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Abstract We consider the behaviour near resonances of linearizations of germs of
holomorphic diffeomorphisms afC, 0) and of the semi-standard map.

We prove that for each resonance there exists a suitable blow-up of the Taylor series
of the linearization under which it converges uniformly to an analytic function as the
multiplier, or rotation number, tends non-tangentially to the resonance. This limit function
is explicitly computed and related to questions of formal classification, both for the case of
germs and for the case of the semi-standard map.

1. Introduction

It is well known since Poinca’s work on normal forms and celestial mechanics that
resonances are responsible for the divergence of the series expansions of quasi-periodic
motions in the theory of dynamical systems. In the simplest non-trivial case of one-
dimensional holomorphic systems this difficulty already appears when one tries to
conjugate a given system to its linear part> Az in a neighbourhood of a fixed point
z=0.
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For a fixed value of the multipliet, the linearization (when it exists) has a complicated
analytic structure with respect to its argument. Almost nothing is known, except for some
numerical studies (e.gl], Figures 6 and 7 of]] and references quoted therei8, f).

If one considers the dependence of the linearizatioh,aesonances appear as formal
poles of the Taylor series of the conjugation: it is the famous phenomenon of ‘small
denominators’. In some sense (see §2.2), the unit cifélés a natural boundary of
analyticity for the conjugation with respect to the multiplierNevertheless the series has
non-tangential limits at almost all points @ (see §2.1 for more information an8, [6]
for a detailed study in the case of analytic diffeomorphisms of the circle). The relation
between the formal poles (associated to the resonances) of the linearization and its natural
boundary of analyticity calls for some enlightenment, especially if one places the problem
in the perspective of Borel's theory of uniform monogenic functiafys [

In this paper we prove some results concerning the behaviour at resonances of the
linearizations of local diffeomorphisms @ (see e.g. §]) and of the so-called ‘semi-
standard map’J, 1J. These two models are actually tightly related (compare 8§2.6
and §3.1).

In particular, for each of the systems we take into account, we prove that the
linearizations have well defined limits as the multiplier (or the rotation number) tends
non-tangentially to a root of unity (or a rational valpe¢q) provided the Taylor series
is suitably blown-upand we compute these limits. In the case of germs, this generalizes
a result of Yoccoz§, §3.3 and 83.4, pp. 73-78], as he computes this limit only for the
quadratic familyP; (z) = A(z — z2).

These limit functions have a finite radius of convergence and ramification points. By
reversal of the blow-up, they provide an approximation of the linearization when the
multiplier is very close to a resonance.

Of course it would be quite interesting to generalize these results to general analytic
small divisor problems (Hamiltonian systems, real analytic area-preserving twist maps,
etc). The standard map case was studie@jnljy a suitable blow-up the Lindstedt series
has an explicitly computable limit at the resonancgk @d 12. The same is true for all
resonanceg/q, as recently proved irg]. We also hope to be able to apply the method
presented in 83 in order to improve these studies.

2. Germs of holomorphic diffeomorphisms(@f, 0)

2.1. The linearization of a germ.Let G denote the group of germs of holomorphic
diffeomorphisms of(C, 0). An important problem in complex dynamics is to describe
the conjugacy classes of this group. Since the origin is a fixed point one has some
natural conjugacy invariants such as the multipiee= f’(0) of the germf at 0 and

the holomorphic index:
(£.0) 1 f dz
l I = 5 _- T N
2ni ) z— f(2)

where we integrate on a small loop in the positive direction around zerb.Af1, the
origin is a simple fixed point and one clearly has

1

i((£.0)= 7.
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Let G, denote the set of € G such thatf’(0) = A. Such a gernmy is said to be
linearizable if it belongs to the conjugacy class of the rotak@(r) = Az. This is always
the case ifA| # 1: by the Poincag=Kdnigs linearization theoren L, 13, one knows that
there exists a gerly € G1 such that

fohy=hyoR,. (2.2)

The condition; € Gi ensures the unicity of the solution of this conjugacy equation.
From now on, when speaking of conjugacy classeé& afithout other specification, we
shall always refer to the adjoint action of the subgralyp—not the whole grous.
The functioni ¢ is called thelinearizationof f: attracting (x| < 1) and repelling
(Ir] > 1) fixed points of the holomorphic diffeomorphisms that are linearizable. If one
keepsf — R, fixed asi varies, or more generally if depends analytically on the
parameters, then by uniform convergence the dependence of the linearizati®also
analytic. If f is an entire function angh| > 1 thenk ¢ is an entire function.
When|1| = 1 the fixed point at the origin imdifferentand one must distinguish three
different kinds of multiplier:
(1) parabolicor resonant point A = A = exp(2ri(p/q)), wherep € N, ¢ € N¥,
(plg) =1,
(2) Brjunopoint A = B = exp2riw), ® € R\ Q andw is aBrjuno numbef13, 14:
Y reologgk+1/qk < +oo, where{pi/qi} denotes the sequence of partial fractions
of the continued fraction expansion ®f
(3) Cremer point A = exp(2riw), w € R\ Q andw is nota Brjuno number.
Actually, Cremer proved][5] that G, is not a conjugacy class if
SupIOQQIH-l - oo
n dn
however, we think that it is quite fair to give his name to the complement of the Brjuno set.
In case (1)Ecalle 16, 17 and Voronin [L8] gave a complete classification of the
conjugacy classes @f contained inG  ; among them the class of the rotatiBR consists
of all elements of ordeg belonging toG A, but there are other conjugacy classe&in.
In case (2)G, is a conjugacy class a@ [13] (as in the hyperbolic case| # 1): for
all fin G, there exists a unique analytic linearizatiop. In 1987 Yoccoz §] proved that
in case (3)G,, is not a conjugacy class and there exists at least one nonlinearizable germ
f € G,. Aremarkable example is given by the quadratic polynomial

Pi(z) = e70(z — £?)

which is linearizable if and only i& is a Brjuno number.

Our main motivation in this study is to understand how the formal poles due to
resonances give rise to the complicated analytic structure of the linearization. For that
reason we shall let vary in a non-tangential conet with vertex at any root of unifyand
we shall treat it as a bifurcation parameter. Consequently, the getself will vary—we
thus denote it byfy henceforth—and its linearizationy, will be studied as a function of

T By ‘non-tangential’ we mean: non-tangential to the unit circle; a non-tangential cone with vereis any
setV = C(A, «) with the notation of formula (2.10).
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A, singular at the resonance We shall provide all of the details for the situation where
the nonlinear parf, — R, is kept fixed as. varies (this assumption is quite natural: see
[5,6,19 ch. Ill] for the related problem of the dependence of the linearization in one-
parameter families of analytic circle diffeomorphisms), but we shall also give (at the end
of the next section) the corresponding statements for a more general dependgnoa of
the parametex.

Note that if, instead of a sectorial neighbourhood of a resonance, one considers a non-
tangential cone/ with vertex at a Brjuno poinB = ¢?*®, an easyt but interesting
property of the linearization is its continuity with respectitdi.e. i s, tends toh s, as
A tends toB inside V).

More generally if one assumes th#f, is linearizable for a certairig satisfying
[Ao] = 1, whena tends toig non-tangentially the linearizing majs are univalent on
a small uniform disk# (they thus form a compact family) and any limit of these maps when
Atends tavg is a linearizing map forfy,,. These limits clearly coincide iy is not resonant,
otherwise this is a consequence of Theorem 2.1 below.

In what follows, putting the vertex of at a resonanca, we shall prove the existence
of a suitable scaling under whidh;, has a non-tangential limit. These scalings are a
slight generalization of the notion of blow-up of a formal power series which is standard
in algebraic geometry and which has already been applied to the study of complex
analytic differential equation®2p, §lll]. We shall also compute these limits and study
their relationship to the classification foffmal conjugacy classes @f 4 .

2.2. Existence of non-tangential limits.Let us consider the one-parameter family of
germs ofG,.:

fL@) =z + Z ",

n=2

where we keep fixed the coefficier{ts,} > ,, i.e. the nonlinear parf, — R; is constant.
We denote simply by, the corresponding linearization. We have the following theorem
(compare with §3.3 and §3.4 d3]).

T Let us consider the intersectidf of V with a disk of centreB and of small radiup, i.e.V = C(B, «, p) with

the notation of formula (2.10). It is immediate to check from the relation (2.1) which defines the linearization,
thathy, =z + > ha(MZ", where each coefficient, (n > 2) is a finite sum of rational functions of the
form WL —0)~1... -1 — )~ Lwith 2 < ji, ..., j_1 < n. Clearlyh, is analytic inV, and continuous

on its closureV,; the uniform convergence follows from the standard Brjuno’s argument, since there exists a
positive constanC such thatva e \_/p,Vj >2, A — A|—1 < C|B/ — B|‘l (because there exists > 0

such that any point of7p can be writtene27¢ with Vg € N*, dist(¢6,7Z) > c dist(qw, Z), and there exist
¢,¢” > 0such thatvx e C, [e2T¥ — 1] > /dist(x, Z) andVx € R, [eZT* — 1] < ¢’ dist(x, Z), thus

Vg € N* VA e Vp, |24 — 1] > (c'c/c”)|BY — 1)).

1 This is very easy to see. Denote by, a linearizing map forf;,. Theng,(z) = (h;ol o fi 0 hyg)(@)
satisfiesg, (0) = 0, g (0) = A, gxy(2) = %oz Thusz1g; (2) — 20 = (» — Ag)(L + zS(%, 2)) (for some
analytic functions), and for any non-tangential neighbourho®@g of 1o there existsg > 0 such that for any

A € Vp \ {0} and for anyz, |z| < rg, one hagi| > 1 = [g,(z)| > |z| and|A| < 1 = |g;(2)| < |z|. One
deduces from this that, asvaries inV,, the radius of injectivity ofz; is uniformly bounded from below by a
strictly positive constant (independentgf
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THEOREM2.1. Let us fix a resonanc& = exp(2rip/q) wherep € N, ¢ € N¥
(plg) = 1. There are two possibilities, according to thth iteratefj{q of fa.

o If £ is the identity, the formulae

T()——1 i(foq())l U(z) = zex </Z< ! —i>d )
Z _qA‘i—l('M 5 (@) r=As zZ) = zexp s \T@ o 71
(2.2)

define a germi/ € G1 whose reciprocah, linearizes f, and has the following
property. For all non-tangential condg of C with vertexA (non-tangential to the
unit circle), the linearizatiom:, tends uniformly on some small open disk around
zero toh, asa tends toA insideV.

o If fzq is the not the identity, there exists a positive integand a non-zero complex
numberA such that

fl(z) = 2+ AZMTL 4 0(FFt2),

and for any non-tangential corié of C with vertexA, the rescaled linearization

hy(z) = (O — A)Y*az) (2.3)

(h — M)k

tends uniformly on some small open disk around zero to the function

- A ' —1/kq

— _ q
ha(z) =z <1 quflz ) (2.4)
as A tends toA inside V. (One can choose any of thg determinations of
(= m)lha)

Remark 2.1 Note that in the casgjiq = Id the linearization off, is not unique. What
Theorem 2.1 asserts is that, among all the linearizatiorfg pbne of them is the limit of
h) asi tends toA non-tangentially. The formulae (2.2) make sense and dé&fiags 1 as
claimed in the theorem, sin(z) = z(1 + O(z)); in fact/ is the unique solution 61
of the ordinary differential equatidd’ = //T.

Remark 2.2.In the next section, we give some details about the numbarsl A which
appear in the theorem. They are classically introducefdmsal invariants of f5: given
two germsf, andg, in G 4, the existence of a formal serig$z) = z + 0(z?) such that

ga=¢ tofaop.
implies
k(fa) =k(ga) and A(fr) = A(ga),

but the converse is not true: a third formal invariant is necessary in order to describe all
of the formal conjugacy classes. Thus, the lifnitdepends only on the formal conjugacy
class off,, but does not determine it completely.
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Remark 2.3.Note that

~ AA _1/kq - AA —l/kq
n=e(1-00) e (14 00)

and these maps commute wiRh),.

If we now conjugater, with the inverse scaling we find that, wherapproaches\
non-tangentially and approaches the origin in such a way that the quantity- A)~Y/*4
remains constant, then

AN ke \THH
h,\(z)%z(l—T)\_A> .
Therefore, fon. very close to a resonance, the linearization behaves as an analytic function
with respect tq with kg ramification points that collapse at the origin whiertiends toA.

We note that this has also been numerically observed (compare with figures 4 ad)5 of [
with a very good quantitative agreement (compare with the discussion in the last section of
[2] for a related problem concerning the standard map).

Remark 2.4 Note that one may use any scaling— s(x)Y*z instead of; — (A —
A)Y*4z provideds is analytic,s(A) = 0 ands’(A) # 0. In this case the limit is

" As'(A) 4\ VM
— _ q
hp =z (1 qu_lz .

Remark 2.5Let us envisage briefly a more general dependence of the geom the
parameter and indicate the corresponding statements. Changing the notations, we now
consider a familyf, of local analytic diffeomorphisms which depends analytically on a
complex parameter. The multiplier of f, will be denoted by.(¢). The linearization of
fo, if it exists as an analytic germ @f1, will be denoted by, .

Let o, be a point of the parameter-space such that:
(1) the multiplierr(o,) is not a Cremer point;
(2) its derivative)’(o,) is non-zero.

If |A(ox)| # 1, the linearizatiork,, is analytic ato, (i.e. h, (z) is analytic foro close
enough tar, andz close enough to the origin).

If |M(ox)| = 1, we call ‘non-tangential’ a cone in the parameter-space of the form:

[« [l o =) €1
o | arg| = (0—0y) ) €l—a,of

Aoy)
for somea €]10,7/2[. So, wheno ‘tends too, non-tangentially’, this means that
the multiplier A(o) tends toi(oy) transversally to the unit circle. There are only two
possibilities for the asymptotic behaviour/of.

e f,, is linearizable(o,) is a Brjuno point, or a resonant point of ordgbut then

-4 = |d (where by Id, here and elsewhere, we denote the identity in whatever
category we are dealing with); then the linearizatigntends to somé,, € Gi
uniformly on some small open disk around zeraratends too, hon-tangentially,

and the limit germh,, is a linearization off,, (which is thus uniquely determined
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by f,, in the Brjuno case, but which is determined &ydo)(fs")|s=0, in the
resonant caset).

e A(oy) is resonant of ordey and £,/ # Id: then there exist a positive integeand a
non-zero complex numbe¥ such that:

f29(2) = z + AZFTE 4 0 (R,
and the rescaled linearization:
ho(2) = (0 — o) MM hg (o — o) Y*z)

tends uniformly on some small open disk around 0 to the function:

) A o\
o) =2 (1 ——
0(2) =2 < gn (G A 1° )

aso tends tas, non-tangentially.

All this is proved by adapting the proof of Theorem 2.1, to which the next two sections are
devoted. The easier case wheig is the identity is examined at the end of §2.4 only.

Formalizing a little more, we could say that we are studying the regularity properties of
the ‘linearization’ mapping_:

L:feGr hyeGy,
with a particular attention to the singular set
G={feG|IfOI=1},

through its restrictions to somanalytic paths We call path a map from some open
connected subsét of C in G
o fo,

and we call it analytic if for alb,, € U, there exists > 0 such that the path induces an
analytic function(s, z) + f5(z) on the polydisk{(c,z) € C x C | |o — 04| < r and
lz| <r}.

If an analytic path satisfie®/do) 17 (0) # 0 for some parametet,, we can change (at
least locally) the parametrization in order to obtaistaightenedpath: an analytic path
A+ fi such thatf] (0) = .

When the image of an analytic path lies outsi@gethe composition with’ is well
defined and yields an analytic pathGh. However, if the path is straightened and defined
in a neighbourhood of 1, € T, we get an analytic path; on each side of the unit
circle and generally no ‘analytic continuation’ to a neighbourhoad.oft follows indeed
t Inthe resonant case, any linearizationfgf can be reached at the limit: one checks that, if a gEraf orderg
is given with a particular linearizatio” € G1, the formula

4

fi=F+G—A) with T = HY(H o H Y

A

defines a familyf; for which the linearizatiork tends toH .
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from the corollary stated in §2.5 that in the case where the g¢rrastheir inverses extend

to entire functions ot, the resonant pointst @f are true singularities of 7, , unlike the

Brjuno points, where continuous extension in non-tangential sectors is always possible.
This situation is quite reminiscent of a monogenic uniform function according to Borel’s

definition [7], even if we cannot go much farther than a simple analogy for the moment.

This work is indeed a first step in the understanding of the behaviour of the linearizations

at these singular points, the idea being that the interesting information is localized there.

2.3. Germs with almost resonant linear partWe now begin the proof of Theorem 2.1
and consider the one-parameter family of gerfng G, with A close to a fixed resonance
A = exp(2rip/q). We denote byf,? the composition off; with itself ¢ times, and we
suppose thafxq is notthe identity.

Let us first focus on the germ at the resonance.

LEMMA 2.1. There exists a positive integeand a non-zero complex numbéisuch that

fl(z) = 2+ AZKTL 4 0 (Fh2). (2.5)

Proof. This is quite easily proved by comparing the Taylor expansions of both sides in the
equationfa o 7 = fy7 o fa. m|
Remark 2.6If fo = -.. = f, =0, thenkqg + 1 > n, but if f; is a polynomial of degree
d,then 1< k < d — 1 (see 21, Proposition 6, p. 9]).

Remark 2.7.The number& and A are invariant under formal conjugacy ¢f, but there
also exists a uniqu8 € C such thathq belongs to the analytic conjugacy class of a germ
g of the form

the coefficientB = i(fy9,0) is invariant under formal conjugacy ofx, and qu
is formally and topologically conjugate to the polynomial + Azk4+1 4+ A2Bz%a+1,
Conversely, if two germs of; , have the same formal invariants, A, B), they must
belong to the same formal conjugacy clak6,[17, 18.

We now leti vary in a disk around the resonance:
A=Al <p

wherep is some small positive constant, but we always imgases 1. The power series
expansion

ha@ =2+ hj()z! (2.6)
j=2

for the linearizatiom:, of f, can be recursively determined by means of (2.1). However,
the equation

4 0hy =h; o R} (2.7)

T At least thoseA = exp(2ip/q) such thatf, is not of orderg.
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can be used instead, and one then obtains
hi(d) =1,

1 (2.8)

J
. - — °q . e . /
hj) = =2 D 0 D0 Gy k) forj =2,
i=2 Jiteti=j
denoting{f;’q (M)} the Taylor coefficients of;:
0 .
K@ =224 [T
j=2
Let us choose a positive constanfindependent of) such that the Taylor coefficients
of £, satisfy
Viz2 |fffe)l=rt
(in order to do this, we use the Cauchy inequalities and then chasreall enough). Each
coefficientfj‘."’ (1) is a polynomial inA, with a zero atA if 2 < j < kg, thus there exists
c¢1 > Osuchthatforallr — A| < p:forj=2,...,kq,
1£77 )] < ealr = APt (2.9)

Leta €]0, 7/2[. We introduce notations for a cone of vertaxand aperture @ and
for its intersection with a disk arour:

ar <:l:)L_A> €] [}

_ —ao,dl ¢,
=2 (2.10)
CA,a,p) =C(A,a) N{|A— Al < p}.

LEMMA 2.2. For all @ €]0,/2[ and for all sufficiently smalp > 0, there exists a
positive constant, < c¢; such that

CAa) = {k

Vj>2 VAeCA,a p): |M9—29 > colh — Al (2.12)
Proof. ForallA € C(A, a, p) andj > 2 we can write
Aa — 4
—— =AWM)B;(M),
— (W) B ()

whereA(x) = A9 - [(A7 — A9)/(» — A)] is bounded from below, and; (1) = [(AU~D4
— 1)/(0\% — 1)]. There existdp, c > 0 such that, for all. in C(%, a, p), A? can be
written ¢27? with 0 < || < 6o andVr € R, |6 — t| > c|t|; in particular,

Vj>2 dist((j —1)0,Z) = min((j — 1)|6], c).
However there also exist, ¢” > 0 such that for alp in C:
6] < 60 = 12 — 1] < 0] < 'fo,
{Vj > 2, 12000 _ 1) > " dist((j — 1)6, Z).
Thereforeyr € C(A, a, p),Vj > 2:

/!
1B,V = = min(j -1, 5) >,
c o

wherec”” > 0 does not depend gn O
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Now let
o1 =1,

oj = Xj: Z oj -0, forj>2

i=2 jit-+ji=j

We have the following lemmas.

LEMMA 2.3. If p > 0 is sufficiently smalla €10, 7/2[ and j € N*, then,Vi €
C(A, a, p), we have:

j-1 LG=1)/kq]
c1 1
hiM| <oj| — ST E— , 2.12
@) = o <czr) <czlk—1\|) ( )

where|x | denotes the integer part af

Proof. We proceed by induction: (2.12) is clearly truejif= 1; assume that it holds at
ranks 1...,j —1forsomej > 2. Leth € C(A, «, p); thanks to the subadditivity of the
integer part we get

J
i <D HijG) Y. ojy o,

i=2 =]

1 V7 1 L(—i)/kq]
Hij(A) =|— .
cor colA — Al

From the inequality (2.9) and Lemma 2.2, it follows that

with
JARCS)
A — )4

rlfi

. — fori=2,...,7,
AN Y e VR
Ad —pa |~ i
R if, moreover,; < kq.
c2
On the other hand:
i —1
Li___J fori=2,..., ]
kg

1 _
LJ—J —1 if, moreoverj > kq + 1.
Therefore, using the inequality < c1, we get in all cases

c1 j-1 1 LG-1/kq]
Hoyoy< (L) (= . 0
' cor co2lA — Al

LEMMA 2.4. There exists a positive constantsuch that

Vji>1 o; <c3B3-2v2. (2.13)
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Proof. The generating series(z) = > ;2 07" satisfies the functional equation:

0(2)?
o(@=z+—,
O=" 100
so that
147 —+1—6z+ 72
o(z) =

4
is analytic in the diskz| < 3 — 24/2 and bounded and continuous on its closure; (2.13)
then follows by Cauchy’s estimate. i

As Lemma 2.3 clearly shows, the radius of convergenég @annot tend to zero faster
than|x — A% asa tends toA non-tangentially. We shall now perform the rescaling
(2.3) which will compensate this possible divergence.

2.4. Rescaling the linearization. Let us fix p > 0 sufficiently small andv € ]0, = /2[.
The jth coefficient of the Taylor series of is

hj() = — A=V kap; .

According to (2.8) the coefficients; are rational functions ok, with a pole atA of

order|(j — 1)/kq] at most according to (2.12). Thus each coeffici’é;m) tends to a
limit /;(A) and the chosen determination @f — A)Y/*¢ does not matterk; converges
formally asi tends toA in C(A, «, p). Moreover, using (2.12) and (2.13), we see that

P e V7! .
|hj(M)] <o (—) A — A|U—D/ka <
' T \cor

whereR = (3—2/2) (Czr/cl)c;/kq andc4 is some positive constant. Thus, the formal limit
hx has non-zero radius of convergence @ndconverges uniformly on any disk around
zero of radius less thaR, by a standard compactness argument for sets of holomorphic
functionst.

To compute the limit functio », we introduce the germ

1 \LG-D/kg] ,
) <caR™/,

c2|h — Al

i@ = 0= 0 f0 - M),
whose linearization is just, , and we note that

kq
@) =224 [0 0— ATV R L L 0) (= M) 0 (- TR,
j=2
t Indeed, ifR’ €10, R[ ande > 0, we have for any > 3:

-1 IN\J
- ~ = ~ R
|z|SR/:>|h/\(z)*hA(z)|Sjgzlhj(?»)*hj(l\)l+2€4;<7> ,

and we can fiX big enough to make the second sum on the right-hand side smallet tBathen, fori close
enough toA, we can ensure that ~ ~
lzl < R' = |y (2) —ha )] <,

which is the property of uniform convergence.
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Because of the inequality (2.9) and by definitionQfwe have:
f]?q(k)=0(A—A) forj=2,...,kq,
fifa®) = A+ 00— 1),
hence
F@) =2+ (= M)(gAT 2+ AT 4 00— M), (2.14)
However, the linearizatioh; of f; is the one off;? as well:
£ ((2) = ha(W72), (2.15)
and by the Taylor formula:
1.092) = hi(@) = O = Mg AT 2R} (2) + 0 (0. — AP,
which after substitution of (2.14) into (2.15) yields

- - A -
h @) = @) + g )T+ 0= M),
Taking the uniform limit as. tends toA, we obtain the equation
2hy(2) = ha2) + gAi-1 (ha ()t (2.16)

which can be rewritten as a regular ordinary differential equation

H(z) =zthaz), H'(2) = ka=1(g (7))ratt

gAdLt
whose unique solution with initial conditial (0) = 1 gives rise to the formula (2.4).

Lastly, we consider the case whef@? is the identity. The Taylor expansion gf“
may be written as

@) =124+ (= A) Y T,
j=2

where ther; are some analytic functions (in fact polynomials). Let us ch@ose0 small
enough so that
Viz=2 ()l <rt

The induction formulae (2.8) become

h1(d) =1,

J

hj(k)=ﬁ2n(k)‘ D haG) k) forj 2.
i=2 Jitetji=j

This allows us to prove inductively the existence of a non-tangential limit for each

coefficient. We obtain that, for each > 1, the coefficient:;(A) converges to a

numberh ; (A) asi tends non-tangentially ta, with the following recursion formulae

hi(A) =1,
(2.17)

A
hj(A) = G—1q Yona) > hp(A)hy(a) forj =2

i=2 =]
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Using (2.11) and the same numberfsas in §2.3, we find
hj0)] < aj(re) ™,

and we conclude, as before, that the formal limit of the linearization, is analytic
and thath, converges uniformly to it on a disk around zero with small enough radius.
Moreover, taking the uniform limit of the conjugacy equation for we obtainfs ohy =
hpoRj.

Finally, we introduce

d

1 o A .
T(z) = mﬁm"(zmm =it PRI

j=2
and we observe that the equation

Zh'y (2) = T (ha(2))

holds (either directly from the formulae (2.17) or by a chain of reasoning analogous to the
one that led to the equation (2.16)). One then easily identifies its unique solutibn in

2.5. Materialization of resonances.Using the notations of Theorem 2.1 and
considering the second situation which it describes, we can prove the following corollary
on theradius of injectivityr (1) of &, (i.e. the supremum of the radii of the closed disks on
which this function is univalent).

COROLLARY 2.1. For any non-tangential con€ (A, o) and for allR > O:
1/kq
R> ‘%‘ —3p>0:VYieCA, ap), r(\) < RA— Ak, (2.18)

Proof. Let7()) be the radius of injectivity of:
F) =r)a— A7k,

Supposer > |q/A|Y*4, i.e. R exceeds the radius of convergenceigf We must check
that7 (1) < R for A close enough ta insideC (A, «).

Suppose that this is not true. We could then find a sequigng¢én C (A, o) converging
to A and such thak(x,) > R, buti;, converges towards, uniformly in a small disk
around zero and the set of the functiongafunivalent in{|z| < R} is a compact normal
family: 7, should belong to it, which is not the case. |

Obviously, the asymptotic inequality (2.18) also holds for the radius of injectivity of
hj{(_l) (since these functions, properly rescaled, converge uniform@ij\al) on some
small disk).

When|i| < 1 andf; is an entire function (respectively, whér > 1 and the inverse
function £°(=D is entire), the linearizatioh;, is univalent in its disk of convergence, as is
easily checked by means of the functional equatfon’; = 1y o R, (respectively, the
functional equatiory°~Yoh s = h s o R, 1) Which is then satisfied in this whole disk, and
not only in a neighbourhood of the origin. Thus under these more restrictive assumptions
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the previous corollary gives an information on the decrease ofatthieis of convergence
of hy.

Arnol'd [22] raised the question of the origin of the divergence of the series of classical
perturbation theory:

‘L'id’ee de la madfialisation des @Sonances est de trouver des obstacles
topologiquesa’la convergence desriés de la thorie des perturbations dans
le comportement des orbites du g€ perturb’dans I'espace des phases
complexe.’

We shall now give an elementary illustration of such a manifestation of the resonances
in the singular behaviour of the linearizations. According to Remark 2.2, we may think of

the function
AA qu —1/kq
1-—.
: < qg A-—- A)

as a first-order approximation hf(_l) for A tending toA in a non-tangential cone. This
function has ramification points at the boundary of its disk of injectivity (which coincides
with its disk of convergence), and we can write them

eZrimikay e 7/kqZ,

whereo denotes some determination[¢f /A)(1 — (A /A))]Y/%4.
Now, sincefy, = h) o Rp o hi(_l), we may expect that something occurs near these
points in the dynamic of, explaining the result of Corollary 2.1.

LEMMA 2.5. Let us denote by a determination of(q/A)(1— (1/A))]¥*4. There exists
positive constants and p such that, fol0 < [A — A| < p, the local diffeomorphisnf),
admits exactlyt orbits of periodg inside the pointed disb} = {z € C | 0 < [z] < &}.
Moreover, thekq fixed points offf" in D} are analytic functions af which can be written

(W) = MK (14 0(0)), meL/kqL

(with fi(zm (X)) = zm+kp(1)); We thus get the following upper bound for the radius of

injectivity (1) ofhf\(_l):

, q 1/kq
PV < Sudlzm W), m € Z/kqZ) ~ ‘Z(x —-n

Note that here the multiplier is not required to lie in a non-tangential cone with vertex
atA.

Proof. The relation between the periodic orbitsffand the radius of injectivity oii(’l)

is due to the fact that a whole periodic orbit cannot be included in the disk of injectivity
of hj{(_l), for in that disk the dynamic is conjugate Ry and|x| # 1. More precisely,
whenever; # 0 belongs to the disk of convergencefg¥ and bothz and £, (z) belong

to the disk of injectivity ofz; ", we have

RV @) = 10 V@) # h ),
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thus £, (z) # z.
We now begin the proof of the first statement by writing dttle iterate off; as

79(2) = 2%z + A1+ 2B () + (A — A)Z2C(h, 2)

whereB andC are analytic for. close toA andz close to the origin. On the other hand,
1—29 =gA9 (A — 1)1+ (A — A)D()) with D analytic atA. Thus, the equation of
the non-zero fixed points qffq is equivalent to the equation

b9 (1_ 2o
T ( A) *.2)

whereE(X, 2) = (14 (A — ) D) +2(A/q)C (A, 2))(1+ zB(z)) " is analytic at(A, 0)
andE (A, 0) = 1. This function can be writteB = F*? whereF has the same properties,
and our equation amounts to

Acka )
E!meZ/qu|z=ch<A<l— c )Z) o2rim/kq
q

which is equivalent, by the implicit function theorem, to saying thia the value of one
of kg functionsz,, (1) analytic ino, with z,, = e?"™/*5(1 4+ O(0)). Finally, since
Fizn(W) = Azm(1) + O(c?) is also fixed byf, 7, we must identify it Withz,, 1p (A). O

2.6. Two-variable version of Theorem 2.1In this section we consideras a variable—
just asz—rather than a parameter, so we pretend we are dealing with mappi@igs 6f:

P (z, 4) = (92.(2), 1)

analytic on subsets @ x C* and acting trivially on the second argument. Our purpose now
is simply to rephrase the results of §2.2 in this two-variable context, in view of extending
them to one case where the second variable is no longer inert (see the next section).

We start with a family of germg;. € G, as before, except that we do not assume the
nonlinear partf, — Id to be independent of, and we translate the results of the end of
§2.2 (withA = o) for the map

F(z,») = (fi(2), M)

which is assumed to be analytic @ x U, wherer > 0 andU is some open subset Gf.
The rotationsk; become the map:

R(z,2) = (Az, 2), (2.19)

and the linearizationk, , available at least at the pointof U which do not lie on the unit
circle $1, become the map
H(z, %) = (hx(2), 4),

solution of the conjugacy equation:
FoH=HOoR,

with the normalizing conditiol — Id = (0 (z?), 0).
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As a function of two variableg{ is analytic at all the points of the ford, 1.), where
A liesinU, but not ons?.
For », € U N $%, calling V the intersection ol/ with any non-tangential cone with
vertex at(0, A,), we can state the following facts about the behaviouttah D, x V.
(1) If A, = B is a Brjuno point, there exists > 0 such thatd admits a continuous
extension taD, x V.
(2) If x. = A is resonant of ordey and if F°(z, A) = (z, A), the same conclusion
holds.
(3) If A, = A isresonant of ordey, but not all the pointgz, A) areq-periodic, we can
attach toA a positive integek and a non-zero complex numhérdefined by

Fo(z, A) = (z + AT+ 0(2*2) A)
and such that the same conclusion holds for the rescaled mapping:
H=S1o0Hos,
with S(z, &) = (A — A)Yk9z, 1) and with

. A L —1/kq
— .1
Az A) = z(l = ) A).

3. The semi-standard map
3.1. Introduction to the semi-standard mapWe now extend the results of the previous
section to the biholomorphic symplectic mappkgf C/277Z x C defined by:

x1=x+y+eix,

F(x,y) = (x1, y1) : (3.1)

1=y +e*.
This is the so-calledemi-standard mapvhich has been studied by many auth@3427
as a model-problem of symplectic twist map.

In particular it provides a simple model for the study of invariant circles of symplectic
twist maps, with power series involved instead of trigopnometric se#8s§32, p.173]:
indeed, for Inix) large, we may Sek as a perturbation of the rotatiét(x, y) = (x+y, y)
and ask whether the invariant curwes- constanbf R have any counterpart fét; i.e. we
fix w € C and we look for an invariant curve parametrizedby

x =0+ ('),
y =20+ y(e?),

in such a way thaF(x, y) corresponds té + 2r w, with ¢ andyr analytic and vanishing
at the origin. Ifw € R, the above problem admits a solutiGn v) = (¢2rw, ¥2re) if and
only if w is a Brjuno number24, 25.

We shall see that fap € C \ R, there always exists a solution, which we still denote
by (¢270, ¥27), and we shall study its behaviouragends to aesonancei.e. a rational
number. For the very same reason as the one mentioned in the second footnote, the solution
will depend continuously o in any cone non-tangential with respect to the real axis with
vertex at a Brjuno number.
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Since we consider now as a variable rather than a parameter, we can state the problem
as a conjugacy problem: firtd of the formH(x, y) = (x + @y(e™®), y + ¥y (e*)) such
thatFoH=HoR.

The relationship with the previous section is best seen using the following variables:

z=e", r=e",
which give toF the formt:

71 = Aze'?,
rM = rez,

F(z,A) = (z1, A1), {

The pointg(0, 1) are fixed byF, and our problem consists in finding a mapfixing these
points and satisfying the conjugacy equation:

FoH=HOoR, (3.2

where R corresponds tdR and coincides with the previously defined rotation (2.19).
Thanks to the relation; = A1z, it is easy to check that can be written as

H(z,}) = <h(z, A, %) .
We choose the normalization

h(z,») = ize”?,  $,(0) =0,
so thatyp, = n/2 —i¢,iy. This leads us to the equation

$1(A2) — 263(2) + (A 12) = —ze%), (3.3)
and to the formula
H(z,\) = (izerm(z)’ )Lei(rm(z)—rm(rlz))). (3.4)

The existence and the analyticity Effor 2 € C*\ 1 and|z| small enough is guaranteed
by the stable manifold theorem applied in the intermediate set of varighles Indeed,
in these variables the semi-standard map takes the form:

21 =26/ 01,

yi=y+2z;

the pointg(0, y) in these variables are fixed, and the Jacobian at such points has eigenvalues
1 andx = ¢. We thus get, for each of positive imaginary part (6< |A| < 1), a local

stable manifold, and for each of negative imaginary parfX| > 1), a local unstable
manifold; these are analytic imbedded disks tangent to the eigenvécters, 1), which

we can parametrize ky so that the dynamic on them is conjugate to the rotatien Az.

By glueing these parametrizations and using the appropriate set of variables, we get the
mapsH or H. Note that wheny = 27w, wherew is Brjuno number (i.e. when is

a Brjuno point), we may consider the imagezof> (ze/»@,y + ¥,(z)) as a centre
manifold 23, 29.

T Instead of the semi-standard nfajiself, we are thus considering the quotient map fl@@rZ x C/27Z to

itself, but this does not change anything for the kind of invariant circles which we are interested in; observe that
¢y andy, must be z-periodic iny.
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3.2. Existence of non-tangential limits.The functions under study are the unique
solution¢ of (3.3) such that, (0) = 0 and the normalized solutiod of (3.2) which

is determined byp through (3.4). With reference to §2.6, we (improperly) call them
linearizations

THEOREM3.1. Let us fix a resonancé = exp2rip/q) wherep € N, g € N¥,
(plg) = 1, and let us define the maps

5.() = — M9z, Sz, 0) = (5:.(2), 1)

(how we choose the determination @f — A)%/? does not matter), and the rescaled
linearizations

(];)\:(IS)LOS)\, H:SiloHOS. (35)

For any non-tangential con& with vertex A, the functiong, converges to some
analytic functiong,, uniformly on some small open digk. around zero, as. tends to
A in V; and for p > 0 small enough, if we denote liythe disk around\ of radiusp, the
functionH (z, ») extends continuously ib, x (V N U) by

H(z, A) = (ize® @ 7).
Proof. Expandingp, into powers of;:
0 .
$(2) = ;)7
j=1

and substituting into (3.3) one finds

o1
¢l( ) = m,
<15'(l)—Ljili Z oA -, (A) forj=>2
U DwgR e it =

whereD; (1) = —(A//2 — 171/%)2,
Sincel tends toA in V, there exists a positive constagt< 1 such that

cs if j 20 (modg),

Di(V)| >
IDj( )l_{c5|)\—A|2 if j=0 (modg).

We now check by induction that, for gll> 1,

i 1 Li/q]
M| <cilof| ——— , 3.6
|¢/( ) =C570; (C5|)¥_A|2> ( )

where the numbem}" are defined according to the formulae

j—1
oy =1, al;kzz Z crl;kloucr; (j > 2.
k

=1 ji+-+ji=j-1
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Indeed, the inequality (3.6) is satisfied foe= 1 (whethely = 1 org > 2). Let us suppose
thatit holds atranks,1.., j — 1 for somej > 2: thanks to the subadditivity of the integer
part we get

i1 1 1 LG-D/a)
(M| <cz *A;, withA; =
9; W = c57 0 A J ‘D;(x)‘ (cslx—AP)

However, we have alwaylgj — 1)/q] < j/q]), and alsa.(j — 1)/q] < [j/q] — Linthe
case wherg divides, thus

1 Li/al
Aj <t ———
777 \eslr— AP

in all cases, which proves (3.6) at rapk

The generating series for the numbefsis easily computed} _ ;. ; cr;.‘zj =31-(1-
47)1/2], it defines a holomorphic function which extends continuously to the closure of the
disk of radius%1 with center at the origin, thus;.‘ < const4 and the first statement of the

theorem clearly follows by the arguments already used in §2.4. We notg thiatin fact
a function ofz4, and this gives the second statement relativd to |

Remark 3.1If 2 tends to one non-tangentially, one can easily compute thedimiNote
thatg, is the solution of
$1(02) — 26,.(2) + $1 (0710 = —(h — DZzeP
since:
$.(02) = $2(2) + 0 — Dz () + 300 — D2/ () + -+,
1—2 1(1—2)32

¢, (2) + 52

60t = ga(2) + 2+

one finds at the limit:
231(2) + 22 (2) = —zeM @, 3.7)
with the initial conditiong1(0) = 0. Thus,

$1(z) = -2 |og(1+ %) . (3.8)

Remark 3.2lf the terme’* in (3.1) is replaced by (¢/*) wherey is any analytic function
vanishing at the origin (even with finite radius of convergence), the conjugacy equation
(3.3) becomes

$.(42) = 26,(2) + 0.7 2) = iy (i2e™@)

and Theorem 3.1 can also be proved in this more general case. However, the differential
equation for the non-tangential limit at = 1 is then

2B,2) + 2B (2) = iy (ize9@);

the solution with initial conditionp1(0) = 0 might be very different, and its analytic
continuation much more savage in that case.
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TABLE 1. The first few values of (A).

p g C(Zir/a)

0 1 1

1 2 14

1 3 16

1 4 524
63— 11/5

1 5 — -
1203 — v/5)
63+ 11,5

2 5 — -
1203+ +/5)

1 6 9980

3.3. Explicit formulae for the limits at resonancesWe now compute the limitg, for
all A = exp(2ri(p/q)) with (plg) = 1.
We attach to such a resonanteheg — 1 positive numbers:

Dr(A)zz—Ar—A’=4sirﬁ<Qn) r=1,...,g—1
q

whose product ig? (note thatD,_,(A) = D, (A)).

THEOREM3.2. The limit at the resonanca is given by the formulae:

. 2 A%C(A
a0 = —2log 1+ 2°EW 0
q 2q
—2/q
5 A%C(A
H(z, A = |iz <1+ Az") JA
2q
where the numbet (A) is obtained from auxiliary coefficient, . .., C,—1 according to

the formulae:

1
C1=—+-,
D1(A)

1 r—1 1
C = - Z Crp-oCyy fOrr=2,....,9-1,
Dr (A) n=l l’l' r1+...+r”: r—1

‘]—11
CA=)"= > CyCp
n=1 n: rit+rp=q-1

The constan€ (A) is always an algebraic positive number. ObviouSi\ 1) = C(A)
(sinceD,(A~1) = D,(A)); the first few values of (A) are given in Table 1.

This result agrees with that computed for= 1 in the previous section, and in the proof
below we shall supposg > 2. We shall use a slightly different scaling and new variables
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s andn:
(s, m) = paer(n?/e"),

so that

lim ¢(s.n) = pa(s) = pa(A™%et),
n—>0

where the notation ™% 0 means that the limit exists for tending to zero in any non-
tangential cone of the half-plafRen < 0} with vertex zero, uniformly in some half-plane
{Res < so}.

It is sufficient to show that

2 C(A
oA(s) = —; log <1+ %éﬁ) ,

and, similarly to the end of the proof of Theorem 2.1, this formula will derive from a
differential equation; we need only to show that

@i (s) = —C(A)edsTa9a(s), (3.9)
We shall also prove the following.

THEOREM 3.3. The following expansion holds fei(s, n):

2k/qC ks
n ke
@(s,m) = oals) + E

1hzg2 1 F (C(A)/2q)e15)%* tomw (3.10)

where theC}, are the ones defined in Theorem 3.2.

We believe that (3.10) provides the beginning of an infinite asymptotic expansion in
powers ofy?/4; moreover the method that we use leads to a system of equations involving
the same operators as B9, where these operators are shown to prodesergencen
the variabley.

3.4. Proof of Theorems 3.2 and 3.3In this section we shall prove the two theorems
stated above. We shall prove them through a series of lemmas.

Proof of Theorem 3.2In the variabless, n), the conjugacy equation (3.3) becomes
O(s +Q+n,m) = 20(s,m) + ¢(s = QL —n, 1) = =y 1O, (3.11)

whereQ = 2rip/q. We introduce the following linear combinations of tRetranslations
of ¢:
q=1 ) —kr

or (s, n)=ZA

k=0
We also introduce the Kronecker symbol Byy Z:

(s +kQ,n) forr=01,...,qg—1

1 ifa=5b (modg),

Ya,beZ, 8,p= .
0 otherwise
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The following identity:

- q—1 (Aa—b)r
Va,beZ, Sap=Y, (3.12)
r=0 q

allows us to write the inverse formulae:
g—1
o +kQ,n) = ZAkrcrr(s, n) fork=0,1,...,q — 1,
r=0
and by combining th&-translations of equation (3.11), we obtain the system of equations
(Aroy)(s, ) = —p?/esT00 Mg forr =0,1,...,q — 1, (3.13)
where the operatak, is acting on a functiory (s, ) according to:

(A (s,m) =AY (s +0,n) =29 (s, n) + A"y (s —n,n)

and
g—1 A—kO=1) g—1 ,
S=) —— exp( > Ao, n)>.
=0 =0
Developing the exponentials and using again the identity (3.12), we find:

Sy = S‘rfl,O + Z n_1| Z gr1+~~~+rn,rflo—rl cOpy. (314)
n>1""1<rq1,...rp<q—1
We know that the functions, andsS, tend to some analytics2 -periodic functions of
s asn 20, we may add, thanks to the uniformness statement and because these are
analytic functions ot = ¢*, that the same is true for the partial derivatives with respect to
s of the functionss,; this allows us to give the following approximation for the operator
appearing in the left-hand side of equation (3.13):

n?(@%00(s, n) + 0(?)) ifr=0,

. (3.15)
—D,(MN)oy(s,n)+ 0@ ifr=1,...,9—-1,

(Aror)(s,m) =

thanks to the Taylor formula. This was indeed the purpose of using these fungticos
get rid of the difference operator in the approximation of our equation, replacing it by a
differential operator (one might consider that the operatpis a ‘differential operator of
infinite order’; some series to which the inversion of a closely related operator gives rise
are studied in29)).

This implies immediately that, = 0(n%4) forr = 1,...,q — 1, but we shall see
better estimates in the following lemma.

LEMMA 3.1.
o,(s,n) = O(nzr/q) forr=0,1,...,q — 1.

Before proving Lemma 3.1, we introduce a notation for the intervals of integers: for
a,b € Zsuchthata < b, [a,b]] = {r € Z | a < r < b}, and we state an easy
combinatorial lemma.
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LEMMA 3.2.
(@ IfneN*andr,ri,...,r, €1,q— 11,

8r1+---+rn,r71 #* O=>r+---+r=>r—-1

(b) Suppose thaty > 3 andrg € [1,4g — 2]. DefineN, for r € [1,¢4q — 1] as
N, = min(r, rg). Then, ifn e N*,r € [ro+ 1,9 — 1l andry, ..., r, € [1, g — 1],

8r1+---+r,,,r—1 # 0= er +---+ N”n > 10.

Proof of Lemma 3.2.

(@) Suppose that,, ..., 1 # 0. There existsn € Z such thatry + --- 4+ r, =
r — 14 mq. The positiveness of all; implies thatmg > n +1—r > —¢q, so
m > —1, thusm > 0.

(b) Suppose that we are givgnrg, r andry, .. ., r, as in the second part of the lemma.
Sincer — 1 > rg and because of (a), it is sufficient to prove that

ri+---+rm=r0o= Ny +---+ Ny, =r0.

However, if we suppos#,, +- - -+ N,, < ro— 1, the positiveness of aN,j implies
that each one satisfiesj <rp—1,and thusN,]. = r; by definition of N. Therefore
ri+---+r, =Ny +---+ N, <ro—1andwe are done. O

Proof of Lemma 3.1The property to be proved was already checked fer0 andr = 1;
this settles the case gf= 2. We shall supposg > 3 and prove by induction that for a#
in[1, g — 11,

Vrellg—1D, o = 0@@#omnero)

This property at rankg = g — 1 is nothing but the desired estimate. It was already checked

for ro = 1, so let us suppose it to be true for sorges [[1, g — 2]): in order to establish it
at orderrg + 1 we only need to show that

Vrelro+lg—1l o = 0@*),
Now, if ro + 1 < r < g — 1, the property at rank and Lemma 3.2 imply that
Vri, ..., € [1,q — 11, Sr1+...+rn,r,1crrl Oy, = O(r}2r°/q),

thus S, = 0(n%°/%); because of the equation (3.13),0, = O(»?"0+tD/4) and the
estimate (3.15) implies that. = O (y™"1-200+D/9)) hence the result in the case where
2(ro+1)/q < 1.
If 20 + 1)/¢q > 1, we haves, = O(n) and this allows for a refinement of the
approximation (3.15):
Ao, = —Dyo, + 0(n?),

thuso, = 0(n2rotD/4) in that case too. |

We shall now study the behaviour @f %/4¢, (s, n) asn oy 0, again by induction
onr. As forap(s, n), its non-tangential limit is nothing byt (s) sincep = Zf;& o and
o, tends to zero for k r < g — 1. (We also see in this way that all tetranslations of
¢ coincide at the limitp, must be(2ri/q)-periodic, andp, must be function of?.)
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LEMMA 3.3. Forall rin [1, ¢ — 1],

o (s, m) = n?1U(Cre" ST 1 O (1)), (3.16)
Forall rin [[1, 411,
S, = nz(rfl)/q(Ere(rfl)(SJrfTo(Ssn)) +0®m)), (3.17)
with S, = Sp and
E1=1,
L f
E,=) = )  Cy-C, for2<r=<gqg.

n>1 n: ri+-trp=r—1

Proof. If 1 < r < g — 1 the estimate fos, in (3.16) follows from the estimate & in
(3.17), by virtue of equation (3.13) which yields

Aroy = = (E e 0 + 0 ()
and of the refinement of the approximation (3.15):
Ayo0, = —D,o, + 0(771+2r/q),

which is made possible by the fact that= O (n?/%). IndeedC, = E,/D,.

If 1 <r < ¢, the estimate of, in (3.17) will be deduced from the estimates (3.16) at
ranks1...,r — 1, i.e. we proceed by induction an

Forr = 1, we apply the first part of Lemma 3.2 inside equation (3.14) and get

S1=1+Z% Z Oy *** Op,y.

n>1 """ rit+--+rp=mq
m>0
However, in each term of the sum, since thenust be positive, the integer must also
be positive and the corresponding produigt- - - o, which is O (p?"1+-+)/4) is also
0(n?). ThereforeS; = 1+ 0 (5?).
For 2 < r < ¢, supposing (3.16) to be true at ranks 1 ,r — 1, we rewrite (3.14)
taking into account the first part of Lemma 3.2:

1 1
Sr:Z; Z Opy -+~ Oy, + Z s Z Oy - Oy

n>1"ri+-+rp,=r—1 n.m>1"""ri+--+rp=r—14mgq

The second sum i® (n?t20'—D/4) pecause of Lemma 3.1. The induction hypothesis
applies to each term of the first sum, for this sum involves only values of the indices
r,...,r, ranging from1to- — 1. Thus:

1 _ _ _
S, = E = E n2(r 1)/qu1 . Cr,,e(r 1)(S+Uo)(1+ om)) + 0(n2+2(r 1)/4)’
n!
n>1 rit+-+rp=r—1

hence the desired estimate. O
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We can now finish the proof of the theorem. On one hand the estimate (3.17), when
specialized to the case= ¢, introduces the coefficiert(A) = E,;:

S, = So = 124=D/4(C(A)e@=DE+0 1 o)),
On the other hand the equation (3.13), together with the estimate (3.15), yields
n?(0Z00+ 0(n°)) = —n?4e+70sp,
Therefore,
3200(s, ) = —C(A)e?*T990ED L oy, (3.18)

and the uniform limitp, of op must satisfy the limit equation (3.9), which characterizes it
since all our functions arerZ -periodic and tend to zero as Rgtends to—oo. O

Proof of Theorem 3.3A kind of analytic Gronwall lemma may be applied to the estimate
(3.18) in order to prove that

oo(s, M) = pa(s) + O(n). (3.19)

This provides estimates b, o1, ..., o,—1 (with the help of (3.16)) which prove (3.10).
More precisely, let us explain how (3.19) may be derived from (3.18).
Let x (s, n) = oo(s, n) — @A (s). We can write the difference between (3.18) and (3.9):

02x = —C(A)e A (1% — 1) + O()

as
2% = f(s,mx + g(s,m),

where
edx —1

f=-C(A) 45 Taea(s) — 0(1)

(because is known to ben(1)) andg = O(n).

Returning to the variable = ¢*, we get three functiong*(z, n) = x, f*(z,n) = f
andg*(z, n) = g, which are analytic for in some fixed disd, centred at the origin and
n in some non-tangential corig with vertex zero. The three of them vanish wheg 0,
so that their Taylor expansions are

XK= s =) h g =) .

n>1 n>1 n>1

Because of the uniformity of our estimates and Cauchy inequalities, there exist a
convergent series = »_ . a,z" with constant positive coefficients and a positive
constantg such that

YneVo.Vn>=1 [nl<no= 1M e, and |g.(m| = [nlon.
When expanding the differential equation into powers,of

(20)°x* = g* + f*x*,
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we see that the coefficients gf can be bounded biy,,| < |n|8, provided that:

B1 > a1,

1
Bn = P(“n + Z an1ﬁn2>'

ni+ny=n

Such a requirement may be fulfilled by a convergent sefies }_, ., 8.z", .9.8 =
a/(1— ), which is sufficient to conclude. |

3.5. Invariance of the limits under formal conjugacyWe have associated to the semi-
standard map a set of numbdis(A)} which determine the non-tangential limit of the
rescaled linearization at any resonante and we mentioned at the end of 8§3.2 the
existence of non-tangential limits for the more general case of the map:

71 = AzelV @,

Fy(z,A) = (z1, A1) A= 27,

for any functiony analytic and vanishing at the origin. We shall denote Ay and
H, = S71 o H, o S the corresponding linearization and its rescaling.

We now prove the invariance of these limits under a suitable notion of formal conjugacy.
All the mappings fronTC x C* to itself that we consider leave the poiis A) fixed: these
points are the null section of the bundlex C* i C*.

Let us fix a resonanc&. The formal conjugating diffeomorphisms that we shall use are

of the form
£ M) = (Zan(m'ﬂ Y ﬁn(k)z">,

n>1 n>1

where the coefficients,, and g, are continuous functions defined in a neighbourhood of
A. We may think of such & as a local diffeomorphism ofC?, (0, A)), formal in z,
continuous im and leaving the null section fixed.

Let F* be someanalyticlocal diffeomorphism ofC?, (0, A)) leaving the null section
fixed, defined inD, x U, wherer is a positive number and is some open subset Gf. If
we assumé* to beformally conjugate taF, by somet, we find immediately the relation
between its linearization and that 5§ :

F*oH*"=H*oR WithH*:goHy.
Thus, applying the same rescalifigo the linearizations of,, andF*, we obtain
ﬁ*:S_loH*OSZS_logoSOI:IV.

However(S~1o £ o §)(z, A) tends ta(z, A) asi tends non-tangentially ta, thus we have
proved thafor any non-tangential con& with vertexA, and forp > 0 small enough, the
rescaled linearizatior/* extends continuously iB, x (V N U) with the same value as
H, at the points(z, A).
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