nearest times. This way in-
terpolation is only performed over field values separated by the
shortest sampling time (1 or 2 s, in the present case). If, instead, a
gap in the data is hit at the time ¢ + 7, interpolation is only per-
formed when gap width is less than 4 s.

3.1. Low-Latitude Data Set

The alternating pattern of slow and fast wind is shown in
Figure 1, spanning a 10 month period, from 1992 day 209 to
1993 day 137. Within this period, we selected those sequences,
of about 5 days each, when spacecraft is embedded in the trailing
edges of high-speed streams and velocity is above 650 km s—1.
The days selected are, in 1992, 209-214, 235-241, 259-263,
337-342 and, in 1993, 28-34, 53-57, 81-85, 108113, 133—
137. They are highlighted in Figure 1 within vertical lines.

3.2. High-Latitude Data Set

Twenty-one consecutive days around the maximum latitude
reached at perihelion, during the fast latitude scan of 1994, are

1000 T T T T T T T
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Fic. 1.—Plasma velocity sampled by the Ulysses spacecraft between 1992
day 209 (July 27) and 1993 day 137 (May 17). Spacecraft was between —15°
and —30° heliographic latitude, approaching the Sun at a distance varying from
5.3 to 4.7 AU (see Table 1). Vertical lines highlight selected intervals in the
trailing edges of high-speed streams.
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Fi6. 2.—Second-order longitudinal structure function, S?(r,), for each in-
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terval comprising the low-latitude data set (see Fig. 1), as a function of the
separation 7. In the inset, the second-order purely anisotropic structure func-
tion, SO (ry).

3 Nxz

selected. Differently from the previous data set, only the fast com-
ponent of the wind is present. Table 1 lists latitude range, distance,
average speed, and average magnetic field for this data set as
well.

4. RESULTS
4.1. Equatorial Data

We want to first test the consistency between the disjoint sets
making up the low-latitude data set of Figure 1. The second-
order longitudinal structure functions, calculated for each of
those intervals of contiguous data, are shown in Figure 2. They
are consistent with each other over more than five decades, from
1 to 10° Hz in the spacecraft frame, which translates, with a
mean plasma velocity of 750 km s~!, into a range of 7.5x 10~!
to 7.5 x 10* Mm. Some intervals have a more intense signal than
others do.

The anisotropic component S2' shown in the inset of the
same figure displays a similar behavior. We conclude that data
from different intervals are commensurable and combine them
together to obtain more stable statistical results. We refer to the
combined set as the “low-latitude” data set without further
distinction.

Let us now compare the undecomposed second-order struc-
ture functions with their anisotropic content. In Figure 3 we plot
the longitudinal structure functions of second order, S)S’Z)Z(rx) and
the two transverse structure functions in the directions perpen-
dicular to the %-axis, S{P(r,) and SP(r,). All these functions
have both isotropic and anisotropic contribution:

Son(re) = ST () + SO0, (7)
The two purely anisotropic second-order structure functions
§&)(r) and SP(r,) are plotted in the same figure. A few com-
ments are in order. First, we note that the anisotropic correlations
have a smaller amplitude with respect to the full correlation
functions. This suggests that the isotropic contribution in the
decomposition (eq. [3]) is dominant. Moreover, we see that the
anisotropic curves decay slightly faster than the full correlation
by decreasing the scale. In other words, isotropic fluctuations
become more leading going to small scales, but they do so very
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Fic. 3.—Second-order longitudinal, transverse, and purely anisotropic
structure functions. Low-latitude data set. The top three curves show the lon-
gitudinal and transverse structure functions: solid line, S&); open circles, Sy ),
filled circles, S2. Error bars are superimposed on S Errors are evaluated as
the standard dev1at10n of the individual intervals comprising the whole data
set. The reference slope has angular coefficient of 0.7 and is shown for ease of
comparison. The lower curves show the purely anisotropic structure functions:
S(Z) filled triangles; S\, open triangles; S;zz), open squares. Error bars are super-
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1mposed on S(z) Scaling exponents for the anisotropic components, indicated in
Table 3, are evaluated in the range 20—2 x 103 Mm. Inset: Fourth-order struc-
ture functions, longitudinal, transverse, and purely anisotropic. Solid line, S© _;

> Mxxoxx

open circles, SW) ; filled circles, S,(.z) Purely amsotroplc structure functions are
4

Siy)),} , filled triangles; S&)_, open triangles; sz, and open squares. Scaling ex-

ponents for the anisotropic components are evaluated in the range 20—2 x

10> Mm; see Table 3.

slowly. This is consistent with the recovery-of-isotropy as-
sumption observed in some MHD models (Lanotte & Mazzino
1999; Arad et al. 2000). We conclude that in the solar wind
magnetic field becomes more and more statistically isotropic at
small scales, if we limit ourselves to second-order correlation
functions.

However, in order to more precisely assess this issue, it is
important to control higher order statistical objects, i.e., the
whole shape of the probability density distribution, at all scales.
In the inset of Figure 3 we show the same comparison between
longitudinal, Sg;x(rx), transverse, (m(m(’”x) (with @ =y, z), and
purely anisotropic correlations of fourth order (see caption in
the figure). Now the situation is quite different. First, the inten-
sity of some purely anisotropic components are much closer to
those with mixed isotropic and anisotropic contributions, i.e.,
the longitudinal and transverse structure functions. Second, the
decay rate as a function of the scale is almost the same: no re-
covery of isotropy is detected for fluctuations of this order any
more . This is the signature that anisotropy is mainly due to in-
tense but rare events affecting high-order moments more than
second-order moments. Let us note that out statistical data are
quite stable, as shown by the small variations for different sub-
samples in Figure 2 and from the error bars estimates in Figure 3.
A similar, even more pronounced, trend is observed for sixth-
order quantities (not shown). The persistence of strong aniso-
tropies at high frequencies (small scales) cast some caveat on
measurements of quantities that do not properly disentangle the
isotropic from the anisotropic components. As we show below
when we consider the case of high-latitude data, anisotropic com-
ponents have strong variations in intensity depending on the
position on the solar orbit. Therefore, both latitude and distance
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from the Sun influence the amount of anisotropy. As a result,
undecomposed quantities that are influenced by both isotropic
and anisotropic fluctuations are expected to be nonuniversal,
the anisotropic content being dependent on the spacecraft po-
sition and latitude. This must hold for the spectrum and even
more for higher order structure functions.

4.2. Intermittence

Anisotropic fluctuations are not the unique source of com-
plexity in solar wind data. It is well known that both magnetic
and velocity fields are strongly intermittent; i.e., their statistical
properties at different scales cannot be simply superimposed by
rescaling. This implies the existence of anomalous scaling laws
in the structure functions and “fat tails” in the PDFs of field
increments (Frisch 1995). Here we want to address this issue for
the first time for the anisotropic sectors. The main conclusion
will be that anisotropic correlations also show anomalous scal-
ing, their PDFs becoming more and more non-Gaussian at small
scales. Moreover, anisotropic fluctuations have different overall
weights at different distances and latitudes. A blind analysis of
correlation functions without proper disentangling of isotropic
from anisotropic contents may be flawed by systematic uncon-
trolled errors. In Figure 4 we show the kurtosis of both the
longitudinal and transverse structure functions, i.e., the ratio
between fourth-order moments and the square of the second-
order moments of longitudinal and transverse increments:

Sé‘lim(m
sl

A Gaussian variable would have a kurtosis of 3, independent
of the scale, while all three curves grow at small scales. We
stress once more that these quantities probe both the iso- and
anisotropic physics. Therefore, the scaling properties are cer-
tainly affected by the superposition of different contributions.

KO) =

(8)

10' 102 10° 10*
r, [Mm]

Fic. 4—Kaurtosis (eq. [8]) of longitudinal and transverse magnetic field fluc-
tuations. Solid line, K(*)(r,); open circles, K )(r); filled circles, K. @ (r,). The
straight line shows a linear fit in the range 20— 2 %103 Mm, with slope —0.31, for
the longitudinal component. An analogous fit for the two transverse ones returns a
value of —0.38. The horizontal line corresponds to the Gaussian value of 3,
attained only at large scales. Inset: Purely amsotroplc kurtosis (eq. [9]). Ky, () y (1),
filled triangles; K ¥)(r), open triangles; K 9 (), open squares. The stralght line
has a slope of —0. 8 and represents the scalmg behavior of xa“"" for the xz com-
ponent. Scaling is evaluated in the interval 20—2 x 103 Mm; see also Table 3.
Low-latitude data set.
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TABLE 3
UNIVERSALITY: SCALING ExPoNENTS (EQs. [9], [11], anp [12])

Data Set aniso CZniSO aniso Xiniso Xgniso
Low-latitude ......c.ccoeveernnnnenencns 0.75 £ 0.15 (xp) 0.8 + 0.3 (™) 1.2 £ 0.4 (exxyyy) —0.6 £ 0.2 (xy) —-1.2+0.3 ()
0.95 £ 0.10 (x2) 1.0 = 0.15 (xzzz) 1.2 + 0.2 (xxxzzz) —0.8 £0.2 (xz2) —1.5+0.3 (x2)
0.75 £ 0.10 (y2) 1.0 £ 0.25 (yzzz) — —0.45+0.2 ()2) —
High-latitude ........cccceeveiinenne. 0.75 £ 0.15 (xy) 0.8 + 0.2 (xxxy?) 1.1 £ 0.3 (xxexyyy) —0.6 £ 0.2 (yx%) —1.1£0.3 (xy)

# Third-order contribution for these entries comes from the first component rather than from the second one, as all other cases considered.

In § 4.1 we showed that the isotropic sector is never sub-
leading. We may therefore consider the above result as a con-
firmation that the isotropic fluctuations are indeed strongly
intermittent.

Similarly, to investigate intermittence in the anisotropic sec-
tor, it is useful to define a purely anisotropic kurtosis, by taking
the adimensional ratios of fourth-order and second-order an-
isotropic correlation functions:

. SY . ()
K™ = s~ 9)
[s8)]

where « and 3 are chosen so that contributions from the iso-
tropic sector in both the numerator and the denominator vanish.
The anisotropic components of the kurtosis (eq. [9]) are shown
in the inset of Figure 4.

Functions are increasing toward small scales, with slopes of
XA = —0.6 £0.2, Y30 = —0.8 £0.2, xi"° = —0.45+0.2
for the xy, xz, and yz components, respectively (see Table 3). This
is the first clear indication, to our knowledge, that anisotropic
fluctuations in the solar plasma are strongly intermittent. Similar
trends are observed for generalized kurtosis of sixth order (not
shown):

(6)

. SO () e
6), BEV X
KO0 () = % ~r (10)
(50
There, our best estimate for the exponents is X(g‘nis") =-12+

aniso

0.3, xy component, and X, = —1.5 + 0.3, xz component.

Let us here remark that the quantity in equation (9) is not
constructed from ratios of fourth- and second-order moments
of the same observable; i.e., it is not, rigorously speaking, the
kurtosis of a stochastic variable. Nevertheless, it is a good probe
of the relative intensity of fourth- versus second-order aniso-
tropic moments, the best that can be done with a one-dimensional
set of data.

A power-law fit of the numerator and denominator of equa-
tions (9) and (10) can be used to directly measure the scaling
exponents of the second order,

(amso)
SO ~ 1 (11)

and higher order anisotropic correlation functions,

(aniso) (aniso)
4 9 6 G
S(iﬂ)ﬂﬂ(’”x) ~ 1yt S((m)aﬁﬁg(”x) ~ry (12)

with, as customary now, «,3 are chosen in such a way that
only purely anisotropic quantities are returned. We found
Cg“nis") =0.75 4+ 0.1 for the xy component, ¢({*"** = 0.95+
0.1 for the xz component, and ¢ = 0.75 £ 0.1 for the yz
component, see Table 3. Values for the fourth and sixth orders
{@i0) and ¢ may also be read out from the same table.
Error bars are estimated from the maximum and minimum
slopes consistent with the error bars in the range of scales
from 20 to 2 x 10> Mm. Missing entries in the table indicate
that the scaling properties were not well defined within that
range.

The above results show that anisotropic fluctuations, although
never becoming the leading ones, are still important at small
scales. Order by order, the undecomposed correlation function is
more intense than any anisotropic projection. This can be visu-
alized, for the fourth and sixth orders, by plotting the ratio be-
tween the undecomposed object and one anisotropic projection:

SEL(r) SO (r)
GO = 2= GOy = el gy
SEL(ry) Sl (13)

These quantities never increase at small scales, indicating that
isotropic contribution in the denominator is leading with re-
spect to the anisotropic; see Figure 5. Another quantity that
can be used to characterize the relative weight of anisotropic
to isotropic fluctuations, may be built from an nth-order an-
isotropic moment and the n/2 power of a second-order iso-
tropic moment (Shen & Warhaft 2002b; Biferale & Vergassola

,f e ng)(rx)
10° ¢ .""o..

y O,
10" | ° F“(rx) 000 1

Fic. 5—Generalized flatness Ggg(n.) and Fg’;(rx) of orders 4 and 6 from
eqs. (13) and (14) for components xz and xy. Low-latitude data set.
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2001). For example, in our geometry, one possible choice
would be

5@ 56
F )Sj) ( rx) — xzzz (r’f) XXXZZZ (r/‘f)

[s@¢0]” [s@¢o]

where the numerator is a purely anisotropic nth-order quantity,
while the denominator is the second-order longitudinal struc-
ture function, raised to the n/2 power. Clearly all quantities in
equations (13) and (14) would be vanishing in a perfect isotropic
ensemble. The difference between the two definitions (egs. [13]
and [14]) for F and G lies in the normalizing function in the
denominator. In the first case, G, the normalization is through
a correlation of the same order of the numerator, while in the
second case, F, the normalization is via a second-order corre-
lation raised to the appropriate power. Their amplitude as a
function of r, can be taken as a measure of the change in the
anisotropic content as a function of scale. Equation (14), on the
other hand, mixes correlation of different orders, thus includ-
ing their possible different intermittent corrections (Biferale &
Vergassola 2001). In Figure 5 we also show the behavior of
Fx(;”(rx) for n = 4,6. Again, there is a clear indication of the
presence of important anisotropic contributions, particularly at
small scales.

We conclude this section by summarizing the main result:
small-scale anisotropic fluctuations in the solar wind are domi-
nated by intense but rare bursts, i.e., those events that influence
the fourth- and sixth-order correlation functions more than second-
order ones. This is particularly evident from Figure 5, where the
dimensionless quantities of equation (13) are not decreasing at
small scales, while quantities in equation (14) are actually in-
creasing in the same limit.

F)g))(rx) = (14)

4.3. Probability Density Functions

Before concluding this section we want to rediscuss some of
the previous results from the point of view of the probability
density functions (PDFs). Anisotropies may be highlighted at
the level of the PDF by looking at the antisymmetric part of the
distribution of field increments at different scales. Let us define
the PDF, P(X,,3), of the dimensionless magnetic field increments
at scale r,:

8B, 6, By
X, (r) = 2rBanBs 15
5(ry) %, B0, B (15)

In order to make the stochastic variable dimensionless we have
normalized it with the longitudinal second-order structure func-
tions at that scale. With a suitable choice of the indices « and (3,
all odd moments of X, 3(r,) would be zero in a perfectly isotropic
ensemble. This is the case when o = x and 3 =y, z. We may
now define the antisymmetric part of P(X,3) as

Ar()(aﬂ) = P(Xaﬂ(rx)) - P(_)((xﬂ(’”x))a (16)

and note that it would vanish in a symmetric isotropic ensemble.

A,(X,p) gives us a direct measurement of the anisotropy as
the imbalance in the probability of having oppositely directed
fluctuations at that scale. In Figure 6 we show the antisymmetric
part of the PDF, 4, (X,4(ry)) for @ = x and 3 = z for three dif-
ferent separations r,. The increasingly fat tails as one goes to
smaller scales reflect the non-Gaussianity of P(X,.(r,)), which
becomes more enhanced at small scales. In order to assess the
relative weight of the antisymmetric versus the symmetric
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Fic. 6.— Antisymmetric part of the PDF of X,.(r,), 4,(—X,.) from eq. (16),
for three different spatial separations r. Solid line: r = 12 Mm, dotted line:
r =192 Mm, dot-dashed line: r = 3072 Mm. Inset: The normalized antisym-
metric part of the PDF, R (—X,.), from eq. (17), for the same set of r,.

fluctuations, we define the normalized antisymmetric part of
P(Xaﬁ)i

P(Xm’j(rx)) - P(_Xn[}(rx))
P(Xop) + P(—Xap)

(17)

Rx(AX(y[i) =

This quantity also vanishes in a symmetric isotropic ensemble,
approaching a value of 1 in the limit case of strong anisotropy,
P(X,3) > P(—X,p). In the inset of the same figure, R(X,,) is
shown. The fact that at large separations R(X,.) is close to one
means that large events are progressively more anisotropic as
they grow in intensity, a possible signature of the large-scale
structures in the plasma. For small separations, the system is
indeed globally more isotropic, although small-scale anisotropy
never vanish and survives at a significant level of 10% for all
intensities.

4.4. High-Latitude Data

We discuss here anisotropy and intermittence detected in
the polar region by Ulysses. This allows us to address the
“universality” of anisotropy, i.e., to quantify to what extent in-
tensities of anisotropic fluctuations and their scaling properties
are dependent/independent on the mean large-scale structure
on the magnetized plasma. There are two effects that might in-
fluence the relative anisotropy of the turbulence in the polar and
equatorial regions. In the polar regions, the amplitude of tur-
bulence relative to the mean field is stronger, while the effects
of solar rotation, which tend to bend the interplanetary mag-
netic field into a spiral, are negligible. In the equatorial high-
speed streams, the average magnetic field is bent into the Parker
(spiral) direction, so that there are two main axes that may
influence the evolution of the fluctuations, the radial and the
mean field directions. We remind the reader that the mean field
direction coincides with the radial direction for polar flows, while
it is perpendicular to it, close to the y-direction, for the low-
latitude data around 5 AU.

Let us first present results on the overall relative importance
of anisotropic fluctuation with respect to the undecomposed ones.
In Figure 7 we show the same as in Figure 3 but for polar data.
Purely anisotropic structure functions have a much lower in-
tensity (1 order of magnitude less) with respect to the longitudinal
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10° QQQ..G—

r, [Mm]

Fic. 7.—Same as in Fig. 3, but for the polar data set. Second-order lon-
gitudinal, transverse, and purely anisotropic structure functions. The top three
curves show the longitudinal and transverse structure functions: solid line,
S, open circles, S‘z) and filled circles, S. The lower curves show the purely
anlsotroplc structure functions: S@, filled triangles; S, open squares. The

Xy 2 > Myz o
scaling behavior for the anisotropic component S is evaluated in the interval
20—2 x 10°> Mm, see also Table 3. Inset: Fourth- order structure functions, lon-
gitudinal, transverse and purely anisotropic. Solid line, S&), open circles, S y}”,
filled circles, S&). Purely anzsotropzc structure functions are Snw, filled trian-

4) ) (4)
gles; S&) | open trlangles S22z, open squares. The scaling for S o is evaluated

> Mxzzz

in the 1nterva1 20—2 x 10> Mm.

and transverse structure functions both for the second order
(body of the figure) and for the fourth order (inset). Indeed, for
higher order moments, 6 and higher, the statistical fluctuations
combined with the very low intensity of the anisotropic signal do
not allow stable results even with the whole statistic of 21 con-
secutive days we analyzed. We conclude therefore that the anisot-
ropy content at this latitude is much lower than in the low-latitude
data set. One could argue that at this latitude averaging over long
periods may hide important physical phenomena that appear on a
shorter time window. Therefore, we also selected periods of 2—3
consecutive days when the anisotropic signal looked more stable
and intense. The anisotropic content in those events is slightly
more important and allows us to make a quantitative estimate of
its scaling properties, but do not differ qualitatively.

In Figure 8 we show the same as Figure 4, for the polar data set.
We show the kurtosis of longitudinal and transverse magnetic
field fluctuations together with the kurtosis for purely anisotropic
correlation functions (eq. [9]). Comparing the scaling behaviors
of all the statistical indicators considered, summarized in Table 3,
we have a qualitative agreement between the high-latitude and
the low-latitude data sets. If confirmed by other measurements,
and/or with higher statistical data sets, this would be a nice in-
dication of “universality” in the small-scale fluctuations of the
solar wind plasma. Overall intensities of isotropic and anisotropic
contents are of course dependent on the distance and latitude,
while their variation with scale/frequency look more stable.

5. CONCLUSIONS

Our main finding is that strong anisotropic fluctuations per-
sist at all scales in the fast solar wind. In the equatorial region,
the anisotropic contents of the fourth-order correlation function
is roughly of the same order as its isotropic part, at all scales,
indicating that small-scale isotropy is never achieved. Also, a
high degree of intermittence is measured in purely anisotropic
fluctuations. In the polar region, anisotropies are smaller and

Vol. 638

r, [Mm]

Fic. 8.—Same as in Fig. 4. Polar data set. Kurtosis (eq. [8]) of the longitu-
dinal and transverse magnetic field fluctuations. Solid line, K (4)(rr) open circles,
K, and filled circles, K (r,). The dot-dashed line shows the constant level
of three for the kurtosis of a Gaussian variable. Inset: Purely anisotropic kurtosis
(eq. [9]) of component K (4)(r ) (triangles). Its scaling exponent is evaluated in
the mterval 20—2x103 Mm see also Table 3.

highly fluctuating in time, but with a spatial dependence com-
patible, within statistical errors, with the one observed at low
latitudes.

This would indicate some universal features of anisotropic
solar fluctuations independently of the latitude, at least for what
concerns their scaling properties. Our results point toward a
crucial role played by anisotropic fluctuations in the small-scale
statistics. This poses a question to many previous studies fo-
cusing on the anomalous scaling of quantities that mix isotropic
and anisotropic fluctuations such as longitudinal structure func-
tions. In particular, for equatorial solar wind, where anisotropic
fluctuations are more important, our study shows that a blind
analysis of structure functions may be flawed by out of control
contributions. The implications of our results for the dynamics of
the dissipative structures in solar wind turbulence remain to be
investigated. We showed that both anisotropy and intermittence
are important at small scales. Unfortunately, Ulysses data do not
allow dissipative structures to be resolved, as the higher data
sampling frequency lies just at the verge of the inertial range.

A tentative explanation of the differences between high and
low latitudes may be sketched as follows: Close to the equator,
two distinct preferential directions exist, the radial one and the
Parker spiral direction. A linearly propagating Alfvén wave is
characterized by a wave-vector k, which tends to align with the
radial direction. Its natural polarization direction therefore tends
to be orthogonal to the ecliptic. In polar regions, instead, the only
direction singled out is the radial one. Low-frequency magnetic
field fluctuations should show a preferential transverse direction,
but given the invariance under rotation around the radial direc-
tion, the result is a strong fluctuating anisotropy whose average
is much smaller than in the previous situation.

Bruno et al. (1999) showed that by removing small-scale
discontinuities in the data set, the Iroshnikov Kraichnan phe-
nomenology is recovered. It would be of interest to confirm or
extend their results on other data sets with the help of the tools
we have presented in this paper. Also, it would be interesting to
recast the Goldreich & Sridhar (1997) theory in the framework
presented here, in order to get a phenomenological prediction on
the behavior of anisotropic fluctuations, independently of the
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presence of intermittence. Models in which higher order sta-
tistic is also taken into account, providing estimates for the scal-
ing exponents of higher order anisotropic structure functions,
will be important to a deeper understanding of solar wind turbu-
lence. Anisotropy and intermittence may also be important in the
context of scattering of particles in the heliosphere (see, e.g.,
Giacalone & Jokipii 1996) Before concluding, let us go back to
the issue of distinguishing different anisotropic fluctuations.

As we mentioned in § 1, the exact decomposition in different
anisotropic sectors is possible only using numerical data, where
the full magnetic field, in a finite portion of the three-dimensional
space, is available. In this paper, we have described the procedure
that should be adopted for one-dimensional strings of data. For
those data ““whole” anisotropic components can be extracted.
However, there is not a unique “anisotropic’ sector; rather, dif-
ferent anisotropic properties are described by projection on the
eigenfunctions with different total angular momentum, j, and
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projections of the total angular momentum on a given axis, m
(Arad et al. 1999). This implies that all estimates of the scaling
properties reported here may be affected by out-of-control con-
tributions from different anisotropic sectors. If, of all anisotropic
sectors, only the leading one is dominating the statistics at small
scales, then our results hold the dominant contribution. This
hypothesis implies a hierarchy between the scaling exponents in
different sector and has been verified on direct numerical simu-
lations of turbulent flows (Biferale & Toschi 2001; Biferale et al.
2002) and on analytical calculation for passive magnetic fields
(Lanotte & Mazzino 1999; Arad et al. 2000), but it remains an
open question for active magnetic fields.

We thank B. Bavassano, R. Bruno, A. Lanotte, and F. Toschi
for fruitful discussions. We acknowledge support from EU under
the grant “Nonideal Turbulence” HPRN-CT-2000-0162.
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