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Abstract. We consider the behaviour near resonances of linearizations of germs of
holomorphic diffeomorphisms of(C,0) and of the semi-standard map.

We prove that for each resonance there exists a suitable blow-up of the Taylor series
of the linearization under which it converges uniformly to an analytic function as the
multiplier, or rotation number, tends non-tangentially to the resonance. This limit function
is explicitly computed and related to questions of formal classification, both for the case of
germs and for the case of the semi-standard map.

1. Introduction
It is well known since Poincar´e’s work on normal forms and celestial mechanics that
resonances are responsible for the divergence of the series expansions of quasi-periodic
motions in the theory of dynamical systems. In the simplest non-trivial case of one-
dimensional holomorphic systems this difficulty already appears when one tries to
conjugate a given system to its linear partz 7→ λz in a neighbourhood of a fixed point
z = 0.
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For a fixed value of the multiplierλ, the linearization (when it exists) has a complicated
analytic structure with respect to its argument. Almost nothing is known, except for some
numerical studies (e.g. [1], Figures 6 and 7 of [2] and references quoted therein, [3, 4]).

If one considers the dependence of the linearization onλ, resonances appear as formal
poles of the Taylor series of the conjugation: it is the famous phenomenon of ‘small
denominators’. In some sense (see §2.2), the unit circleT1 is a natural boundary of
analyticity for the conjugation with respect to the multiplierλ. Nevertheless the series has
non-tangential limits at almost all points ofT1 (see §2.1 for more information and [5, 6]
for a detailed study in the case of analytic diffeomorphisms of the circle). The relation
between the formal poles (associated to the resonances) of the linearization and its natural
boundary of analyticity calls for some enlightenment, especially if one places the problem
in the perspective of Borel’s theory of uniform monogenic functions [7].

In this paper we prove some results concerning the behaviour at resonances of the
linearizations of local diffeomorphisms ofC (see e.g. [8]) and of the so-called ‘semi-
standard map’ [1, 10]. These two models are actually tightly related (compare §2.6
and §3.1).

In particular, for each of the systems we take into account, we prove that the
linearizations have well defined limits as the multiplier (or the rotation number) tends
non-tangentially to a root of unity (or a rational valuep/q) provided the Taylor series
is suitably blown-up, and we compute these limits. In the case of germs, this generalizes
a result of Yoccoz [8, §3.3 and §3.4, pp. 73–78], as he computes this limit only for the
quadratic familyPλ(z) = λ(z− z2).

These limit functions have a finite radius of convergence and ramification points. By
reversal of the blow-up, they provide an approximation of the linearization when the
multiplier is very close to a resonance.

Of course it would be quite interesting to generalize these results to general analytic
small divisor problems (Hamiltonian systems, real analytic area-preserving twist maps,
etc). The standard map case was studied in [2]: by a suitable blow-up the Lindstedt series
has an explicitly computable limit at the resonances 0/1 and 1/2. The same is true for all
resonancesp/q, as recently proved in [9]. We also hope to be able to apply the method
presented in §3 in order to improve these studies.

2. Germs of holomorphic diffeomorphisms of(C,0)
2.1. The linearization of a germ. Let G denote the group of germs of holomorphic
diffeomorphisms of(C,0). An important problem in complex dynamics is to describe
the conjugacy classes of this group. Since the origin is a fixed point one has some
natural conjugacy invariants such as the multiplierλ = f ′(0) of the germf at 0 and
the holomorphic index:

i(f,0) = 1

2πi

∮
dz

z− f (z)

where we integrate on a small loop in the positive direction around zero. Ifλ 6= 1, the
origin is a simple fixed point and one clearly has

i(f,0) = 1

1 − λ
.
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Let Gλ denote the set off ∈ G such thatf ′(0) = λ. Such a germf is said to be
linearizable if it belongs to the conjugacy class of the rotationRλ(z) = λz. This is always
the case if|λ| 6= 1: by the Poincar´e–Königs linearization theorem [11, 12], one knows that
there exists a germhf ∈ G1 such that

f ◦ hf = hf ◦ Rλ. (2.1)

The conditionhf ∈ G1 ensures the unicity of the solution of this conjugacy equation.
From now on, when speaking of conjugacy classes ofG without other specification, we
shall always refer to the adjoint action of the subgroupG1—not the whole groupG.

The functionhf is called thelinearizationof f : attracting (|λ| < 1) and repelling
(|λ| > 1) fixed points of the holomorphic diffeomorphisms that are linearizable. If one
keepsf − Rλ fixed asλ varies, or more generally iff depends analytically on the
parameters, then by uniform convergence the dependence of the linearizationhf is also
analytic. Iff is an entire function and|λ| > 1 thenhf is an entire function.

When|λ| = 1 the fixed point at the origin isindifferentand one must distinguish three
different kinds of multiplier:
(1) parabolic or resonant point: λ = 3 = exp(2πi(p/q)), wherep ∈ N, q ∈ N∗,

(p|q) = 1;
(2) Brjuno point: λ = B = exp(2πiω), ω ∈ R \ Q andω is aBrjuno number[13, 14]:∑∞

k=0 logqk+1/qk < +∞, where{pk/qk} denotes the sequence of partial fractions
of the continued fraction expansion ofω;

(3) Cremer point: λ = exp(2πiω), ω ∈ R \ Q andω is not a Brjuno number.
Actually, Cremer proved [15] thatGλ is not a conjugacy class if

sup
n

logqn+1

qn
= ∞;

however, we think that it is quite fair to give his name to the complement of the Brjuno set.
In case (1)Écalle [16, 17] and Voronin [18] gave a complete classification of the

conjugacy classes ofG contained inG3; among them the class of the rotationR3 consists
of all elements of orderq belonging toG3, but there are other conjugacy classes inG3.

In case (2),Gλ is a conjugacy class ofG [13] (as in the hyperbolic case|λ| 6= 1): for
all f in Gλ there exists a unique analytic linearizationhf . In 1987 Yoccoz [8] proved that
in case (3)Gλ is not a conjugacy class and there exists at least one nonlinearizable germ
f ∈ Gλ. A remarkable example is given by the quadratic polynomial

Pλ(z) = e2πiω(z− z2)

which is linearizable if and only ifω is a Brjuno number.
Our main motivation in this study is to understand how the formal poles due to

resonances give rise to the complicated analytic structure of the linearization. For that
reason we shall letλ vary in a non-tangential cone† with vertex at any root of unity3, and
we shall treat it as a bifurcation parameter. Consequently, the germf itself will vary—we
thus denote it byfλ henceforth—and its linearizationhfλ will be studied as a function of

† By ‘non-tangential’ we mean: non-tangential to the unit circle; a non-tangential cone with vertex at3 is any
setV = C(3, α) with the notation of formula (2.10).
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λ, singular at the resonance3. We shall provide all of the details for the situation where
the nonlinear partfλ − Rλ is kept fixed asλ varies (this assumption is quite natural: see
[5, 6, 19, ch. III] for the related problem of the dependence of the linearization in one-
parameter families of analytic circle diffeomorphisms), but we shall also give (at the end
of the next section) the corresponding statements for a more general dependence offλ on
the parameterλ.

Note that if, instead of a sectorial neighbourhood of a resonance, one considers a non-
tangential coneV with vertex at a Brjuno pointB = e2πiω, an easy† but interesting
property of the linearization is its continuity with respect toλ (i.e. hfλ tends tohfB as
λ tends toB insideV ).

More generally if one assumes thatfλ0 is linearizable for a certainλ0 satisfying
|λ0| = 1, whenλ tends toλ0 non-tangentially the linearizing mapshλ are univalent on
a small uniform disk‡ (they thus form a compact family) and any limit of these maps when
λ tends toλ0 is a linearizing map forfλ0. These limits clearly coincide ifλ0 is not resonant,
otherwise this is a consequence of Theorem 2.1 below.

In what follows, putting the vertex ofV at a resonance3, we shall prove the existence
of a suitable scaling under whichhfλ has a non-tangential limit. These scalings are a
slight generalization of the notion of blow-up of a formal power series which is standard
in algebraic geometry and which has already been applied to the study of complex
analytic differential equations [20, §III]. We shall also compute these limits and study
their relationship to the classification offormalconjugacy classes ofG3.

2.2. Existence of non-tangential limits.Let us consider the one-parameter family of
germs ofGλ:

fλ(z) = λz+
∞∑
n=2

fnz
n,

where we keep fixed the coefficients{fn}∞n=2, i.e. the nonlinear partfλ − Rλ is constant.
We denote simply byhλ the corresponding linearization. We have the following theorem
(compare with §3.3 and §3.4 of [8]).

† Let us consider the intersectionVρ of V with a disk of centreB and of small radiusρ, i.e.V = C(B,α, ρ) with
the notation of formula (2.10). It is immediate to check from the relation (2.1) which defines the linearization,
that hfλ = z + ∑

hn(λ)z
n, where each coefficienthn (n ≥ 2) is a finite sum of rational functions of the

form (λj1 − λ)−1 · · · (λjn−1 − λ)−1 with 2 ≤ j1, . . . , jn−1 ≤ n. Clearlyhn is analytic inVρ and continuous
on its closureV̄ρ ; the uniform convergence follows from the standard Brjuno’s argument, since there exists a
positive constantC such that∀λ ∈ V̄ρ ,∀j ≥ 2, |λj − λ|−1 ≤ C|Bj − B|−1 (because there existsc > 0
such that any point of̄Vρ can be writtene2πiθ with ∀q ∈ N∗ , dist(qθ,Z) ≥ c dist(qω,Z), and there exist
c′, c′′ > 0 such that∀x ∈ C , |e2πix − 1| ≥ c′ dist(x,Z) and ∀x ∈ R, |e2πix − 1| ≤ c′′ dist(x,Z), thus
∀q ∈ N∗ ,∀λ ∈ V̄ρ , |λq − 1| ≥ (c′c/c′′)|Bq − 1|).
‡ This is very easy to see. Denote byhλ0 a linearizing map forfλ0. Thengλ(z) = (h

−1
λ0

◦ fλ ◦ hλ0)(z)

satisfiesgλ(0) = 0, g′
λ(0) = λ, gλ0(z) = λ0z. Thusz−1gλ(z) − λ0 = (λ − λ0)(1 + zS(λ, z)) (for some

analytic functionS), and for any non-tangential neighbourhoodVρ of λ0 there existsr0 > 0 such that for any
λ ∈ Vρ \ {λ0} and for anyz, |z| < r0, one has|λ| > 1 ⇒ |gλ(z)| > |z| and |λ| < 1 ⇒ |gλ(z)| < |z|. One
deduces from this that, asλ varies inVρ , the radius of injectivity ofhλ is uniformly bounded from below by a
strictly positive constant (independent ofλ).
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THEOREM 2.1. Let us fix a resonance3 = exp(2πip/q) wherep ∈ N, q ∈ N∗,
(p|q) = 1. There are two possibilities, according to theqth iteratef ◦q

3 of f3.

• If f ◦q
3 is the identity, the formulae

T (z) = 1

q3q−1

∂

∂λ
(f

◦q
λ (z))|λ=3, U(z) = z exp

(∫ z

0

(
1

T (z1)
− 1

z1

)
dz1

)
(2.2)

define a germU ∈ G1 whose reciprocalh3 linearizesf3 and has the following
property. For all non-tangential conesV of C with vertex3 (non-tangential to the
unit circle), the linearizationhλ tends uniformly on some small open disk around
zero toh3 asλ tends to3 insideV .

• If f ◦q
3 is the not the identity, there exists a positive integerk and a non-zero complex

numberA such that

f
◦q
3 (z) = z+ Azkq+1 +O(zkq+2),

and for any non-tangential coneV of C with vertex3, the rescaled linearization

h̃λ(z) = 1

(λ−3)1/kq
hλ((λ−3)1/kqz) (2.3)

tends uniformly on some small open disk around zero to the function

h̃3(z) = z

(
1 − A

q3q−1z
kq

)−1/kq

(2.4)

as λ tends to3 inside V . (One can choose any of thekq determinations of
(λ−3)1/kq .)

Remark 2.1.Note that in the casef ◦q
3 = Id the linearization off3 is not unique. What

Theorem 2.1 asserts is that, among all the linearizations off3, one of them is the limit of
hλ asλ tends to3 non-tangentially. The formulae (2.2) make sense and defineU ∈ G1 as
claimed in the theorem, sinceT (z) = z(1 +O(z)); in factU is the unique solution inG1

of the ordinary differential equationU ′ = U/T .

Remark 2.2.In the next section, we give some details about the numbersk andA which
appear in the theorem. They are classically introduced asformal invariants off3: given
two germsf3 andg3 in G3, the existence of a formal seriesϕ(z) = z+O(z2) such that

g3 = ϕ−1 ◦ f3 ◦ ϕ,
implies

k(f3) = k(g3) and A(f3) = A(g3),

but the converse is not true: a third formal invariant is necessary in order to describe all
of the formal conjugacy classes. Thus, the limith̃3 depends only on the formal conjugacy
class off3, but does not determine it completely.
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Remark 2.3.Note that

h̃3 = z

(
1 − A3

q
zkq
)−1/kq

, h̃−1
3 = z

(
1 + A3

q
zkq
)−1/kq

and these maps commute withR3.
If we now conjugatẽh3 with the inverse scaling we find that, whenλ approaches3

non-tangentially andz approaches the origin in such a way that the quantityz(λ−3)−1/kq

remains constant, then

hλ(z) ≈ z

(
1 − A3

q

zkq

λ−3

)−1/kq

.

Therefore, forλ very close to a resonance, the linearization behaves as an analytic function
with respect toz with kq ramification points that collapse at the origin whenλ tends to3.
We note that this has also been numerically observed (compare with figures 4 and 5 of [4]),
with a very good quantitative agreement (compare with the discussion in the last section of
[2] for a related problem concerning the standard map).

Remark 2.4.Note that one may use any scalingz → s(λ)1/kqz instead ofz → (λ −
3)1/kqz, provideds is analytic,s(3) = 0 ands′(3) 6= 0. In this case the limit is

h̃3 = z

(
1 − As′(3)

q3q−1
zkq
)−1/kq

.

Remark 2.5.Let us envisage briefly a more general dependence of the germf on the
parameter and indicate the corresponding statements. Changing the notations, we now
consider a familyfσ of local analytic diffeomorphisms which depends analytically on a
complex parameterσ . The multiplier offσ will be denoted byλ(σ). The linearization of
fσ , if it exists as an analytic germ ofG1, will be denoted byhσ .

Let σ∗ be a point of the parameter-space such that:
(1) the multiplierλ(σ∗) is not a Cremer point;
(2) its derivativeλ′(σ∗) is non-zero.

If |λ(σ∗)| 6= 1, the linearizationhσ is analytic atσ∗ (i.e. hσ (z) is analytic forσ close
enough toσ∗ andz close enough to the origin).

If |λ(σ∗)| = 1, we call ‘non-tangential’ a cone in the parameter-space of the form:{
σ

∣∣∣∣ arg

(
±λ

′(σ∗)
λ(σ∗)

(σ − σ∗)
)

∈ ] − α, α[
}

for someα ∈ ]0, π/2[. So, whenσ ‘tends to σ∗ non-tangentially’, this means that
the multiplierλ(σ) tends toλ(σ∗) transversally to the unit circle. There are only two
possibilities for the asymptotic behaviour ofhσ .

• fσ∗ is linearizable;λ(σ∗) is a Brjuno point, or a resonant point of orderq but then
f

◦q
σ∗ = Id (where by Id, here and elsewhere, we denote the identity in whatever

category we are dealing with); then the linearizationhσ tends to somehσ∗ ∈ G1

uniformly on some small open disk around zero asσ tends toσ∗ non-tangentially,
and the limit germhσ∗ is a linearization offσ∗ (which is thus uniquely determined
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by fσ∗ in the Brjuno case, but which is determined by(∂/∂σ)(f ◦q
σ )|σ=σ∗ in the

resonant case†).

• λ(σ∗) is resonant of orderq andf ◦q
σ∗ 6= Id: then there exist a positive integerk and a

non-zero complex numberA such that:

f ◦q
σ∗ (z) = z+ Azkq+1 +O(zkq+2),

and the rescaled linearization:

h̃σ (z) = (σ − σ∗)−1/kqhσ ((σ − σ∗)1/kqz)

tends uniformly on some small open disk around 0 to the function:

h̃σ∗(z) = z

(
1 − A

qλ′(σ∗)3q−1
zkq
)−1/kq

asσ tends toσ∗ non-tangentially.

All this is proved by adapting the proof of Theorem 2.1, to which the next two sections are
devoted. The easier case wheref ◦q

3 is the identity is examined at the end of §2.4 only.

Formalizing a little more, we could say that we are studying the regularity properties of
the ‘linearization’ mappingL:

L : f ∈ G 7→ hf ∈ G1,

with a particular attention to the singular set

Ĝ = {f ∈ G | |f ′(0)| = 1},
through its restrictions to someanalytic paths. We call path a map from some open
connected subsetU of C in G

σ 7→ fσ ,

and we call it analytic if for allσ∗ ∈ U , there existsr > 0 such that the path induces an
analytic function(σ, z) 7→ fσ (z) on the polydisk{(σ, z) ∈ C × C | |σ − σ∗| < r and
|z| < r}.

If an analytic path satisfies(∂/∂σ)f ′
σ (0) 6= 0 for some parameterσ∗, we can change (at

least locally) the parametrization in order to obtain astraightenedpath: an analytic path
λ 7→ fλ such thatf ′

λ(0) = λ.
When the image of an analytic path lies outsideĜ, the composition withL is well

defined and yields an analytic path inG1. However, if the path is straightened and defined
in a neighbourhoodU of λ∗ ∈ T1, we get an analytic pathhfλ on each side of the unit
circle and generally no ‘analytic continuation’ to a neighbourhood ofλ∗. It follows indeed

† In the resonant case, any linearization offσ∗ can be reached at the limit: one checks that, if a germF of orderq
is given with a particular linearizationH ∈ G1, the formula

fλ = F + (λ−3)
T F ′
3

with T = H−1(H ′ ◦H−1)

defines a familyfλ for which the linearizationhλ tends toH .
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from the corollary stated in §2.5 that in the case where the germsfλ or their inverses extend
to entire functions ofz, the resonant points† ofU are true singularities ofhfλ , unlike the
Brjuno points, where continuous extension in non-tangential sectors is always possible.

This situation is quite reminiscent of a monogenic uniform function according to Borel’s
definition [7], even if we cannot go much farther than a simple analogy for the moment.
This work is indeed a first step in the understanding of the behaviour of the linearizations
at these singular points, the idea being that the interesting information is localized there.

2.3. Germs with almost resonant linear part.We now begin the proof of Theorem 2.1
and consider the one-parameter family of germsfλ ∈ Gλ, with λ close to a fixed resonance
3 = exp(2πip/q). We denote byf ◦q

λ the composition offλ with itself q times, and we
suppose thatf ◦q

3 is not the identity.
Let us first focus on the germ at the resonance.

LEMMA 2.1. There exists a positive integerk and a non-zero complex numberA such that

f
◦q
3 (z) = z+ Azkq+1 +O(zkq+2). (2.5)

Proof. This is quite easily proved by comparing the Taylor expansions of both sides in the
equationf3 ◦ f ◦q

3 = f
◦q
3 ◦ f3. 2

Remark 2.6.If f2 = · · · = fn = 0, thenkq + 1 ≥ n, but if fλ is a polynomial of degree
d, then 1≤ k ≤ d − 1 (see [21, Proposition 6, p. 9]).

Remark 2.7.The numbersk andA are invariant under formal conjugacy off3, but there
also exists a uniqueB ∈ C such thatf ◦q

3 belongs to the analytic conjugacy class of a germ
g of the form

g(z) = z+ Azkq+1 + A2Bz2kq+1 +O(z2kq+2);
the coefficientB = i(f

◦q
3 ,0) is invariant under formal conjugacy off3, and f ◦q

3

is formally and topologically conjugate to the polynomialz + Azkq+1 + A2Bz2kq+1.
Conversely, if two germs ofG3 have the same formal invariants(k,A,B), they must
belong to the same formal conjugacy class [16, 17, 18].

We now letλ vary in a disk around the resonance:

|λ−3| < ρ

whereρ is some small positive constant, but we always impose|λ| 6= 1. The power series
expansion

hλ(z) = z+
∞∑
j=2

hj (λ)z
j (2.6)

for the linearizationhλ of fλ can be recursively determined by means of (2.1). However,
the equation

f
◦q
λ ◦ hλ = hλ ◦ R◦q

λ (2.7)

† At least those3 = exp(2πip/q) such thatf3 is not of orderq.
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can be used instead, and one then obtains

h1(λ) = 1,

hj (λ) = 1

λjq − λq

j∑
i=2

f
◦q
i (λ)

∑
j1+···+ji=j

hj1(λ) · · ·hji (λ) for j ≥ 2,
(2.8)

denoting{f ◦q
j (λ)} the Taylor coefficients off ◦q

λ :

f
◦q
λ (z) = λqz+

∞∑
j=2

f
◦q
j (λ)zj .

Let us choose a positive constantr (independent ofλ) such that the Taylor coefficients
of f ◦q

λ satisfy
∀j ≥ 2, |f ◦q

j (λ)| ≤ r1−j

(in order to do this, we use the Cauchy inequalities and then chooser small enough). Each
coefficientf ◦q

j (λ) is a polynomial inλ, with a zero at3 if 2 ≤ j ≤ kq, thus there exists
c1 > 0 such that for all|λ−3| < ρ: for j = 2, . . . , kq,

|f ◦q
j (λ)| ≤ c1|λ−3|r1−j . (2.9)

Let α ∈ ]0, π/2[. We introduce notations for a cone of vertex3 and aperture 2α and
for its intersection with a disk around3:

C(3, α) =
{
λ

∣∣∣∣ arg

(
±λ−3

3

)
∈ ] − α, α[

}
,

C(3, α, ρ) = C(3, α) ∩ {|λ−3| < ρ} .
(2.10)

LEMMA 2.2. For all α ∈ ]0, π/2[ and for all sufficiently smallρ > 0, there exists a
positive constantc2 < c1 such that

∀j ≥ 2, ∀λ ∈ C(3, α, ρ) : |λjq − λq | ≥ c2|λ−3|. (2.11)

Proof. For allλ ∈ C(3, α, ρ) andj ≥ 2 we can write

λjq − λq

λ−3
= A(λ)Bj (λ),

whereA(λ) = λq · [(λq −3q)/(λ − 3)] is bounded from below, andBj (λ) = [(λ(j−1)q

− 1)/(λq − 1)]. There existθ0, c > 0 such that, for allλ in C(λ, α, ρ), λq can be
writtene2πiθ with 0< |θ | < θ0 and∀t ∈ R, |θ − t| ≥ c|t|; in particular,

∀j ≥ 2, dist((j − 1)θ,Z) ≥ min((j − 1)|θ |, c).
However there also existc′, c′′ > 0 such that for allθ in C:{

|θ | ≤ θ0 ⇒ |e2πiθ − 1| ≤ c′|θ | ≤ c′θ0,

∀j ≥ 2, |e2πi(j−1)θ − 1| ≥ c′′ dist((j − 1)θ,Z).

Therefore,∀λ ∈ C(3, α, ρ), ∀j ≥ 2:

|Bj (λ)| ≥ c′′

c′
min

(
j − 1,

c

θ0

)
≥ c′′′,

wherec′′′ > 0 does not depend onj . 2
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Now let 

σ1 = 1,

σj =
j∑
i=2

∑
j1+···+ji=j

σj1 · · · σji for j ≥ 2.

We have the following lemmas.

LEMMA 2.3. If ρ > 0 is sufficiently small,α ∈ ]0, π/2[ and j ∈ N∗, then, ∀λ ∈
C(3, α, ρ), we have:

|hj (λ)| ≤ σj

(
c1

c2r

)j−1( 1

c2|λ−3|
)b(j−1)/kqc

, (2.12)

wherebxc denotes the integer part ofx.

Proof. We proceed by induction: (2.12) is clearly true ifj = 1; assume that it holds at
ranks 1, . . . , j − 1 for somej ≥ 2. Letλ ∈ C(3, α, ρ); thanks to the subadditivity of the
integer part we get

|hj (λ)| ≤
j∑
i=2

Hi,j (λ)
∑

j1+···+ji=j
σj1 · · · σji ,

with

Hi,j (λ) =
(
c1

c2r

)j−i ∣∣∣∣∣ f
◦q
i (λ)

λjq − λq

∣∣∣∣∣
(

1

c2|λ−3|
)b(j−i)/kqc

.

From the inequality (2.9) and Lemma 2.2, it follows that

∣∣∣∣∣ f
◦q
i (λ)

λjq − λq

∣∣∣∣∣ ≤




r1−i

c2|λ−3| for i = 2, . . . , j,

c1

c2
r1−i if, moreover,i ≤ kq.

On the other hand:

⌊
j − i

kq

⌋
≤




⌊
j − 1

kq

⌋
for i = 2, . . . , j,

⌊
j − 1

kq

⌋
− 1 if, moreover,i ≥ kq + 1.

Therefore, using the inequalityc2 < c1, we get in all cases

Hi,j (λ) ≤
(
c1

c2r

)j−1( 1

c2|λ−3|
)b(j−1)/kqc

. 2

LEMMA 2.4. There exists a positive constantc3 such that

∀j ≥ 1, σj ≤ c3(3 − 2
√

2)1−j . (2.13)
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Proof. The generating seriesσ(z) = ∑∞
i=1 σiz

i satisfies the functional equation:

σ(z) = z+ σ(z)2

1 − σ(z)
,

so that

σ(z) = 1 + z− √
1 − 6z+ z2

4

is analytic in the disk|z| < 3 − 2
√

2 and bounded and continuous on its closure; (2.13)
then follows by Cauchy’s estimate. 2

As Lemma 2.3 clearly shows, the radius of convergence ofhλ cannot tend to zero faster
than |λ − 3|1/kq asλ tends to3 non-tangentially. We shall now perform the rescaling
(2.3) which will compensate this possible divergence.

2.4. Rescaling the linearization.Let us fixρ > 0 sufficiently small andα ∈ ]0, π/2[.
Thej th coefficient of the Taylor series ofh̃λ is

h̃j (λ) = (λ−3)(j−1)/kqhj (λ).

According to (2.8) the coefficientshj are rational functions ofλ, with a pole at3 of
orderb(j − 1)/kqc at most according to (2.12). Thus each coefficienth̃j (λ) tends to a
limit h̃j (3) and the chosen determination of(λ − 3)1/kq does not matter:̃hλ converges
formally asλ tends to3 in C(3, α, ρ). Moreover, using (2.12) and (2.13), we see that

|h̃j (λ)| ≤ σj

(
c1

c2r

)j−1

|λ−3|(j−1)/kq
(

1

c2|λ−3|
)b(j−1)/kqc

≤ c4R
−j ,

whereR = (3−2
√

2)(c2r/c1)c
1/kq
2 andc4 is some positive constant. Thus, the formal limit

h̃3 has non-zero radius of convergence andh̃λ converges uniformly on any disk around
zero of radius less thanR, by a standard compactness argument for sets of holomorphic
functions†.

To compute the limit functioñh3, we introduce the germ

f̃λ(z) = (λ−3)−1/kqfλ((λ−3)1/kqz),

whose linearization is just̃hλ, and we note that

f̃
◦q
λ (z) = λqz+

kq∑
j=2

f
◦q
j (λ)(λ−3)(j−1)/kqzj+f ◦q

kq+1(λ)(λ−3)zkq+1+O((λ−3)1+1/kq).

† Indeed, ifR′ ∈ ]0, R[ andε > 0, we have for anyl ≥ 3:

|z| ≤ R′ ⇒ |h̃λ(z)− h̃3(z)| ≤
l−1∑
j=2

|h̃j (λ)− h̃j (3)| + 2c4
∑
j≥l

(
R′
R

)j
,

and we can fixl big enough to make the second sum on the right-hand side smaller thanε/2; then, forλ close
enough to3, we can ensure that

|z| ≤ R′ ⇒ |h̃λ(z)− h̃3(z)| ≤ ε,

which is the property of uniform convergence.
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Because of the inequality (2.9) and by definition ofA, we have:{
f

◦q
j (λ) = O(λ−3) for j = 2, . . . , kq,

f
◦q
kq+1(λ) = A+O(λ−3),

hence

f̃
◦q
λ (z) = z+ (λ−3)(q3q−1z+ Azkq+1 +O((λ−3)1/kq)). (2.14)

However, the linearizatioñhλ of f̃λ is the one off̃ ◦q
λ as well:

f̃
◦q
λ (h̃λ(z)) = h̃λ(λ

qz), (2.15)

and by the Taylor formula:

h̃λ(λ
qz)− h̃λ(z) = (λ−3)q3q−1zh̃′

λ(z)+O((λ−3)2),

which after substitution of (2.14) into (2.15) yields

zh̃′
λ(z) = h̃λ(z)+ A

q3q−1
(h̃λ(z))

kq+1 +O((λ−3)1/kq).

Taking the uniform limit asλ tends to3, we obtain the equation

zh̃′
3(z) = h̃3(z)+ A

q3q−1
(h̃3(z))

kq+1, (2.16)

which can be rewritten as a regular ordinary differential equation

H(z) = z−1h̃3(z), H ′(z) = A

q3q−1
zkq−1(H(z))kq+1

whose unique solution with initial conditionH(0) = 1 gives rise to the formula (2.4).
Lastly, we consider the case wheref ◦q

3 is the identity. The Taylor expansion off ◦q
λ

may be written as
f

◦q
λ (z) = λqz+ (λ−3)

∑
j≥2

τj (λ)z
j ,

where theτj are some analytic functions (in fact polynomials). Let us chooser > 0 small
enough so that

∀j ≥ 2, |τj (λ)| ≤ r1−j .
The induction formulae (2.8) become


h1(λ) = 1,

hj (λ) = λ−3

λjq − λq

j∑
i=2

τi(λ)
∑

j1+···+ji=j
hj1(λ) · · ·hji (λ) for j ≥ 2.

This allows us to prove inductively the existence of a non-tangential limit for each
coefficient. We obtain that, for eachj ≥ 1, the coefficienthj (λ) converges to a
numberhj (3) asλ tends non-tangentially to3, with the following recursion formulae


h1(3) = 1,

hj (3) = 3

(j − 1)q

j∑
i=2

τi(3)
∑

j1+···+ji=j
hj1(3) · · ·hji (3) for j ≥ 2.

(2.17)
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Using (2.11) and the same numbersσj as in §2.3, we find

|hj (λ)| ≤ σj (rc2)
1−j ,

and we conclude, as before, that the formal limith3 of the linearizationhλ is analytic
and thathλ converges uniformly to it on a disk around zero with small enough radius.
Moreover, taking the uniform limit of the conjugacy equation forfλ, we obtainf3 ◦h3 =
h3 ◦ R3.

Finally, we introduce

T (z) = 1

q3q−1

∂

∂λ
(f

◦q
λ (z))|λ=3 = z+ 3

q

∑
j≥2

τj (3)z
j

and we observe that the equation

zh′
3(z) = T (h3(z))

holds (either directly from the formulae (2.17) or by a chain of reasoning analogous to the
one that led to the equation (2.16)). One then easily identifies its unique solution inG1.

2.5. Materialization of resonances.Using the notations of Theorem 2.1 and
considering the second situation which it describes, we can prove the following corollary
on theradius of injectivityr(λ) of hλ (i.e. the supremum of the radii of the closed disks on
which this function is univalent).

COROLLARY 2.1. For any non-tangential coneC(3, α) and for allR > 0:

R >

∣∣∣ q
A

∣∣∣1/kq ⇒ ∃ρ > 0 : ∀λ ∈ C(3, α, ρ), r(λ) < R|λ−3|1/kq. (2.18)

Proof. Let r̃(λ) be the radius of injectivity of̃hλ:

r̃(λ) = r(λ)|λ−3|−1/kq.

SupposeR > |q/A|1/kq, i.e.R exceeds the radius of convergence ofh̃3. We must check
that r̃(λ) < R for λ close enough to3 insideC(3, α).

Suppose that this is not true. We could then find a sequence{λn} in C(3, α) converging
to 3 and such that̃r(λn) ≥ R, but h̃λn converges towards̃h3 uniformly in a small disk
around zero and the set of the functions ofG1 univalent in{|z| < R} is a compact normal
family: h̃3 should belong to it, which is not the case. 2

Obviously, the asymptotic inequality (2.18) also holds for the radius of injectivity of
h

◦(−1)
λ (since these functions, properly rescaled, converge uniformly toh̃

◦(−1)
3 on some

small disk).
When|λ| < 1 andfλ is an entire function (respectively, when|λ| > 1 and the inverse

functionf ◦(−1) is entire), the linearizationhλ is univalent in its disk of convergence, as is
easily checked by means of the functional equationf ◦ hf = hf ◦ Rλ (respectively, the
functional equationf ◦(−1)◦hf = hf ◦Rλ−1) which is then satisfied in this whole disk, and
not only in a neighbourhood of the origin. Thus under these more restrictive assumptions
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the previous corollary gives an information on the decrease of theradius of convergence
of hλ.

Arnol’d [22] raised the question of the origin of the divergence of the series of classical
perturbation theory:

‘L’id ée de la mat´erialisation des r´esonances est de trouver des obstacles
topologiques `a la convergence des s´eries de la th´eorie des perturbations dans
le comportement des orbites du syst`eme perturb´e dans l’espace des phases
complexe.’

We shall now give an elementary illustration of such a manifestation of the resonances
in the singular behaviour of the linearizations. According to Remark 2.2, we may think of
the function

z

(
1 − A3

q
.
zkq

3− λ

)−1/kq

as a first-order approximation ofh◦(−1)
λ for λ tending to3 in a non-tangential cone. This

function has ramification points at the boundary of its disk of injectivity (which coincides
with its disk of convergence), and we can write them

e2πim/kqσ, m ∈ Z/kqZ,

whereσ denotes some determination of[(q/A)(1 − (λ/3))]1/kq .
Now, sincefλ = hλ ◦ R3 ◦ h◦(−1)

λ , we may expect that something occurs near these
points in the dynamic offλ, explaining the result of Corollary 2.1.

LEMMA 2.5. Let us denote byσ a determination of[(q/A)(1− (λ/3))]1/kq. There exists
positive constantsε andρ such that, for0 < |λ − 3| < ρ, the local diffeomorphismfλ
admits exactlyk orbits of periodq inside the pointed diskD∗

ε = {z ∈ C | 0 < |z| < ε}.
Moreover, thekq fixed points off ◦q

λ inD∗
ε are analytic functions ofσ which can be written

zm(λ) = e2πim/kqσ (1 +O(σ)), m ∈ Z/kqZ

(with fλ(zm(λ)) = zm+kp(λ)); we thus get the following upper bound for the radius of

injectivity r ′(λ) of h◦(−1)
λ :

r ′(λ) ≤ sup{|zm(λ)|, m ∈ Z/kqZ} ∼
∣∣∣ q
A
(λ−3)

∣∣∣1/kq .
Note that here the multiplierλ is not required to lie in a non-tangential cone with vertex

at3.

Proof. The relation between the periodic orbits offλ and the radius of injectivity ofh◦(−1)
λ

is due to the fact that a whole periodic orbit cannot be included in the disk of injectivity
of h◦(−1)

λ , for in that disk the dynamic is conjugate toRλ and |λ| 6= 1. More precisely,
wheneverz 6= 0 belongs to the disk of convergence off ◦q

λ and bothz andf ◦q
λ (z) belong

to the disk of injectivity ofh◦(−1)
λ , we have

h
◦(−1)
λ (f

◦q
λ (z)) = λqh

◦(−1)
λ (z) 6= h

◦(−1)
λ (z),
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thusf ◦q
λ (z) 6= z.

We now begin the proof of the first statement by writing theqth iterate offλ as

f
◦q
λ (z) = λqz+ Azkq+1(1 + zB(z))+ (λ−3)z2C(λ, z)

whereB andC are analytic forλ close to3 andz close to the origin. On the other hand,
1 − λq = q3q−1(3− λ)(1 + (3− λ)D(λ)) with D analytic at3. Thus, the equation of
the non-zero fixed points off ◦q

λ is equivalent to the equation

zkq = q

A

(
1 − λ

3

)
E(λ, z)

whereE(λ, z) = (1+ (3− λ)D(λ)+ z(3/q)C(λ, z))(1+ zB(z))−1 is analytic at(3,0)
andE(3,0) = 1. This function can be writtenE = Fkq whereF has the same properties,
and our equation amounts to

∃m ∈ Z/kqZ | z = σF

(
3

(
1 − Aσkq

q

)
, z

)
e2πim/kq

which is equivalent, by the implicit function theorem, to saying thatz is the value of one
of kq functionszm(λ) analytic inσ , with zm = e2πim/kqσ (1 + O(σ)). Finally, since
fλ(zm(λ)) = 3zm(λ)+O(σ 2) is also fixed byf ◦q

λ , we must identify it withzm+kp(λ). 2

2.6. Two-variable version of Theorem 2.1.In this section we considerλ as a variable—
just asz—rather than a parameter, so we pretend we are dealing with mappings ofC×C∗:

8(z, λ) = (φλ(z), λ)

analytic on subsets ofC×C∗ and acting trivially on the second argument. Our purpose now
is simply to rephrase the results of §2.2 in this two-variable context, in view of extending
them to one case where the second variable is no longer inert (see the next section).

We start with a family of germsfλ ∈ Gλ as before, except that we do not assume the
nonlinear partfλ − Id to be independent ofλ, and we translate the results of the end of
§2.2 (withλ = σ ) for the map

F(z, λ) = (fλ(z), λ)

which is assumed to be analytic onDr ×U , wherer > 0 andU is some open subset ofC∗.
The rotationsRλ become the map:

R(z, λ) = (λz, λ), (2.19)

and the linearizationshλ, available at least at the pointsλ of U which do not lie on the unit
circleS1, become the map

H(z, λ) = (hλ(z), λ),

solution of the conjugacy equation:

F ◦H = H ◦ R,
with the normalizing conditionH − Id = (O(z2),0).
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As a function of two variables,H is analytic at all the points of the form(0, λ∗), where
λ∗ lies inU , but not onS1.

For λ∗ ∈ U ∩ S1, calling V the intersection ofU with any non-tangential cone with
vertex at(0, λ∗), we can state the following facts about the behaviour ofH in Dr × V .
(1) If λ∗ = B is a Brjuno point, there existsρ > 0 such thatH admits a continuous

extension toDρ × V .
(2) If λ∗ = 3 is resonant of orderq and if F ◦q(z,3) = (z,3), the same conclusion

holds.
(3) If λ∗ = 3 is resonant of orderq, but not all the points(z,3) areq-periodic, we can

attach to3 a positive integerk and a non-zero complex numberA defined by

F ◦q(z,3) = (z+ Azkq+1 +O(zkq+2),3)

and such that the same conclusion holds for the rescaled mapping:

H̃ = S−1 ◦H ◦ S,
with S(z, λ) = ((λ−3)1/kqz, λ) and with

H̃ (z,3) =
(
z

(
1 − A

q3q−1
zkq
)−1/kq

,3

)
.

3. The semi-standard map
3.1. Introduction to the semi-standard map.We now extend the results of the previous
section to the biholomorphic symplectic mappingF of C/2πZ × C defined by:

F(x, y) = (x1, y1)

{
x1 = x + y + eix,

y1 = y + eix.
(3.1)

This is the so-calledsemi-standard map, which has been studied by many authors [23–27]
as a model-problem of symplectic twist map.

In particular it provides a simple model for the study of invariant circles of symplectic
twist maps, with power series involved instead of trigonometric series [23, §32, p.173]:
indeed, for Im(x) large, we may seeF as a perturbation of the rotationR(x, y) = (x+y, y)
and ask whether the invariant curvesy = constantof R have any counterpart forF; i.e. we
fix ω ∈ C and we look for an invariant curve parametrized byθ :{

x = θ + ϕ(eiθ ),

y = 2πω + ψ(eiθ ),

in such a way thatF(x, y) corresponds toθ + 2πω, with ϕ andψ analytic and vanishing
at the origin. Ifω ∈ R, the above problem admits a solution(ϕ,ψ) = (ϕ2πω,ψ2πω) if and
only if ω is a Brjuno number [24, 25].

We shall see that forω ∈ C \ R, there always exists a solution, which we still denote
by (ϕ2πω,ψ2πω), and we shall study its behaviour asω tends to aresonance, i.e. a rational
number. For the very same reason as the one mentioned in the second footnote, the solution
will depend continuously onω in any cone non-tangential with respect to the real axis with
vertex at a Brjuno number.
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Since we consider nowω as a variable rather than a parameter, we can state the problem
as a conjugacy problem: findH of the formH(x, y) = (x + ϕy(e

ix), y + ψy(e
ix)) such

thatF ◦ H = H ◦ R.
The relationship with the previous section is best seen using the following variables:

z = eix, λ = eiy,

which give toF the form†:

F(z, λ) = (z1, λ1),

{
z1 = λzeiz,

λ1 = λeiz.

The points(0, λ) are fixed byF , and our problem consists in finding a mapH fixing these
points and satisfying the conjugacy equation:

F ◦H = H ◦ R, (3.2)

whereR corresponds toR and coincides with the previously defined rotation (2.19).
Thanks to the relationz1 = λ1z, it is easy to check thatH can be written as

H(z, λ) =
(
h(z, λ),

h(z, λ)

h(λ−1z, λ)

)
.

We choose the normalization

h(z, λ) = izeφλ(z), φλ(0) = 0,

so thatϕy = π/2 − iφeiy . This leads us to the equation

φλ(λz)− 2φλ(z)+ φλ(λ
−1z) = −zeφλ(z), (3.3)

and to the formula

H(z, λ) = (izeφλ(z), λei(φλ(z)−φλ(λ−1z))). (3.4)

The existence and the analyticity ofH for λ ∈ C∗\S1 and|z| small enough is guaranteed
by the stable manifold theorem applied in the intermediate set of variables(z, y). Indeed,
in these variables the semi-standard map takes the form:{

z1 = zei(y+z),
y1 = y + z;

the points(0, y) in these variables are fixed, and the Jacobian at such points has eigenvalues
1 andλ = eiy . We thus get, for eachy of positive imaginary part (0< |λ| < 1), a local
stable manifold, and for eachy of negative imaginary part (|λ| > 1), a local unstable
manifold; these are analytic imbedded disks tangent to the eigenvectors(λ − 1,1), which
we can parametrize byz, so that the dynamic on them is conjugate to the rotationz 7→ λz.
By glueing these parametrizations and using the appropriate set of variables, we get the
mapsH or H . Note that wheny = 2πω, whereω is Brjuno number (i.e. whenλ is
a Brjuno point), we may consider the image ofz 7→ (zeiϕy(z), y + ψy(z)) as a centre
manifold [23, 28].

† Instead of the semi-standard mapF itself, we are thus considering the quotient map fromC/2πZ× C/2πZ to
itself, but this does not change anything for the kind of invariant circles which we are interested in; observe that
ϕy andψy must be 2π -periodic iny.
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3.2. Existence of non-tangential limits.The functions under study are the unique
solutionφ of (3.3) such thatφλ(0) = 0 and the normalized solutionH of (3.2) which
is determined byφ through (3.4). With reference to §2.6, we (improperly) call them
linearizations.

THEOREM 3.1. Let us fix a resonance3 = exp(2πip/q) where p ∈ N, q ∈ N∗,
(p|q) = 1, and let us define the maps

sλ(z) = (λ−3)2/qz, S(z, λ) = (sλ(z), λ)

(how we choose the determination of(λ − 3)2/q does not matter), and the rescaled
linearizations

φ̃λ = φλ ◦ sλ, H̃ = S−1 ◦H ◦ S. (3.5)

For any non-tangential coneV with vertex3, the functionφ̃λ converges to some
analytic functionφ̃3, uniformly on some small open diskDr around zero, asλ tends to
3 in V ; and forρ > 0 small enough, if we denote byU the disk around3 of radiusρ, the
functionH̃ (z, λ) extends continuously inDr × (V̄ ∩ U) by

H̃ (z,3) = (izeφ̃3(z),3).

Proof. Expandingφλ into powers ofz:

φλ(z) =
∞∑
j=1

φj (λ)z
j

and substituting into (3.3) one finds


φ1(λ) = 1

D1(λ)
,

φj (λ) = 1

Dj (λ)

j−1∑
k=1

1

k!
∑

j1+···+jk=j−1

φj1(λ) · · ·φjk (λ) for j ≥ 2,

whereDj (λ) = −(λj/2 − λ−j/2)2.
Sinceλ tends to3 in V , there exists a positive constantc5 < 1 such that

|Dj(λ)| ≥
{
c5 if j 6= 0 (mod q),

c5|λ−3|2 if j = 0 (mod q).

We now check by induction that, for allj ≥ 1,

|φj(λ)| ≤ c
−j
5 σ ∗

j

(
1

c5|λ−3|2
)bj/qc

, (3.6)

where the numbersσ ∗
j are defined according to the formulae

σ ∗
1 = 1, σ ∗

j =
j−1∑
k=1

∑
j1+···+jk=j−1

σ ∗
j1

· · · σ ∗
jk

(j ≥ 2).
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Indeed, the inequality (3.6) is satisfied forj = 1 (whetherq = 1 orq ≥ 2). Let us suppose
that it holds at ranks 1, . . . , j −1 for somej ≥ 2: thanks to the subadditivity of the integer
part we get

|φj (λ)| ≤ c
−j+1
5 σ ∗

j Aj , with Aj =
∣∣∣∣ 1

Dj(λ)

∣∣∣∣
(

1

c5|λ−3|2
)b(j−1)/qc

.

However, we have alwaysb(j − 1)/qc ≤ bj/qc, and alsob(j − 1)/qc ≤ bj/qc − 1 in the
case whereq dividesj , thus

Aj ≤ c−1
5

(
1

c5|λ−3|2
)bj/qc

in all cases, which proves (3.6) at rankj .
The generating series for the numbersσ ∗

j is easily computed:
∑
j≥1 σ

∗
j z
j = 1

2[1− (1−
4z)1/2], it defines a holomorphic function which extends continuously to the closure of the
disk of radius1

4 with center at the origin, thusσ ∗
j ≤ const 4j and the first statement of the

theorem clearly follows by the arguments already used in §2.4. We note thatφ̃3 is in fact
a function ofzq , and this gives the second statement relative toH̃ . 2

Remark 3.1.If λ tends to one non-tangentially, one can easily compute the limitφ̃1. Note
thatφ̃λ is the solution of

φ̃λ(λz)− 2φ̃λ(z)+ φ̃λ(λ
−1z) = −(λ− 1)2zeφ̃λ(z);

since:

φ̃λ(λz) = φ̃λ(z)+ (λ− 1)zφ̃′
λ(z)+ 1

2(λ− 1)2z2φ̃′′
λ(z)+ · · · ,

φ̃λ(λ
−1z) = φ̃λ(z)+ 1 − λ

λ
zφ̃′
λ(z)+

1

2

(1 − λ)2

λ2 z2φ̃′′
λ(z)+ · · · ,

one finds at the limit:

zφ̃′
1(z)+ z2φ̃′′

1(z) = −zeφ̃1(z), (3.7)

with the initial conditionφ̃1(0) = 0. Thus,

φ̃1(z) = −2 log
(
1 + z

2

)
. (3.8)

Remark 3.2.If the termeix in (3.1) is replaced byγ (eix) whereγ is any analytic function
vanishing at the origin (even with finite radius of convergence), the conjugacy equation
(3.3) becomes

φλ(λz)− 2φλ(z)+ φλ(λ
−1z) = iγ (izeφλ(z))

and Theorem 3.1 can also be proved in this more general case. However, the differential
equation for the non-tangential limit at3 = 1 is then

zφ̃′
1(z)+ z2φ̃′′

1(z) = iγ (izeφ̃1(z));
the solution with initial conditionφ̃1(0) = 0 might be very different, and its analytic
continuation much more savage in that case.
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TABLE 1. The first few values ofC(3).

p q C(e2πip/q)

0 1 1
1 2 1/4
1 3 1/6
1 4 5/24

1 5
63− 11

√
5

120(3 − √
5)

2 5
63+ 11

√
5

120(3 + √
5)

1 6 99/80

3.3. Explicit formulae for the limits at resonances.We now compute the limits̃φ3 for
all 3 = exp(2πi(p/q)) with (p|q) = 1.

We attach to such a resonance3 theq − 1 positive numbers:

Dr(3) = 2 −3r −3−r = 4 sin2
(
rp

q
π

)
r = 1, . . . , q − 1

whose product isq2 (note thatDq−r (3) = Dr(3)).

THEOREM 3.2. The limit at the resonance3 is given by the formulae:

φ̃3(z) = − 2

q
log

(
1 + 32C(3)

2q
zq

)
,

H̃ (z,3) =

iz

(
1 + 32C(3)

2q
zq

)−2/q

,3


 ,

where the numberC(3) is obtained from auxiliary coefficientsC1, . . . , Cq−1 according to
the formulae:

C1 = 1

D1(3)
,

Cr = 1

Dr(3)

r−1∑
n=1

1

n!
∑

r1+···+rn= r−1

Cr1 · · ·Crn for r = 2, . . . , q − 1,

C(3) =
q−1∑
n=1

1

n!
∑

r1+···+rn= q−1

Cr1 · · ·Crn.

The constantC(3) is always an algebraic positive number. ObviouslyC(3−1) = C(3)

(sinceDr(3−1) = Dr(3)); the first few values ofC(3) are given in Table 1.
This result agrees with that computed for3 = 1 in the previous section, and in the proof

below we shall supposeq ≥ 2. We shall use a slightly different scaling and new variables
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s andη:
ϕ(s, η) = φ3eη (η

2/qes),

so that
lim
η

n.t.−→0

ϕ(s, η) = ϕ3(s) = φ̃3(3
−2/qes),

where the notationη
n.t.−→ 0 means that the limit exists forη tending to zero in any non-

tangential cone of the half-plane{Reη < 0} with vertex zero, uniformly in some half-plane
{Res ≤ s0}.

It is sufficient to show that

ϕ3(s) = − 2

q
log

(
1 + C(3)

2q
eqs
)
,

and, similarly to the end of the proof of Theorem 2.1, this formula will derive from a
differential equation; we need only to show that

ϕ′′
3(s) = −C(3)eqs+qϕ3(s). (3.9)

We shall also prove the following.

THEOREM 3.3. The following expansion holds forϕ(s, η):

ϕ(s, η) = ϕ3(s)+
∑

1≤k<q/2

η2k/qCke
ks

(1 + (C(3)/2q)eqs)2k
+O(η) (3.10)

where theCk are the ones defined in Theorem 3.2.

We believe that (3.10) provides the beginning of an infinite asymptotic expansion in
powers ofη2/q ; moreover the method that we use leads to a system of equations involving
the same operators as in [29], where these operators are shown to produceresurgencein
the variableη.

3.4. Proof of Theorems 3.2 and 3.3.In this section we shall prove the two theorems
stated above. We shall prove them through a series of lemmas.

Proof of Theorem 3.2.In the variables(s, η), the conjugacy equation (3.3) becomes

ϕ(s +�+ η, η)− 2ϕ(s, η)+ ϕ(s −�− η, η) = −η2/qes+ϕ(s,η), (3.11)

where� = 2πip/q. We introduce the following linear combinations of the�-translations
of ϕ:

σr(s, η) =
q−1∑
k=0

3−kr

q
ϕ(s + k�, η) for r = 0,1, . . . , q − 1.

We also introduce the Kronecker symbol onZ/qZ:

∀a, b ∈ Z, δ̃a,b =
{

1 if a = b (mod q),

0 otherwise.
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The following identity:

∀a, b ∈ Z, δ̃a,b =
q−1∑
r=0

(3a−b)r

q
(3.12)

allows us to write the inverse formulae:

ϕ(s + k�, η) =
q−1∑
r=0

3krσr (s, η) for k = 0,1, . . . , q − 1,

and by combining the�-translations of equation (3.11), we obtain the system of equations

(1rσr)(s, η) = −η2/qes+σ0(s,η)Sr for r = 0,1, . . . , q − 1, (3.13)

where the operator1r is acting on a functionψ(s, η) according to:

(1rψ)(s, η) = 3rψ(s + η, η)− 2ψ(s, η) +3−rψ(s − η, η)

and

Sr =
q−1∑
k=0

3−k(r−1)

q
exp

( q−1∑
r ′=0

3kr
′
σr ′(s, η)

)
.

Developing the exponentials and using again the identity (3.12), we find:

Sr = δ̃r−1,0 +
∑
n≥1

1

n!
∑

1≤r1,...,rn≤q−1

δ̃r1+···+rn,r−1σr1 · · ·σrn . (3.14)

We know that the functionsσr andSr tend to some analytic 2πi-periodic functions of

s asη
n.t.−→ 0. We may add, thanks to the uniformness statement and because these are

analytic functions ofz = es , that the same is true for the partial derivatives with respect to
s of the functionsσr ; this allows us to give the following approximation for the operator
appearing in the left-hand side of equation (3.13):

(1rσr)(s, η) =
{
η2(∂2

s σ0(s, η) +O(η2)) if r = 0,

−Dr(3)σr (s, η)+O(η) if r = 1, . . . , q − 1,
(3.15)

thanks to the Taylor formula. This was indeed the purpose of using these functionsσr : to
get rid of the difference operator in the approximation of our equation, replacing it by a
differential operator (one might consider that the operator1r is a ‘differential operator of
infinite order’; some series to which the inversion of a closely related operator gives rise
are studied in [29]).

This implies immediately thatσr = O(η2/q) for r = 1, . . . , q − 1, but we shall see
better estimates in the following lemma.

LEMMA 3.1.
σr(s, η) = O(η2r/q) for r = 0,1, . . . , q − 1.

Before proving Lemma 3.1, we introduce a notation for the intervals of integers: for
a, b ∈ Z such thata ≤ b, [[a, b]] = {r ∈ Z | a ≤ r ≤ b}, and we state an easy
combinatorial lemma.



Linearizations of complex dynamical systems 985

LEMMA 3.2.
(a) If n ∈ N∗ andr, r1, . . . , rn ∈ [[1, q − 1]],

δ̃r1+···+rn,r−1 6= 0 ⇒ r1 + · · · + rn ≥ r − 1.

(b) Suppose thatq ≥ 3 and r0 ∈ [[1, q − 2]]. DefineNr for r ∈ [[1, q − 1]] as
Nr = min(r, r0). Then, ifn ∈ N∗, r ∈ [[r0 + 1, q − 1]] andr1, . . . , rn ∈ [[1, q − 1]],

δ̃r1+···+rn,r−1 6= 0 ⇒ Nr1 + · · · +Nrn ≥ r0.

Proof of Lemma 3.2.
(a) Suppose that̃δr1+···+rn,r−1 6= 0. There existsm ∈ Z such thatr1 + · · · + rn =

r − 1 + mq. The positiveness of allrj implies thatmq ≥ n + 1 − r > −q, so
m > −1, thusm ≥ 0.

(b) Suppose that we are givenq, r0, r andr1, . . . , rn as in the second part of the lemma.
Sincer − 1 ≥ r0 and because of (a), it is sufficient to prove that

r1 + · · · + rn ≥ r0 ⇒ Nr1 + · · · +Nrn ≥ r0.

However, if we supposeNr1 +· · ·+Nrn ≤ r0 −1, the positiveness of allNrj implies
that each one satisfiesNrj ≤ r0 −1, and thusNrj = rj by definition ofN . Therefore
r1 + · · · + rn = Nr1 + · · · +Nrn ≤ r0 − 1 and we are done. 2

Proof of Lemma 3.1.The property to be proved was already checked forr = 0 andr = 1;
this settles the case ofq = 2. We shall supposeq ≥ 3 and prove by induction that for allr0
in [[1, q − 1]],

∀r ∈ [[1, q − 1]], σr = O(η(2/q)min(r,r0)).

This property at rankr0 = q−1 is nothing but the desired estimate. It was already checked
for r0 = 1, so let us suppose it to be true for somer0 ∈ [[1, q − 2]]: in order to establish it
at orderr0 + 1 we only need to show that

∀r ∈ [[r0 + 1, q − 1]], σr = O(η2(r0+1)/q).

Now, if r0 + 1 ≤ r ≤ q − 1, the property at rankr0 and Lemma 3.2 imply that

∀r1, . . . , rn ∈ [[1, q − 1]], δ̃r1+···+rn,r−1σr1 . . . σrn = O(η2r0/q),

thusSr = O(η2r0/q); because of the equation (3.13),1rσr = O(η2(r0+1)/q) and the
estimate (3.15) implies thatσr = O(ηmin(1,2(r0+1)/q)), hence the result in the case where
2(r0 + 1)/q ≤ 1.

If 2(r0 + 1)/q > 1, we haveσr = O(η) and this allows for a refinement of the
approximation (3.15):

1rσr = −Drσr +O(η2),

thusσr = O(η2(r0+1)/q) in that case too. 2

We shall now study the behaviour ofη−2r/qσr (s, η) asη
n.t.−→ 0, again by induction

on r. As for σ0(s, η), its non-tangential limit is nothing butϕ3(s) sinceϕ = ∑q−1
r=0 σr and

σr tends to zero for 1≤ r ≤ q − 1. (We also see in this way that all the�-translations of
ϕ coincide at the limit:ϕ3 must be(2πi/q)-periodic, andφ̃3 must be function ofzq .)
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LEMMA 3.3. For all r in [[1, q − 1]],
σr(s, η) = η2r/q(Cre

r(s+σ0(s,η)) +O(η)). (3.16)

For all r in [[1, q]],
Sr = η2(r−1)/q(Ere

(r−1)(s+σ0(s,η)) +O(η)), (3.17)

with Sq = S0 and

E1 = 1,

Er =
∑
n≥1

1

n!
∑

r1+···+rn= r−1

Cr1 · · ·Crn for 2 ≤ r ≤ q.

Proof. If 1 ≤ r ≤ q − 1 the estimate forσr in (3.16) follows from the estimate ofSr in
(3.17), by virtue of equation (3.13) which yields

1rσr = −η2r/q(Ere
r(s+σ0) +O(η))

and of the refinement of the approximation (3.15):

1rσr = −Drσr +O(η1+2r/q),

which is made possible by the fact thatσr = O(η2r/q). Indeed,Cr = Er/Dr .
If 1 ≤ r ≤ q, the estimate ofSr in (3.17) will be deduced from the estimates (3.16) at

ranks 1, . . . , r − 1, i.e. we proceed by induction onr.
For r = 1, we apply the first part of Lemma 3.2 inside equation (3.14) and get

S1 = 1 +
∑
n≥1
m≥0

1

n!
∑

r1+···+rn=mq
σr1 · · · σrn.

However, in each term of the sum, since therj must be positive, the integerm must also
be positive and the corresponding productσr1 · · · σrn which isO(η2(r1+···+rn)/q), is also
O(η2). ThereforeS1 = 1 +O(η2).

For 2 ≤ r ≤ q, supposing (3.16) to be true at ranks 1, . . . , r − 1, we rewrite (3.14)
taking into account the first part of Lemma 3.2:

Sr =
∑
n≥1

1

n!
∑

r1+···+rn= r−1

σr1 · · · σrn +
∑
n,m≥1

1

n!
∑

r1+···+rn= r−1+mq
σr1 · · · σrn.

The second sum isO(η2+2(r−1)/q) because of Lemma 3.1. The induction hypothesis
applies to each term of the first sum, for this sum involves only values of the indices
r1, . . . , rn ranging from 1 tor − 1. Thus:

Sr =
∑
n≥1

1

n!
∑

r1+···+rn= r−1

η2(r−1)/qCr1 · · ·Crne(r−1)(s+σ0)(1 +O(η))+O(η2+2(r−1)/q),

hence the desired estimate. 2
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We can now finish the proof of the theorem. On one hand the estimate (3.17), when
specialized to the caser = q, introduces the coefficientC(3) = Eq :

Sq = S0 = η2(q−1)/q(C(3)e(q−1)(s+σ0) +O(η)).

On the other hand the equation (3.13), together with the estimate (3.15), yields

η2(∂2
s σ0 +O(η2)) = −η2/qes+σ0S0.

Therefore,

∂2
s σ0(s, η) = −C(3)eqs+qσ0(s,η) +O(η), (3.18)

and the uniform limitϕ3 of σ0 must satisfy the limit equation (3.9), which characterizes it
since all our functions are 2πi-periodic and tend to zero as Re(s) tends to−∞. 2

Proof of Theorem 3.3.A kind of analytic Gronwall lemma may be applied to the estimate
(3.18) in order to prove that

σ0(s, η) = ϕ3(s)+O(η). (3.19)

This provides estimates ofσ0, σ1, . . . , σq−1 (with the help of (3.16)) which prove (3.10).
More precisely, let us explain how (3.19) may be derived from (3.18).

Let χ(s, η) = σ0(s, η)− ϕ3(s). We can write the difference between (3.18) and (3.9):

∂2
s χ = −C(3)eqs+qϕ3(eqχ − 1)+O(η)

as
∂2
s χ = f (s, η)χ + g(s, η),

where

f = −C(3)e
qχ − 1

χ
eqs+qϕ3(s) = O(1)

(becauseχ is known to beo(1)) andg = O(η).
Returning to the variablez = es , we get three functionsχ∗(z, η) = χ , f ∗(z, η) = f

andg∗(z, η) = g, which are analytic forz in some fixed discDρ centred at the origin and
η in some non-tangential coneV0 with vertex zero. The three of them vanish whenz = 0,
so that their Taylor expansions are

χ∗ =
∑
n≥1

χn(η)z
n, f ∗ =

∑
n≥1

fn(η)z
n, g∗ =

∑
n≥1

gn(η)z
n.

Because of the uniformity of our estimates and Cauchy inequalities, there exist a
convergent seriesα = ∑

n≥1 αnz
n with constant positive coefficients and a positive

constantη0 such that

∀η ∈ V0,∀n ≥ 1, |η| ≤ η0 ⇒ |fn(η)| ≤ αn and |gn(η)| ≤ |η|αn.
When expanding the differential equation into powers ofz,

(z∂z)
2χ∗ = g∗ + f ∗χ∗,
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we see that the coefficients ofχ∗ can be bounded by|χn| ≤ |η|βn provided that:

β1 ≥ α1,

βn ≥ 1

n2

(
αn +

∑
n1+n2=n

αn1βn2

)
.

Such a requirement may be fulfilled by a convergent seriesβ = ∑
n≥1 βnz

n, e.g.β =
α/(1 − α), which is sufficient to conclude. 2

3.5. Invariance of the limits under formal conjugacy.We have associated to the semi-
standard map a set of numbers{C(3)} which determine the non-tangential limit of the
rescaled linearization at any resonance3, and we mentioned at the end of §3.2 the
existence of non-tangential limits for the more general case of the map:

Fγ (z, λ) = (z1, λ1)

{
z1 = λzeiγ (z),

λ1 = λeiγ (z),

for any functionγ analytic and vanishing at the origin. We shall denote byHγ and
H̃γ = S−1 ◦Hγ ◦ S the corresponding linearization and its rescaling.

We now prove the invariance of these limits under a suitable notion of formal conjugacy.
All the mappings fromC×C∗ to itself that we consider leave the points(0, λ) fixed: these
points are the null section of the bundleC × C∗ 7→ C∗.

Let us fix a resonance3. The formal conjugating diffeomorphisms that we shall use are
of the form

ξ(z, λ) =
(∑
n≥1

αn(λ)z
n, λ+

∑
n≥1

βn(λ)z
n

)
,

where the coefficientsαn andβn are continuous functions defined in a neighbourhood of
3. We may think of such aξ as a local diffeomorphism of(C2, (0,3)), formal in z,
continuous inλ and leaving the null section fixed.

Let F ∗ be someanalytic local diffeomorphism of(C2, (0,3)) leaving the null section
fixed, defined inDr ×U , wherer is a positive number andU is some open subset ofC∗. If
we assumeF ∗ to beformallyconjugate toFγ by someξ , we find immediately the relation
between its linearization and that ofFγ :

F ∗ ◦H ∗ = H ∗ ◦ R with H ∗ = ξ ◦Hγ .
Thus, applying the same rescalingS to the linearizations ofFγ andF ∗, we obtain

H̃ ∗ = S−1 ◦H ∗ ◦ S = S−1 ◦ ξ ◦ S ◦ H̃γ .
However(S−1 ◦ ξ ◦ S)(z, λ) tends to(z,3) asλ tends non-tangentially to3, thus we have
proved thatfor any non-tangential coneV with vertex3, and forρ > 0 small enough, the
rescaled linearizationH̃ ∗ extends continuously inDρ × (V̄ ∩ U) with the same value as
H̃γ at the points(z,3).
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(3e sér.), 1 Suppl. (1884), 1–41.
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Polytechnique, Paris, 10 mai, 1994.

[23] M. R. Herman. Recent results and some open questions on Siegel’s linearization theorem of germs of
complex analytic diffeomorphisms ofCn near a fixed point.Proc. VIII Int. Conf. Math. Phys.Eds.
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