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Patterns of relative species abundance in
rainforests and coral reefs
Igor Volkov1,2, Jayanth R. Banavar1, Stephen P. Hubbell3,4 & Amos Maritan5

A formidable many-body problem in ecology is to understand the complex of factors controlling patterns of relative species
abundance (RSA) in communities of interacting species. Unlike many problems in physics, the nature of the interactions in
ecological communities is not completely known. Although most contemporary theories in ecology start with the basic
premise that species interact, hereweshowthata theory inwhich all interspecific interactions are turnedoff leads toanalytical
results that are in agreement with RSA data from tropical forests and coral reefs. The assumption of non-interacting species
leads to a sampling theory for the RSA that yields a simple approximation at large scales to the exact theory. Our results show
that one can make significant theoretical progress in ecology by assuming that the effective interactions among species are
weak in the stationary states in species-rich communities such as tropical forests and coral reefs.

A variety of patterns have been observed in the RSA distributions,
which are measures of the number of species having a given number
of individuals, of ecological communities. In particular, tropical
forests125 and coral reefs6,7 exhibit contrasting RSA patterns. In
tropical-tree communities there are fewer rare species in the local com-
munity than in the metacommunity, whereas the opposite pattern is
found in coral reefs. Reference 6 reported log-series-like RSA distribu-
tions in local communities, and log-normal-like RSA distributions
when a geographically widespread set of coral-reef communities was
pooled to estimate the RSA distribution for the metacommunity. In
contrast, local tropical-tree communities exhibit log-normal-like RSA
distributions, which become more log-series-like at large landscape
scales125. The log-series RSA distribution has a larger proportion of
rare species than the log-normal.Herewe consider twodistinct types of
community structure: first, a relatively small semi-isolated local com-
munity surrounded by a very large metacommunity acting as a source
of immigrants, as in Hubbell’s theory1, and, second, spatially isolated
island communities whose assemblage acts as the metacommunity8,9.
For the tropical forest, the timescale for species turnover in the meta-
community is very long compared to the characteristic timescale for
immigration, leading to an effectively frozenmetacommunity acting as
a backdrop for immigration. In coral reefs, in contrast, each local com-
munity receives immigrants from all the surrounding semi-isolated
local communities, within each of which the species abundances are
not frozen in time.Wepresent a simpleunified theory forunderstanding
the RSA patterns of tropical forests and coral reefs.

Coral reefs

Consider a metacommunity consisting of many small semi-isolated
local communities, each of which receives immigrants from other
local communities. Because of the isolation of the local communities
from each other, changes in the RSA distribution of the aggregated
metacommunity may be assumed to occur more rapidly than
immigration. One may make a simplifying assumption that the
immigration parameter U is species-independent, corresponding to
immigration occurring not from a frozen metacommunity, as com-
monly assumed for a tropical forest, but from a time-averaged meta-
community in a species-symmetric manner. Using equations (12)

and (14) (see Box 1), the mean number of species with n individuals
ÆQnæ is given by:

Qnh i~h
xn

n!
C(nzU) ð1Þ

where h5 S/[(12 x)2U2 1]C(U) is the Hubbell biodiversity num-
ber1, C is the gamma function, S is the number of observed species
and x is the per capita birth-to-death-rate ratio.

Given the isolation of individual coral reefs under the islandmeta-
community model, the value of the immigration parameter U is very
small because the local communities are separated from each other by
large distances. In such a situation, the RSA for the local communities
resembles the Fisher log-series, and does not have an interior mode
(at abundance n. 1). Now let us gradually assemble the meta-
community RSA distribution by considering the joint RSA distribu-
tions of multiple local communities. First consider the joint RSA of
two local communities A and B comprising the metacommunity.
Consider a species that has nA individuals in community A with
probability P(nA) and nB individuals in community B with prob-
ability P(nA). The probability that the species has n individuals in
A and B is (see Supplementary Materials):

P nAznB~nð Þ~
X

nAznB~n

P nAð ÞP nBð Þ! xn

n!
C nz2Uð Þ ð2Þ

The corresponding RSA has the same form as for the single com-
munity but with the effective immigration parameter 2U. Extending
the calculation of the joint RSA distribution to more and more local
communities, one arrives at the RSA of the metacommunity char-
acterized by an effective immigration parameter LU, where L is the
total number of local communities comprising the metacommunity.
When L is large, the RSA distribution exhibits a clear, interior mode
at abundance n. 1, and the rare species constitute a smaller fraction
of all the species than in the local community. This mean field
analysis does not take into account the actual spatial locations of
the local reef communities. Figure 1 shows the fits of the islandmodel
to the coral-reef RSA data6,7. We can see from the fits that, on local
scales (local communities and reefs), immigration is almost absent so
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that the local RSA resembles the Fisher log-series distribution. Our
theory explains how the RSA becomes log-normal-like on aggre-
gating the local communities into one metacommunity.

We can estimate the species-similarity index between two local
communities can be defined as:

2SA\B

SAzSB
100% ð3Þ

where SA and SB are the number of observed species in communities
A and B, respectively, and SA>B is the number of species that are
present in both communities. Because immigration is almost absent
for local communities, one can assume that for each local community
the species are randomly drawn from the metacommunity species
pool. With this assumption, the average similarity index becomes:

2SASB
S(SAzSB)

100% ð4Þ

where S is the total number of species in themetacommunity. Figure 2
shows the frequency distribution of the similarity index taken for all
pairs of local communities (within a given region). The size of the
species pool was chosen to be the same as the number of species in the
regional metacommunity. Our results are in qualitative accord with
those in ref. 7, which reported that the distribution of the similarity

index among local coral reefs was quite different from the predictions
of neutral theory valid for tropical forests. The average community
similarity is low (about 35%) and has a large variance. Amore refined
model of the coral reefs would not only consider the biology of coral-
reef reproduction but also the specific locations, environments and
the degree of stationarity of local communities.

Tropical forests

We now consider the metacommunity model introduced in ref. 1, in
which a local community is embeddedwithin a surroundingmetacom-
munity, which is a source of immigrants. The dynamics of the local
community is governedbybirths, deaths and immigration,whereas the
metacommunity is characterized by births, deaths and speciation. The
characteristic rate of species turnover in the local community is much
faster than in the metacommunity so that we may treat the metacom-
munity as a fixed backdrop for immigration processes.We consider the
non-interacting species case; this means that we have to consider only
one species at a time, greatly simplifying the theory (see Box 1).

For the metacommunity, we can introduce speciation with a rate
n= 1, a very small probability for the creation of a new species. The n
term does not contribute significantly when n? 0, but has a crucial
role when n5 0. (Under the equivalence assumption of neutral the-
ory, the species label of the new species is of no consequence.)

Box 1 | General framework

We neglect inter-species interactions after the community has
reached a steady state, and consider the dynamics of the population of
a single species. These dynamics are governed by generalized birth and
death events (including speciation, immigration and emigration). bn,k
and dn,k represent the probabilities of birth and death, respectively, in
the kth species with n individuals with b21,k5 d0,k50. Pn,k(t) denotes
the probability that the kth species contains n individuals at time t. In
the simplest scenario, the time evolution of Pn,k(t) is regulated by the
master equation21:

LPn,k(t)
Lt

~Pn{1,k(t)bn{1,kzPnz1,k(t)dnz1,k{Pn,k(t)(bn,kzdn,k) ð8Þ

which leads to the steady-state or equilibrium solution:

Pn,k~P0,k P
n{1

i~0

bi,k
diz1,k

ð9Þ

for n.0 and where P0,k can be deduced from the normalization
conditionSn$0 Pn,k5 1. One can show that the system is guaranteed to
reach the stationary solution (9) in the infinite time limit22.

Let us consider a simple, ecologically meaningful form for the
effective birth and death rates of the kth species:

bn,k~bk(nzUk) ð10Þ
and

dn,k~dkn ð11Þ
where bk and dk denote the per-capita density-independent birth and
death rates and a non-zero Uk could arise from either immigration or
owing to intraspecific interactions such as those giving rise to density
dependence3. We do not incorporate speciation explicitly into the
model because it does not affect the functional form of the results (it
can be incorporated into the immigration term at n50 by adding a
constant).

The steady-state solution of the master equation for Pk(n), the
probability that the kth species has n individuals, yields a negative
binomial distribution23:

Pn,k~P0,k P
n{1

i~0

bi,k
diz1,k

~
(1{xk)

Uk

C(Uk)

xnk
n!
C(nzUk) ð12Þ

where xk5 bk/dk, the ratio of the per-capita birth rate to the per-capita
death rate, controls themean species abundance given by xkUk/(12 xk).
Henceforth, we make the neutral ecological equivalence assumption
that the per-capita birth and death rates are the same for all the species,
that is, bk5 b, dk5 d and xk5 x, sowe can discard the subscript k for b, d
and x.

The number of species containing n individuals is given by:

Qn~
XS

k~1

In,k ð13Þ

where S is the total number of species that may potentially be present
in the community and the indicator In,k is a random variable that takes
the value 1 with probability Pn,k and 0 with probability (12 Pn,k). Thus,
the average number of species containing n individuals is given by:

Qnh i~
XS

k~1

In,k~
XS

k~1

Pn,k ð14Þ

and the variance is given by:

s2Qn~ Qn{ Qnh ið Þ2
D E

~
XS

k~1

In,k{Pn,kð Þ
" #2

~
XS

k~1

Pn,k 1{Pn,kð Þ ð15Þ

This result is based on the assumption that the fluctuations of In,k do
not depend on the species label k, a consequence of the absence of
interactions between species. The RSA relationshipwe seek to derive is
the dependence of ÆQnæ on n. Another quantity of interest is the average
number of species observed in the community:

Sobsh i~S{ Q0h i~S{
XS

k~1

1{xð ÞUk ð16Þ

For a sample of J individuals comprising !SS species, the sampling
multivariate probability distribution is a compound multinomial
Dirichlet distribution19,24:

P n1,n2, . . . ,n!SSjJð Þ~ 1

P(J)
P
!SS

k~1
Pnk ,kd(J{n1{n2{ . . .{n!SS)~

Jz
P
k
Uk{1

J

0

@

1

A
{1

P
!SS

k~1

nkzUk{1

nk

 !

d(J{n1{n2{ . . .{n!SS)

ð17Þ

where the normalization factor P(J) is the probability of observing a
community of size J. Interestingly, the same formula also applies to
community dynamics with a fixed total population obeying a zero-sum
rule—that is, when the death of an individual is immediately followed
by a birth or by the addition of an immigrant into the community. Refs 9
and 13 have derived the expression for the compound multinomial
Dirichlet distribution19,24 by using a master equation approach and
have presented a sampling theory that considers both ecological and
evolutionary times in a single sampling formula.
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Operationally, this is mathematically equivalent to replacing Uk (for
the kth species) in equation (12) by n, which yields the logarithmic
distribution Pn5 nxn/n1O(n2), where O(n2) is a small term of the
order of n2.

Following ref. 2, one obtains an expression for the steady-state RSA
distribution in the local community by settingUk5 ~mmpk, where ~mm is a
measure of the immigration ratemeasured in units of the birth rate b,
and pk is the fraction of individuals in the surroundingmetacommunity
belonging to the kth species (see Box 2):

Qnh i~h
xn

n!

ð?

0

C(yzn)

C(yz1)
e{vydy ð5Þ

where v5 h/~mm2 ln(12x) and h is the biodiversity parameter.

Using equation (5) we can readily obtain expressions for the aver-
age local community size ÆJæ and the average number of species Sobs in
the local community:

Jh i~
X?

n~1

n Qnh i~
~mmx

1{x
ð6Þ

and

Sobsh i~
X?

n~1

Qnh i~h ln 1{
~mm

h
ln (1{x)

" #
ð7Þ

Table 1 summarizes the results of fits of data from six large species-
rich plant communities using equation (5) (see Fig. 3). These data
have been analysed previously using different varieties of neutral
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Figure 1 | Relative species abundance of coral-reef communities. We plot
the fits of equation (1) (solid line) to the coral-reef species abundance data
for the coral-reef local community (a), reef (b), metacommunity (c) and
metacommunity (habitats pooled, d)6,7. The bars are observed numbers of
species binned into log2 abundance categories. The first histogram bar
represents Æw1æ, the second bar Æw2æ1 Æw3æ, the third bar Æw4æ1 Æw5æ1 Æw6æ1
Æw7æ, and so on. Graphs show the average RSA of: a, 180 local communities;
b, 45 reef communities, each of which consists of 4 local communities; c, 15
metacommunities, each of which consists of 3 reef communities;
d, metacommunities (habitats pooled), each of which consists of 5
metacommunities. Also shown are the values of the fitted parameters and
the R2 values.
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Figure 2 | Similarity index for coral-reef communities. We generated 10,000
random realizations of 60 samples with sizes equal to those of the coral-reef
slopes7 assuming that all the species have equal abundance in the
metacommunity. The histogram shows the distribution of the similarity index
predicted by the islandmodel for the coral-reef data (themean index is equal to
0.38andthevariance is0.19)usingequation(3).Thedistribution isqualitatively
similar to that reported in ref. 7. Error bars represent standard deviation.

Box 2 | Relative species abundance of tropical forests

The mean number of species with n individuals in a community can be
written as:

Qnh i~
XSM

k~1

Pn,k~SM

ð?

0

dmr̂r mð ÞPn,m ð18Þ

where SM is the number of species in the metacommunity. Here
r̂r(m)dm is the continuous probability distribution of the mean
populations of the species in the metacommunity and has the form of
the familiar Fisher log-series (in a singularity-free description25,26):

r̂r mð Þdm~ 1

C eð Þde exp {m=rð Þme{1dm ð19Þ

where d5 x/(12x) to match the first moment of the discrete and
continuous distributions and:

Pn,m~
1{xð Þ~mmm=JM

C ~mmm=JMð Þ
xn

n!
C nz~mmm=JMð Þ ð20Þ

where JM is the total population of the metacommunity

(JM~
X?

n~1
hxn~hx= 1{xð Þ). Then, on substituting equations (19)

and (20) into equation (18) and defining y5 ~mm m/JM, eR0 and eSMRh,
one obtains an analytical expression for the RSA of the local
community:

Qnh i~h
xn

n!

ð?

0

dy
C nzyð Þ
C 1zyð Þ exp {y JM= ~mmdð Þ{ ln 1{xð Þ½ $f g~

h
xn

n!

ð?

0

C nzyð Þ
C 1zyð Þ

e{vydy:h
xn

n!
f n,vð Þ

ð21Þ

where v5 h/~mm 2ln(12 x) and the integral f(n, v) in the above
equation can be calculated analytically using the following recurrence
equations: f(1, v)5 1/v, f(n11, v)5 nf(n, v)2 hf(n, v)/hv. Equation
(21) represents the average number of species with abundance n as a
negative-binomial sampling fromametacommunity characterized by a
log-series RSA10,13,27–29.

For the limiting case of no immigration (~mmR0), the RSA of the local
community approaches the Fisher log-series. For large immigration, for
tropical forestswith the Fisher log-seriesmetacommunity (~mmR‘), the
probability distribution for each species is Poisson distributed with
averages equal to those in the metacommunity so that one again
obtains the Fisher log-series.

The expression equation (21) is much simpler than that presented in
ref. 3:

Qnh i~h
J!

n! J{nð Þ!
C cð Þ

C Jzcð Þ|

ðc

0

C nzyð Þ
C 1zyð Þ

C J{nzc{yð Þ
C c{yð Þ exp {yh=cð Þdy

ð22Þ

where c5m(J21)/(12m). The immigration parameter ~mm in equation
(21) is equal to Jm/(12m) in ref. 3.
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theory123,10. Our simple analytical approximations of the exact sam-
pling theory8214 yield virtually indistinguishable fits to the data, and
we obtain very similar values of the biological parameters to the ones
derived previously. The exact theory applies both under the assump-
tion of species independence in a fluctuating community and for
species undergoing zero-sum dynamics9.

Comparison between coral reefs and tropical forests

To understand the qualitative difference between species composition
in the coral-reef system and in tropical forests, we used the available
relative tree species abundance data from the forest dynamics plot on
Barro Colorado Island (BCI), Panama to generate random samples of
the same size as in the coral-reef studies. Figure 4 shows the RSA for
samples with 232, 927, 2,781 and 8,342 individuals (each histogram
represents an RSA averaged over 100 samples). The abundance histo-
grams are qualitatively similar to those for the coral-reef data. On
fitting them with equation (5), the immigration parameter is very
large for the small samples (for example, the per capita immigration
rate m< 1 for the sample of 232 individuals) and decreases with an
increase in sample size. This can be explained as follows: for a small
population, the number of immigrants exceeds thenumber of internal
birth events. As the population size increases, immigration has a less
important role and becomes negligible as the population goes to
infinity (and thus forms ametacommunity). Thus, onewould observe
a Fisher log-series in two limiting cases: in the metacommunity in
which there are no immigration events, and in the very small local
community that has a high immigration rate from the metacommu-
nity characterizedby a Fisher log-seriesRSA.The sampled community
of the coral reef represents a very small portion of the total reef popu-
lation. However, the distinct similarity indices for the tropical forest
and the coral-reef communities underscore a key difference in the two

cases. For tropical forests, the assumption of equation (4)—that every
species is equally likely tooccur in a given local community—leads to a
similarity index distribution that is significantly different from the
actual distribution given by equation (3) (see Fig. 5). In contrast,
for the coral-reef community, the observed distribution is consistent
with the prediction of equation (4) (see Fig. 2). These results suggest a
high degree of isolation between local communities in the coral-reef
ecosystem. Unlike in the tropical forest, the set of local communities
in the coral-reef data are effectively uncorrelated samples from the
metacommunity8,9.

Intraspecific interactions can be taken into account in a simplified
manner by attributing density-dependent effective birth and death
rates, which depend on the population of a species3. On retaining the
equivalence of all species and within a parsimonious model, it was
shown that the RSA behaves as ÆQnæ / xn/(n1 c), where a positive
coefficient c describes a rare-species advantage3. The data presented
in Figs 1 and 4 can also be fitted approximately with this model with
effective values of c equal to 2.29, 1.26, 2.63, 0.87, 2.91 and 0.41 for
tropical forests (BCI, Yasuni, Pasoh, Korup, Lambir and Sinharaja,
respectively) and 20.24, 0.05, 0.30 and 0.42 for coral-reef commu-
nities (local, reef, metacommunity and metacommunity (habitats

Table 1 | Relative species abundance of tropical forests

Plot S J h ~mm m x r2

BCI, Panama 225 21,457 48 2,122 0.09 0.91 0.97
Yasuni, Ecuador 821 17,546 212 9,448 0.35 0.65 0.98
Pasoh, Malaysia 678 26,554 206 1,999 0.07 0.93 0.98
Korup, Cameroon 308 24,591 54 18,551 0.43 0.57 0.94
Lambir, Malaysia 1,004 33,175 305 3,281 0.09 0.91 0.99
Sinharaja, Sri Lanka 167 16,936 28 15,633 0.48 0.52 0.94

Estimates of the ecological parameters obtained from fitting equation (5) to the RSA data of six
forests. S, the number of observed species; J, the local community size; h, the biodiversity
parameter;m, the per capita immigration rate2 (~mm5 Jm/(12m)); and x, the per capita birth-to-
death-rate ratio. Substituting the above expression for ~mm into equation (6), one obtains
m1 x5 1 (for the metacommunity x1n5 1).

Lambir

Sinharaja

Yasuni

Pasoh

Korup

BCI

0

10

20

30

40

0

10

20

30

40

50

0

20

40

60

80

100

120

0

50

100

150

0

5

10

15

20

0

50

100

150

200

0
Preston’s octave class

N
um

be
r o

f s
pe

ci
es

5 10 15 0 5 10 0 5 10

0 5 10 0 5 10 0 5 10

Figure 3 | Relative species abundance of tropical forests. Weplot the fits of
equation (5) (solid lines) to the tree species abundance data from the BCI,
Pasoh, Sinharaja, Korup, Yasuni and Lambir plots (see Table 1). The
frequency distributions are plotted using Preston’s binning method1. The
numbers on the x-axis represent Preston’s octave classes.
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pooled), respectively). Interestingly, the coral-reef local community
is characterized by a negative c coefficient, which would correspond
to a rare species disadvantage, analogous to the Allee effect15, in the
effective birth-to-death-rates ratio.

Discussion

We have presented a simple unified theoretical framework in which
interspecific interactions are turned off, which yields analytical
expressions for two distinct and very different types of metacommu-
nities. One type1, a continuous source area fromwhich immigrants to
local communities are drawn, yields log-series RSA distributions on
large scales and log-normal-like distributions with interior modes on
local scales, as one consistently observes in tropical-forest commu-
nities. The other type8,9, a metacommunity consisting of an island
archipelago of isolated communities, yields the opposite pattern: log-
series-like RSA distributions in local communities, but interior-
mode RSA distributions on large scales, as is observed in coral-reef
communities.

In adopting this approach, we are not denying that species interact.
There is a huge ecological literature on interspecific interactions,
including competitive and predator–prey interactions, among
others. What we are saying, however, is that we can make major
theoretical progress in ecology by not considering species interac-
tions at the outset. It is plausible that there is an underlying simplicity
associated with an ecological community in the vicinity of its steady
state. Although the effects of interactions could very well be a factor
under non-equilibrium conditions, overt competition between a
pair of species would be toned down in the steady state in favour
of one or the other over local spatial and temporal scales. Indeed,
what our theory shows is that a large fraction of the quantitative
variation in patterns of RSA in tropical forests and coral reefs
can be accounted for by our non-interacting species approach.
Additional variation in patterns of RSA will undoubtedly be ex-
plained when theoretical ecologists incorporate species interactions,
especially when we require the theory to be able to explain the abun-
dances of named and identified species in ecological communities.
This progression in the development of ecological theory has an
analogy to the development of the theory of gases in physics16. First
came the assumption that gases were ‘ideal’ and non-interacting,
which then led to the ideal gas equation of state17. This does remark-
ably well, but deviations in the behaviour of gases from ideal
behaviour led to refinements to the theory18. We look forward to
analogous developments in theoretical ecology.

METHODS SUMMARY
When confronting the theory with data, it is necessary to relax the zero-sum rule.
For example, in the case of tropical forests, the sampling process entails counting
all the trees within a fixed area, but there is always some variation in the total
abundance of trees in a fixed sample area. This is not a problem at the stationary
state, at which one can prove that the zero-sum rule can be relaxed9,19 and the
species can be treated as being independent of each other (see also
Supplementary Material in ref. 3). Indeed, we have found that a maximum
likelihood estimator (MLE) method19 based on equation (17) on a coral-reef
metacommunity system leads to a similar value of the parameter U compared to
the estimate based on the fitting of the average RSA with equation (5),
UMLE5 0.058 and URSA5 0.087. We have checked the validity of the relaxation
of the zero-sum rule by randomly generating 1,000 samples and calculating the
exact likelihood function for them. As expected, the coral-reef data are indistin-
guishable from the random pseudo-samples. For the fitting procedure, we
assumed that the census data on species composition represents the average
RSA. In all figures, we estimated the model parameters by a least-squares fit,
minimizing the sum of squared residuals20.
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