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ABSTRACT In this paper, we propose a novel vigilance enhancement method based on audio stimulation
of pure tone at 250 Hz. We induced two different levels of vigilance state; vigilance decrement (VD)
and vigilance enhancement (VE). The VD state was induced by performing a modified version of the
Stroop Color-Word Task (SCWT) for approximately 45 minutes. Likewise, the VE state was induced by
incorporating audio stimulation of 250 Hz into the SCWT for 45 minutes. We assessed the levels of vigilance
on 20 healthy subjects by utilizing Electroencephalogram (EEG) signals and machine learning. The EEG
signals were analyzed using four types of entropies; Approximate Entropy (AE), Sample Entropy (SE),
Fuzzy Entropy (FE), and Differential Entropy (DE). We then quantified vigilance levels using statistical
analysis and support vector machines (SVM) classifier. We found that the proposed VE method has
significantly reduced the reaction time (RT) by 44% and improved the accuracy of target detection by 25%,
(p < 0.001) compared to VD state. Besides, we found that 30 min of audio stimulation has reduced the RT
by 32% from the beginning to the end of VE phase of the experiment. The entropy measures show that the
temporal profile of the EEG signals has significantly increased with VE. The classification results showed
that SVM technique with DE features across all frequency bands can detect VE levels with accuracy varying
between (92.10£02.24)% to (98.324+01.14)%, sensitivity of (92.50£02.33)% to (98.66+01.00)%, and
specificity of (91.701+02.32)% to (97.994+01.05)%. Results also showed that the classification performance
using DE has outperformed the other entropy measures by an average of +8.07%. Our results demonstrate
the effectiveness of the proposed 250 Hz audio stimulation method in improving vigilance level and suggest
using it for future cognitive enhancement studies.

INDEX TERMS Vigilance, enhancement, electroencephalogram (EEG), entropies, and SVM.

I. INTRODUCTION

Previous studies have highlighted the importance of main-
taining high vigilance in multiple applied settings [1].
Vigilance, as part of the attentional networks model,
is responsible for maintaining the required state of activation
to facilitate the functioning of the attentional system, in order
to appropriately detect and quickly react to stimuli in the
environment [2], [3]. Deterioration in vigilant attention is the
primary risk factor for accidents and injury when driving a
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vehicle, flying an aircraft, operating production line machin-
ery and medical operations [4]-[6].

A consistent finding reported by several studies is that
vigilance affects the user’s reaction time causing a delay or
even absence of an appropriate reaction to potentially dan-
gerous events. To avoid the potential of danger and accidents
during relatively long demanding cognitive process, vigilance
enhancement is required.

Vigilance enhancement refers to the deliberate use of tech-
nological, medical, or therapeutic interventions to improve
cognitive processing and attentional performance [1]. From
a practical point of view, vigilance enhancement allows for
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maintaining an optimal cognitive performance and increased
safety during a challenging work environment.

Researchers have utilized a wide range of traditional and
computerized enhancement methods to improve sustained
attention. These methods include: mental training [7], medi-
tation [8], sports [2], caffeine [2], nicotine [9], herbal extrac-
tion [10], chewing gum (CG) [11], fragrances exposure [12],
playing video games (VG) [13], applying transcranial alter-
nating current stimulation (tACS) [14], or transcranial direct
current stimulation (tDCS) [15], tactile and rhythmic hap-
tics (RHP) [16], integrating of multiple tasks (IMT) [17],
music [18] and binaural beat (BB) stimulation [19]. We have
recently conducted a comprehensive review on the afore-
mentioned enhancement methods on vigilance levels in the
context of work, monitoring/surveillance, driving, learn-
ing, performing cognitive and memory tasks, typing, and
sports [1]. We used the reaction time as a quantitative measure
to assess the level of vigilance enhancement as reported in the
findings of the collected studies. We found that when simple
monotonous vigilance tasks were considered, the aforemen-
tioned enhancement methods showed a positive impact on
vigilance. The techniques showed an average improvements
varying between +8% to +18%. VG and tDCS reported the
highest improvements on sustained attention with more than
+15% on monotonous vigilance task. This was then followed
by RHP, modafinil, IMT, caffeine, tACS, CG, music, binaural
beats (BBs), and fragrance with improvements between +8%
to +13%. However, in complex vigilance tasks, the above
methods gave contradictory results. Auditory BB stimulation
and tACS provided consistent improvements on vigilance
levels at the monotonous and complex vigilance task. The
consistent vigilance enhancement by BBs and tACS could be
due to the permutation of physiological entrainment through
frequency stimulations [1], [20].

In this study, we propose utilizing audio stimulation of
pure tone at 250 Hz for vigilance enhancement. The selec-
tion of the 250 Hz was in line with a previous study using
Magnetoencephalography (MEG), which demonstrated its
effectiveness in minimizing the cortical contributions to the
brainstem responses [21]. Typically, the frequency of 250 Hz
is a good compromise between sensitivity and pleasing
sounds. Besides, the 250 Hz had been used as the carrier
frequency for most BBs in vigilance studies [1]. Audio stim-
ulation has been of interest for a wide range of applications.
Recent studies have suggested that audio stimulation can be
used to modulate cognition [22], reduce anxiety levels [23],
and enhance mood states [24]. Other clinical targets also
include traumatic brain injury [25], anesthesia [26], reduced
pain intensity [27], and attention-deficit hyperactivity disor-
der [28]. Itis important to emphasize, however, that the results
were usually presented based up on questionnaires, being
therefore, subjective.

In this study, we investigate a more objective approach to
analyze the impact of 250 Hz audio stimulation on vigilance
levels by detecting certain features of interest in the signals
acquired by electroencephalography (EEG). Traditionally,
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EEG signals have been studied through linear methods,
mainly based on the computation of their power spectral den-
sity [29]-[31], as well as the symmetry between both brain
hemispheres [32]. Studies have shown that spectral powers
in typical frequency bands are closely related to vigilance
decrement. Data analysis presented in this study involved
five frequency bands, [delta (<4 Hz), theta (4—7 Hz), alpha
(8-12 Hz), beta (13-30 Hz) and wide/full (0.1-30 Hz) fre-
quency bands].The main findings of research using EEG
vigilance level assessment suggest that low-frequency brain
rhythms (4-12 Hz) increase during vigilance decrement.
An increase in low-frequency rhythms is an indication of
decreased alertness, corroborating with behavioral impair-
ment of vigilance decrement [33]. However, these meth-
ods have reported some inter-subject inconsistencies [34].
Besides, it is well-known that non-linearity in the brain sig-
nals appear even at the cellular level, the dynamical behavior
of individual neurons is governed by threshold and satu-
ration phenomena [35]. Thus, a variety of non-linear met-
rics have been applied to analyze EEG signals in vigilance
studies. For instance, differential entropy (DE) [36], wavelet
entropy (WE) [37] and synchronization with directed transfer
functions [32], [38], [39]. In most studies, the non-linear
indices tested have reported more relevant information than
common linear tools. Hence, the present work focuses on
this incipient research area. We propose using four types of
entropy, namely; Approximate entropy (AE), Sample entropy
(SE), Fuzzy entropy (FE), and Differential entropy (DE) for
EEG vigilance data analysis. Entropy is a nonlinear mea-
sure to reflect the degree of uncertainty in a given system,
which is capable of characterizing the brain states from EEG
signals. More importantly, the entropy measures have been
successfully used to quantify the irregularity, randomness and
complexity of EEG signals in many domains [40]-[43].

The main contributions of this work are as follows:

o Development of an experimental protocol to induce
two different levels of vigilance state: vigilance decre-
ment (VD) and vigilance enhancement (VE).

« Evaluation of the effectiveness of audio stimulation at
250 Hz on vigilance enhancement using EEG signals,
RT and accuracy of target detection.

« Quantification of vigilance levels using EEG signals and
machine learning.

The rest of the paper is organized as follows. Section II
describes the methodology; covering participants, vigilance
task, audio stimulation, data acquisition and preprocessing,
data analysis methods, statistical analysis and classification.
Section III presents the results of behavioral data, entropies
and classification. Section IV provides a detailed discussion
on the findings and provides suggestions for future work.
Finally, section V concludes this paper.

Il. METHODOLOGY

A. PARTICIPANTS

We recruited 20 healthy participants (16-males and
4-females, age: 22 + 2 years, (mean =+ standard deviation)).

VOLUME 9, 2021



F. Al-Shargie et al.: Cognitive VE Using Audio Stimulation of Pure Tone at 250 Hz

IEEE Access

All participants had normal or corrected to normal vision and
no reported hearing difficulties. Besides, they had no history
of neurological or psychiatric illnesses and had no current
or prior psychoactive medication use. The experiment was
conducted between 3.00 pm and 7 pm to avoid the influences
of circadian rhythm on cognitive vigilance performance [44].
All participants were asked to give a written informed consent
before participation in the study. The participants were asked
to abstain from caffeine, exercise, energy drink, and tobacco
use for 24 hours before testing. All methods performed to
follow the Declaration of Helsinki. The experiment was
approved by the Institutional Review Board of the American
University of Sharjah.

B. VIGILANCE TASK

The vigilance task used in this study is a computerized ver-
sion of the Stroop Color-Word Test (SCWT) implemented
in a custom-made Graphical User Interface developed in
MATLAB (Mathworks, USA). The SCWT consists of dis-
playing six color words such as [‘Blue’, ‘Green’, ‘Red’,
‘Magenta’, ‘Cyan’, and ‘Yellow’] in random order. One word
is displayed at a time and the answers of the color word
to be matched to are presented in random sequences in the
computer screen monitor as shown in FIGURE 1(a). The
displayed color word on the monitor screen is written in
a different color than the word’s meaning and the correct
answer is the color in which the word is displayed (e.g.: if
Green is written in Cyan then Cyan is the correct answer). The
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FIGURE 1. The experimental design a) Stroop color-word task (SCWT),
b) shows the presentation interface and c¢) demonstrates the timing
window. In the timing window, the plus sign in black background is for
the pre and post-baseline. Thirty (30) min SCWT or SCWT+PT are for the
vigilance task presentation.
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participants were instructed to pick their answers as quickly
and accurately as possible by left-clicking the mouse on one
of the six answering buttons. The answer to the color word
is presented with random colored-background to maintain
sustained attention to the task, as shown in FIGURE 1(b).
The participants would also receive feedback, i.e. a message
of “Correct” or “Incorrect” or “Time is out” on the monitor,
depending upon answering correctly/incorrectly or failing to
answer each question within the stipulated time.

Behavioral data such as reaction time (RT) to stimuli and
accuracy of detection were collected while solving the vig-
ilance task. The RT is measured as the average time it takes
for the participant to respond to a target stimulus. Meanwhile,
the accuracy was calculated based on the number of the color
word correctly matched over the total number of the displayed
color word targets. These metrics were then used to measure
vigilance levels objectively. Different markers were sent to
mark the start and the end of epochs in each SCWT question.

In this study, the participants were randomly assigned to
one of the two groups (10 subjects for VD and 10 subjects
for VE). The experimental protocol was conducted in two
different sessions. One session for the vigilance decrement
group and another session for the enhancement group. In the
vigilance decrement group, each participant performed the
SCWT continuously for 30 min, whereas, in the enhancement
group, each participant performed the same SCWT while
listening to an audio stimulation of pure tone (PT) at 250 Hz
for 30 min. The overall experimental time frame for each ses-
sion included 6 minutes for training and filling the question-
naire, 2 minutes pre-baseline, 30 minutes performing SCWT
without audio/ with 250 Hz audio stimulation, 2 minutes
post-baseline and 5 minutes for filling out another survey as
demonstrated in FIGURE 1(c). The questionnaire used in this
study was based on the Brunel Mood Scale (BRMUS) [45].
All participants filled-in the questionnaire before and after
they performed the vigilance task. The BRMUS composed
of 32 items. These items correspond to an 8-factor model
including “Anger,” “Tension”, “Confusion,” “Depression,”
“Fatigue,” “Happy,” “Calmness’ and ‘““Vigor.” Each item
has 5-point Likert scale ranges from ‘0’ to ‘4’ representing
“not at all” to “extremely” depending on the participant’s
feelings.

C. AUDIO STIMULATION

We enhanced the vigilance level by utilizing an audio stimu-
lation. We produced a pure tone of 250 Hz and presented into
the right and left ears of participants using stereo headphones
(MDR-NC7, Sony). The audio stimulation is developed using
MATLAB software (R2020a). The volume of the auditory
stimuli is set by the participants and delivered at minimum
intensities of 50 dB. We presented the audio stimulation
continuously with the task to avoid the impact of short rest
on the vigilance level [1]. The audio tone was generated at a
sampling rate of 48 kHz to ensure that the highest stimulus
frequencies are well below the Nyquist rate. Stimuli were
represented in memory as 32-bit integers so that the full
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dynamic range could be tested with minimal risk of quan-
tization distortion.

D. DATA ACQUISITION AND PREPROCESSING

The EEG data were recorded using 64 Ag/AgCL scalp elec-
trodes arranged according to the international 10-20 sys-
tem (Waveguard, ANT B.V., Netherlands). The data were
recorded at a sampling frequency of 500 Hz. Electrode
impedance was maintained and kept below 10 k€2 throughout
all the recordings and referenced to the left and right mas-
toids; M1 and M2. The main interferences were avoided by
anti-aliasing with a band-pass filter (0.5-70 Hz) and a 50 Hz
notch filter.

The EEG data were preprocessed using EEGLAB Tool-
box [46] with the in-house MATLAB script [47]-[50]. The
EEG signals were band-pass filtered with third-order Butter-
worth filters between 0.1 Hz to 30 Hz bandwidth to remove
the unwanted spectral content such as power line interference,
noise due to body movements, and other unknown sources.
After filtering, Independent Component Analysis (ICA) was
performed to remove noise components related to body
movements, interference from other biological signals such
as EOG, EMG, and electrocardiographic (ECG) modulation.
The EEG signals were then re-referenced to the average
of all channels and segmented into epochs in the range of
0- 1200 ms after the stimulus onset. Finally, all EEG epochs
were visually double-checked to eliminate data segments
contaminated with noise.

Then, we defined two types of vigilance states:

1) VIGILANCE DECREMENT

This include the first 5 min concatenated with the last 5 min
of the EEG signals while 10-subjects performing the SCWT.
There was 160 epochs in the two 5-min concatenated EEG
data.

2) VIGILANCE ENHANCEMENT:
This include the first 5 min concatenated with the last 5 min
of the EEG signals while another 10-subjects performing
SCWT+-PT. Similar to the vigilance decrement state, there
was 160 epochs in the two 5-min concatenated EEG data.
Now for each vigilance state,, we investigated four types of
entropy in each epoch to quantify the level of vigilance decre-
ment and enhancement. The proposed entropies are briefly
described below.

E. DATA ANALYSIS

First, we adopted a bandpass filter to decompose the EEG
signals into five bands, including Delta (0.1-4 Hz), Theta
(4-8 Hz), Alpha (8—13 Hz), Beta (13-30 Hz), and Wide band
at full spectrum (0.1-30 Hz).Then, we processed the EEG
signals using four types of entropy, namely; Approximate
entropy (AE), Sample entropy (SE), Fuzzy entropy (FE),
and Differential entropy (DE). Entropy measures have been
successfully used to quantify the level of uncertainty of EEG
signals in many domains [40]-[43]. Although the original
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EEG signals do not follow a fixed distribution, EEG signals
can be assumed to obey Gaussian distribution after band-pass
filtering from 2Hz to 44Hz by steps of2Hz.

APPROXIMATE ENTROPY (AE) is a method proposed
by Pincus [51] to measure the regularity of time series and the
variations of statistics. AE measures the complexity of a time
series in multiple dimensions and is extensively applied in the
field of EEG signal analysis. In particular, AE use positive
numbers to represent the likelihood of data to quantitatively
describe the complexity of time series. Thus, the results of the
AE reflect the complexity of the analyzed signal, regardless of
the amplitude of the signal. Consequently, the more complex
the time series is, the larger the approximate entropy.

SAMPLE ENTROPY (SE is proposed by Richman and
Moorman [52] as a measure of time series complexity. SE has
been widely used in evaluating the complexity of physiologi-
cal time series and diagnosing pathological status. It measures
the predictability of consequent amplitude values of the EEG
based on information about previous amplitude values, and
its calculation is not dependent on the length of the data.
Similar to AE, SE is less sensitive to changes in data length,
with larger values corresponding to greater complexity or
irregularity in the data. However, SE may yield imprecise
estimation because its similarity of two vectors is dependent
on the Heaviside function.

FUZZY ENTROPY (FE) is an improved algorithm based
on SE and AP for overcoming the drawbacks of them [53].
FE achieved stable results for different parameters and
offered better noise resistance using the fuzzy membership
function [54]. It uses the Gaussian function to measure the
similarity of two vectors instead of the Heaviside function.
The jumping characteristic of the Heaviside function leads to
the discontinuity of AE and SE. Due to the continuity of the
Gaussian function, FE effectively avoids the drawbacks of the
AE and SE [55]. The FE not only takes the advantages of
sample entropy but also has less dependence on the length of
time series and possesses better robustness to the noise signal.
It is more suitable than the sample entropy as a measure of
time series complexity. The calculation algorithms of AE, SE,
and FE are clearly defined in [52], [56].

DIFFERENTIAL ENTROPY (DE): is used to measure
the complexity of continuous random variables. The DE
is related to the minimum description length [36]. It has
been proven that, for a fixed length EEG sequence, DE is
equivalent to the logarithm energy spectrum in an individual
frequency band [57], [36]. DE is then employed to construct
features in the five frequency bands mentioned above. The
estimation of the complexity parameters for the aforemen-
tioned entropies are discussed below.

1) ENTROPY FUNCTION SELECTION

The complexity parameters such as the embedding dimension
m, and tolerance 1, of the three entropies, AE, SE and, FE were
estimated according to previous studies [40], [41]. Previous

entropy studies suggested that the values of m and r can be
selected within the ranges: (m [2, 4] and r [0.1, 0.9]). It should
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be noted that the entropy tolerance r has a direct influence on
the entropy value. Too-large tolerance would let in redundant
signals that interfere with genuine features. If the selected r
value is too small, feature sensitivity is increased so that the
entropy value is disordered by the noise. Thus, in the present
study, the variables m = 2 and r = 0.2 times the standard
deviation of the EEG data were adopted. Additionally, for the
FE index gradient n, we setn = 2 and 7 = 1 after applying
several iterations. The variables were selected in such a way
to fit with our type of experiment (our experiment is based on
event related potential). FIGURE 2 shows the flow chart of
the proposed method.

End
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FIGURE 2. Flow chart of the proposed method.

F. STATISTICAL ANALYSIS AND CLASSIFICATION

A paired t-test was used to verify the effect of audio stimu-
lation on subjective feelings, behavioral responses, and EEG
variables (entropy values at VD vs VE). Before conducting
the t-test, we used the Kolmogorov-Smirnov test to check if
the data are normally distributed [58]. The Pearson correla-
tion and simple linear regression were formed to verify the
association between entropy measures and behavioral data
measured by RT across the vigilance states. The statistical
differences was assumed to be significant if p-value was less
than 0.05, p < 0.05.

1) SUPPORT VECTOR MACHINES (SVM)

We classified the vigilance levels using SVM. The kernel
function of SVM in this study was the Gaussian Radial Basis
Function (RBF), and the learning method is minimal sequen-
tial optimization. We investigated the classification accu-
racy of vigilance states in the form of subject-independent
classification. We adopt the leave-one-subject-out (LOSO)
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cross-validation strategy to evaluate the EEG vigilance level
classification performance of the proposed methods. Prior to
classification, we applied Sequential Feature Selection (SFS)
algorithm [59] to reduce the dimensionality of the EEG fea-
tures. The SFS generates a set of uncorrelated variables. Thus,
it selects a sufficiently reduced subset from the EEG feature
space without affecting the performance of the classifier. The
EEG data of 19-subjects are used for training the classifiers,
and the remaining EEG data of one subject is used as testing
data. The classifications procedures are repeated such that the
EEG data of each subject is used as the testing data.

2) PERFORMANCE MEASURES

We evaluated the SVM classifier based on the accuracy,
sensitivity and specificity. The accuracy of a classifier is the
percentage of the test set which is correctly classified by
the classifier. The sensitivity is referred to the true positive
rate which is the proportion of the positive set correctly
identified. The specificity is the true negative average, which
is the proportion of the negative set correctly identified. The
following Egs. (1)—(3) provide the definitions for the terms.

TP + TN
Accuracy(%) = (1)
TP+ TN + FP + FN
TP
Sensitivity(%) = ——— 2
ensitivity(%) TP+ EN 2)
Specificity(9%) = — 3)
pecificity(%) = IN + FP

where TP is the number of true positives, TN is the number
of true negatives and P and N are the positive and negative
samples, respectively. The average classification accuracies,
sensitivities, specificities, with their standard deviations cor-
responding to the entropy methods of analysis at the five
frequencies are respectively calculated.

Ill. RESULTS

A. SUBJECTIVE AND BEHAVIORAL DATA ANALYSIS

We examined the changes in subjective feelings of vigilance
states with the BRMUS scores and found significant effect of
audio stimulation (SCWT vs SCWT+HPT) in concentration.
Two sample t-test comparing emotional states after perform-
ing SCWT for 30 min without audio stimulation and after
the SCWTH-PT revealed significant increase of engagement.
The statistical analysis showed that anger, tension, depres-
sion, fatigue, and confusion, were significantly reduced after
performing the SCWTHPT with p < 0.05, while, happy, and
calmness significantly increased, p < 0.02. Table 1 show
the BRMUS score at vigilance decrement and enhancement
states with their corresponding statistical analysis.

The behavioral data such as the reaction time (RT)
and accuracy for vigilance decrement (VD) and vigilance
enhancement (VE) groups are shown in FIGURE 3. To reveal
the development trend of behavioral measures with the time-
on-task, the reaction time and accuracy were averaged within
a 5-min bin and plotted against the time of the experi-
ment (FIGURE 3). The results of the RT show a linear
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TABLE 1. Comparison of brmus subscales Means + SE after vigilance
decrement and vigilance enhancement states.

BRMUS Vigilance Vigilance T-test result

Decrement Enhancement

(mean £+ std)  (mean =+ std) t-value  p-value
Anger 2.15+0.34 0.50+0.31 231 <0.050
Tension 1.40+0.30 0.66+0.53 222 <0.050
Depression 2.50+0.31 0.40+0.32 2.68 <0.020
Vigor 2.00+0.28 2.62+0.48 1.40 0.076
Fatigue 2.84+0.20 1.32+0.41 2.88 <0.020
Confusion 2.12+0.50 0.63+0.51 2.66 <0.024
Happy 1.75+0.30 3.04+0.29 2.82 <0.020
Calmness 1.79+0.32 3.06+0.29 2.63 <0.020

Reaction time KT (=)
R

05 510 1015 1520 2025 235-30
Time (min)

FIGURE 3. Reaction Time and Accuracy in 5-min interval for vigilance

decrement (VD) and vigilance enhancement (VE). Error bars represent

standard deviation of the mean across subjects. The asterisk “** and “**’
indicates the differences is significant with p < 0.05 and p < 0.01.

increasing trend with the time-on-task in the vigilance decre-
ment group (with 13% increment from the beginning to the
end of VD experiment) and show a linear decrement with the
time-on-task in the vigilance enhancement group (with 32%
decrement in RT). The statistical analysis showed significant
decrease in the RT from vigilance decrement to vigilance
enhancement with time-on-task, p < 0.01. Meanwhile, there
was a significant increase in the accuracy from vigilance
decrement to vigilance enhancement (with 22% improve-
ments) with p < 0.01. Thus, the overall behavioral results
indicate that listening to audio stimulation of PT at 250 Hz
while performing SCWT for 30 min was effective in eliciting
vigilance enhancement to all participants. Considering the
increasing trend of the RT, the brain control ability decreased
continuously, therefore, the first and last 5-min with the max-
imum interval and significant difference were defined as the
alert and vigilance decrement states in the SCWT task.

B. ENTROPY ANALYSIS RESULTS

The complexity entropy (AE, SE, FE, DE) measured values
for each EEG electrode and trial in all the frequency bands
are shown in FIGURE 4 to FIGURE 8. For visualization,
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we plotted the entropy mean values for all EEG-electrodes at
each trial (time window) to show their variation in the two
mental states; the VD (trials labelled from 1-166) and the
VE (trials labelled from 167-332).

In FIGURE 4 to FIGURE 8, we show the average com-
plexity entropy of all subjects at Delta, Theta, Alpha, Beta,
and Wide band for the VD and VE states respectively. The
labels ‘a’, ‘b’, ‘c’, ‘d’ within each FIGURE depict the entropy
complexity map of a) AE, (b) SE, (c) FE and (d) DE, respec-
tively. As can be seen from the maps in each FIGURE (4-8),
the entropy complexity for trials in the VE state are higher
than that in the VD state at most electrodes. Specifically,
FE and DE show the most discriminative complexity patterns
across the two mental states, VD and VE. Through the anal-
ysis of entropy temporal profiles (series of trials) in the VD
and VE, the results clearly and directly show that the entropy
features are very informative to differentiate between the two
vigilance states, VD and VE.

The statistical analysis for each type of entropy and band
are summarized and depicted in FIGURE 9. FIGURE 9 shows
the topographical statistical T-maps for each type of entropy
in the five frequency bands. Positive value or red color T-map
indicates that the entropy measured values increased from
VD to VE states and negative value or blue color T-map
indicates that the entropy measured values decrease from
VD to VE state. The asterisk “*’ within the topographical
maps reveal that, the differences between the two mental
states, VD vs VE, are statistically significant at p < 0.05.
From FIGURE 9, we can clearly see that most electrodes
located at the left frontal region show significant increase in
all the frequency bands and types of entropy. Interestingly,
when looking at each frequency band, we can clearly see that
the higher frequency bands are more sensitive to vigilance
levels than lower frequency bands as they show patterns that
are more significant. Besides, when we consider the type of
entropy, we can clearly see that the DE shows more signifi-
cant electrodes than other entropies. Specifically, electrodes
located at the left hemisphere and occipital regions show
the most significant difference in the two mental states with
higher T-values.

C. RELATIONSHIP BETWEEN BRAIN ACTIVITY AND
REACTION TIME

The entropy complexity/values change with time varying and
vigilance state. To study the correlation between vigilance
state and RT, we first subtracted the entropy measures as
well as the RT of VD from that in the VE state. Then,
we correlated the changes/differences in entropy with the
changes in the RT to stimuli in each electrode for all the
frequency bands. To better visualize the correlation analysis
at the scalp level, we depicted the correlation values in the
form of heat map as shown in FIGURE 10. This will help
to match it to the behavioral and statistical analysis maps
in FIGURE 3, and FIGURE 9. We found that the entropy
values in the electrode level negatively/positively correlated
with RT as shown in FIGURE 10. The significance of the
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FIGURE 4. The average entropy complexity/values in EEG delta frequency band with 332 sliding window for 62-channel EEG signals of a) approximate
entropy, b) sample entropy, c) fuzzy entropy and d) differential entropy in the vigilance decrement (VD) and vigilance enhancement (VE) states.

correlation (negative or positive) between the entropies and
RT across the scalp is depicted by asterisk within the heat-
map at p < 0.05. Significant negative correlation indicates
vigilance enhancement and significant positive correlation
indicates impairments. In this context, the negative correla-
tion map shown in our analysis indicates that the entropy
values increase with decreasing the RT (with VE). In partic-
ular, we found the highest negative correlation of r = —0.78,
p < 0.05 at electrodes located within the left frontal region
of the brain in all the frequency bands and types of entropy.
The consistent negative correlations at the left frontal elec-
trodes (AF7, AF3, F7, F5, and Fpl) across all the frequency
bands and types of entropy demonstrate the effectiveness
of audio stimulation in enhancing the vigilance state. When
considering each frequency band alone, we can clearly see
that the wide band and beta band show more enhancement
distributed across the scalp for all types of entropy. Likewise,
when we consider the types of entropy, we can clearly see
that the DE and FE are the most sensitive method to vigi-
lance enhancement as they show more significant electrodes
atp < 0.05.

Meanwhile, the positive correlation map shown in
FIGURE 10 indicates that the entropy values decrease with
decreasing RT. From FIGURE 10 we can clearly see that
the positive correlation is widely distributed across the brain
but only few electrodes are significantly correlated as shown
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by the asterisk symbol. The overall correlation analysis
depicted in FIGURE 10 is consistent with the statistical anal-
ysis in FIGURE 9. Taken the annotations from FIGURE 3,
FIGURE 9 and FIGURE 10, we can clearly say that audio
stimulation significantly alters brain activity and results in
vigilance enhancement.

D. CLASSIFICATION

To differentiate between the two vigilance states; VD and
VE, the entropy based features at each frequency band
were used for classification. Taking the advantages of the
feature dimension reduction, only the significant features
selected by SFS were used to evaluate the proposed meth-
ods. The SFS resulted in 19-fetures distributed across the
scalp. The selected features for all methods and bands were
within the given EEG electrodes: AF7, AF3, F7, F5, F3, FT7,
T7,C5, Fpl, Fp2, AF4,F8,F2, T8, C4,01, 02, CP5 and CP3.
The overall classification accuracy, sensitivity and specificity
of the proposed methods are summarized in TABLE.2. The
classification results are given as meanststandard devia-
tions. From TABLE 2, we obtain the following significant
points:

o As regards the kind of entropy method, the best classi-
fication accuracy, sensitivity and specificity is achieved
using DE. FE produced comparable classification per-
formance to DE at delta band. The SE and AE produced
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FIGURE 5. The average entropy complexity in EEG Theta frequency band with 332 sliding window for 62-channel EEG signals of a) approximate entropy,
b) sample entropy, c) fuzzy entropy and d) differential entropy in the vigilance decrement (VD) and vigilance enhancement (VE) states.

0.54
H 0.52
0.55
0.5
w ary o5 0.48
0.45 —_— 0.46
0.4 0.44
0.42
N
(\'b
20 40 = 04
EJ reclrgaes 50 <o -
= 62
=
= @ )

332

30
E’eclrodgg 50 50 (,eﬁ‘p@

62

) )

FIGURE 6. The average entropy complexity in EEG Alpha frequency band with 332 sliding window for 62-channel EEG signals of a) approximate entropy,
b) sample entropy, c) fuzzy entropy and d) differential entropy in the vigilance decrement (VD) and vigilance enhancement (VE) states.

less classification performance in term of accuracy, sen- comparison showed that DE has significantly (p <
sitivity and specificity compared to DE and FE at most 0.0001) outperformed SE and AP in classifying vigi-
of the frequency bands. The ANNOVA test with multiple lance levels at all the evaluation metrics, see TABLE 2.
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It also showed that DE has significantly (p < 0.0001) « For frequency bands, the highest classification perfor-
outperformed FE in theta, alpha and beta bands but not mance in term of accuracy, sensitivity and specificity is
in delta band, p = 0.87. achieved with the high frequency bands. Specifically,
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FIGURE 9. Statistical analysis of vigilance levels; VD vs VE in all types of entropy and frequency bands. Positive value in the
T-map indicates increment in the entropy values from VD to VE and negative value indicates reduction in the entropy values
from VD to the VE states. The star within the maps indicate that the differences between VD and VE is significant with

p < 0.05.
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we found wide frequency band at full spectrum and band and beta band outperform other bands in classifica-
the beta band produced the highest classification perfor- tion accuracy, sensitivity and specificity with more than
mance in all the entropy methods except for FE. Wide +4% in the DE, and 4+-5% in the SE and AE methods,
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TABLE 2. Comparisons of the average accuracies and standard deviations (%) of subject independent EEG-based vigilance and enhancement level

classification among the various methods.

Performance ~ Method Delta Theta Alpha Beta Wide Band
Accuracy AE 67.23+03.95 70.34+03.12 74.39+03.94 79.68+02.19 81.05+02.90

SE 71.15+£02.66 74.89+03.69 79.35+£03.07 84.87+02.27 86.91+02.86

FE 91.43+01.96 89.49+02.59 88.95+£02.36 83.70 £02.56 82.29+02.93

DE 92.10+£02.24 92.20+01.91 94.21+01.50 97.47+01.35 98.32+01.14
Statistical DE vs DE vs DE vs DE vs DE vs All=P<0.0001 DE vs All=P<0.0001
Analysis All=P<0.0001;DE  All=P<0.0001  All=P<0.0001  All=P<0.0001

vs FE>p=0.87
Sensitivity AE 66.80+03.22 72.35+03.10 82.66+03.64 82.66+02.01 82.93+02.33

SE 70.74+02.53 76.90+03.32 82.93+03.02 87.34+01.96 87.21+02.275

FE 91.56+01.55 90.56+ 02.42 87.55+02.22 80.85+02.23 82.32+02.56

DE 92.50+02.33 91.63+£01.75 93.17+01.33 97.52+01.10 98.66+01.00
Statistical DE vs DE vs DE vs DE vs DE vs AlI=P<0.0001 DE vs AlI=P<0.0001
Analysis All=P<0.0001;DE  All=P<0.0001  All=P<0.0001 All=P<0.0001

vs FE>p=0.91
Specificity AE 67.67+03.43 68.34+03.31 70.81£04.22 76.70+£02.33 79.71+03.11

SE 71.55+02.96 72.89+03.85 75.76+£03.56 82.39+02.56 86.61+£03.01

FE 91.29+02.11 88.42+02.75 90.36+02.66 86.54+02.96 82.26+02.96

DE 91.70+02.32 92.77+02.10 95.24+01.88 97.45+01.56 97.99+01.05
Statistical DE vs DE vs DE vs DE vs DE vs AlI=P<0.0001 DE vs AlI=P<0.0001

. All=P<0.0001;DE _ _ _

Analysis vs FE>p=0.94 All=P<0.0001  All=P<0.0001  All=P<0.0001

respectively. Delta and theta bands show +6% improve-
ment in the classification performance compared to beta
and wide frequency bands only in the FE methods.

« Taking the method and frequency bands together, DE at
all the frequency bands produced the highest classifi-
cation accuracy with 98.32%, 97.47%, 94.21, 92.20%
and 92.10% in the wide band, beta band, alpha band,
theta band and delta band, respectively. This was then
followed by FE method at delta, theta and alpha bands
with classification accuracy of 91.43%, 89.49% and
88.95%, respectively. Meanwhile, SE and AP achieved
the highest classification accuracy only at the high fre-
quency bands. Overall, our classification results show
that DE is the best method in classifying vigilance levels
at all the frequency bands with classification accuracy in
the range of 92.1% to 98.32%.

IV. DISCUSSION

In this study, we investigated a novel enhancement method
of pure tone (PT) audio stimulation at 250 Hz on vigilance
levels. The PT was presented simultaneously to the ears of
participants while performing SCWT for 30 min. We simul-
taneously recorded the electrical brain activity (EEG sig-
nals), self-reports and behavioral responses of the participants
while performing the SCWT under vigilance decrement (VD)
and vigilance enhancement (VE) states. In line with our pre-
vious studies [60], [61], and with the results of the behavioral
responses of the participants we defined the VD state as the
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state in which participants performed the SCWT continu-
ously for 30 min.

Meanwhile, the VE state was defined as the state in which
participants performed the same SCWT while listening to the
PT audio stimulation of 250 Hz for 30 min. Behaviorally,
all subjects that performed the SCWT for 30 min showed
vigilance decrement as reflected by the RT and accuracy of
target detection and it is summarized in FIGURE 3. On the
other hand, all subjects that performed the SCWT while
listening to the 250 Hz PT audio stimulation showed vigi-
lance enhancement. By comparing activity between VD and
VE experiments, we found that PT did entrain the brain and
enhanced the mood state of all participants. Furthermore,
the machine learning model discriminates between VD and
VE level with 98.32% accuracy. The significant findings of
this study are discussed below.

A. VIGILANCE LEVEL AND BEHAVIORAL PERFORMANCE

In the VD, we found that all participants performed the
SCWT for 30 min showed significant increase in the RT to
stimulus associated with a decreased in the accuracy with
time-on-task. Specifically, our analysis showed 13% incre-
ment in the RT and 21% decrement in the accuracy of target
detection. The increase in the RT to stimuli in our study indi-
cates that the proposed vigilance task is resource demanding
with a high cognitive workload and stress. Thus, the increase
in RT is an essential fact for vigilance level decrement. Other
reasons of increased RT could be due to the increased level
of confusion, discomfort, fatigue and loss of engagement
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with the task. The psychological feelings reported by the
participants confirmed this claim. Intuitively, the subjective
assessment had shown a significant increase in the scale of
anger, fatigue and confusion after performing the SCWT for
30 min. In accordance with the present findings, previous
vigilance and stress studies have demonstrated that the cogni-
tive efficiency declines over time due to the effect of mental
fatigue. The behavioral impairments observed in our study
are also consistent with the decreased accuracy reported after
1 hour protocol to induce mental fatigue in [33]. Similarly
to our experimental design, Naber et al. [62] reported that
RT significantly increased with time-on-task after 5 min
in Stroop color word task. Likewise, driving studies have
demonstrated that driver behavior in post-congestion situ-
ations became more aggressive indicating that VD affects
behavioral performance [63], [64].

Meanwhile, in the VE experiment we found a significant
decrease in the RT associated with an increase in the accuracy
as time passes. In particular, we found 32% decrement in RT
and 5% increment in the accuracy indicating that the audio
stimulation improves sustained attention and increases the
cognitive efficiency. We anticipate that the decrement in the
RT in our study might be due to the effects of multisen-
sory process integration. Multisensory integration is apparent
when input from one sensory modality enhances the percep-
tion of stimuli in another modality. In this case, listening to
the audio stimulation while performing the visual stimulus of
SCWT increased the cognitive processing and engagement in
choice response time. The behavioral enhancement observed
in our study is consistent with the decreased RT reported in
multisensory enhancement studies [65], [66]. Nevertheless,
perceptual sensitivity, accuracy, reaction times, memory, and
learning; all had been shown to be enhanced by multisensory
as compared to unisensory stimulation [67], [68].

Taking altogether, the VD and VE experiments, we found
a significant decrease (p < 0.01) in the RT (the RT decreased
by 44%) and significant increase in the accuracy of target
detection (the accuracy of detection improved by 25%) with
audio stimulation. It’s worth noting that the linear decreas-
ing trend in the RT with increasing the time-on-task in
the VE experiment (in FIGURE 3) indicates that the audio
stimulation reflects sensory dominant phenomena. Thus, we
confirm that the proposed audio stimulation is very effective
in enhancing the vigilance levels. The increased level of
happiness and calmness in the subjective analysis also reflect
mood state enhancement. Besides, the decreased level of
anger, tension, fatigue, and confusion while listening to audio
stimulation is another indication of vigilance enhancement.

B. VIGILANCE LEVEL AND ENTROPY MEASUREMENTS

The entropy measures (AE, SE, FE, and DE) in our study
showed that the amount of complexity of EEG signals signif-
icantly increased from VD to VE experiment in most areas of
the brain at all the frequency bands. There have been many
compelling pieces of evidence demonstrating the effective-
ness of entropy measures in clinical implications [69]. The
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complexity of the EEG signal in our study is reflected by the
entropy values. The greater the entropy value is, the more
active the brain is. Previous studies have found that higher
entropy meant increased behavioral performance [70], [71].
In line with that, we found the entropy-measured val-
ues significantly increased across the left hemisphere and
decreased in small regions within the right hemisphere when
participants performed the SCWT while listening to the
audio stimulation compare to that without audio stimulation.
Specifically, left frontal, left-temporal, parietal and occipital
regions were highly activated with audio stimulation. The
increased entropy in the left hemisphere and across wide
areas within the right hemisphere indicated that the audio
stimulation enhanced sustained attention and decision mak-
ing process. A previous study indicated that information pro-
cessing in the brain involved multi-brain regions [72]. Under
vigilance sate, frontal brain interactions would be changed
to maintain sustained attention. Likewise, the increase in
occipital brain region is related with visual task [73].

Meanwhile, decreased entropy in certain regions of the
right hemisphere indicated that audio stimulus shifted the
brain activation patterns from right to the left hemi-
sphere [74]. These results suggest that the changes in the
entropy features caused by audio stimulation is a good indi-
cator of brain function enhancement. Previous studies have
suggested that increased entropy was found to be related to
performance improvement [75], [76]. The increased entropy
value under vigilance enhancement is also consistent with
the increased connectivity network measures reported in our
previous vigilance studies [60], [61].

Interestingly, the entropy values in our study were main-
tained high throughout the temporal profiles with audio stim-
ulation experiment (see FIGURES 4-8), which may reflect a
state of excitement. In fact, we did not find any decrement in
the behavioral responses; such as increased RT or decreased
in accuracy with time-on-task in the VE experiment. One of
the possibilities is that the pure tone stimulates the pituitary
gland to release the dopamine hormone. Recent neuroimag-
ing evidence supports the notion that dopamine may underpin
the modulatory influence of audio stimulation on cognitive
performance. Rausch and his colleagues [77] suggested that
audio stimulation enhances dopamine release, thereby mod-
ulating brain activity and increased attention and memory
formation. We thus, confirm that the higher entropy values
across the cortex facilitate neural communication, promote
neural plasticity, and enhance vigilance level. Consequently,
the findings provide the impetus for additional research into
the potential use of audio stimulation at 250 Hz as a non-
pharmacological enhancement for people with low vigilance,
and for people with learning difficulties, stress and anxiety.

C. MACHINE LEARNING AND VIGILANCE LEVEL
ESTIMATION

We employed SVM to assess vigilance levels (classifying
VE from VD state) based on entropy features. The SVM
achieved the best classification accuracies in the range of
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(97.47 £01.35) % to (98.32+01.14) % using beta and wide
band, and achieved (94.21+01.50) % using alpha band and
(92.1£02.0) % using delta and theta band when utilizing
DE learned features. Fuzzy entropy obtained similar results
with the highest accuracies achieved at lower frequency bands
with (88.95+£02.36~91.434+01.96) %. Sample entropy and
approximate entropy features showed their highest classifi-
cation accuracies at higher frequency bands with mean accu-
racy above 80%, as summarized in TABLE 2. The highest
classification accuracy achieved at higher frequency bands in
most types of entropy reflects the enhancement of sustained
attention.

D. PERFORMANCE ENHANCEMENT CORRELATES WITH
ENTROPY MEASURES

Combining the biobehavioral performance, we found the
entropy measures co-vary with vigilance levels. Specifically,
significant negative associations were observed with reaction
time changes and entropy values. That is, the shorter the
reaction time to stimuli the greater the cortical activations as
measured by entropy. In particular, we found the maximum
correlation of » =~ 0.78, p < 0.05 between brain regions
at electrodes AF7, AF3, F7 and F5 with decreasing reac-
tion time. It is evident that when reaction time reduced due
to the vigilance enhancement caused by audio stimulation,
the entropy measures increased.

One could argue that pure tone does activate the peripheral
regions of visual cortex and thus enhances the overall perfor-
mance. We have also anticipated that that PT does increase the
compensatory effort of participants, thus, they remain atten-
tive to stimulus onset. Previous studies have suggested that
real-time auditory feedback supports learning and retention
of new skills [78]. Overall, the enhancement in the behav-
ioral responses (reduced reaction time) and brain activities
(increased entropy) by PT stimulation at 250 Hz is consistent
with previous computerized vigilance enhancement methods
summarized in [1].

The overall observed pattern of findings motivates the
application of modern interventions from psychology and
cognitive neuroscience to alert and enhance human judgment
and decision-making in complex, real-world environments.
For example, embedding the enhancement method into the
vehicle driving fatigue detection system can improve the
drivers’ vigilance level and prevent accidents. Likewise, inte-
grating the PT of audio stimulation into workstations can
mitigate the level of stress on people at the workplace and
may result in improving cognitive efficacy.

E. LIMITATIONS AND FUTURE WORK

This study investigated the use of PT audio stimulation
at 250 Hz to enhance vigilance levels at the workplace.
Although, the proposed PT demonstrated its effectiveness in
enhancing cognitive performance and altering brain activity
and mood states, the effects after stimulation on performance
are yet to be explored. In future studies, we will investigate the
effects of after stimulation as well as compare our proposed
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method with the well-established audio stimulation technique
such as the binaural auditory beat stimulation. This will aid
in understanding the effect of audio on neural mechanisms
underlying vigilance levels. While, we used four entropy
measures and machine learning approach to explore the effec-
tiveness of PT stimulation on brain activity, combining cor-
tical activations with functional connectivity network may
provide full inspection on the effects and after effect of PT
stimulation on sustained attention [50]. A potential candi-
date method is to combine entropy measures with functional
connectivity network and graph theory analysis as suggested
in [61].

V. CONCLUSION

This study investigated a novel enhancement method on
vigilance levels and found significant improvements on the
behavioral responses and cognitive performance. In partic-
ular, we found 44% enhancement in the reaction time and
25% improvement in the accuracy of target detection when
participants performed the vigilance task for 30 min while
listing to audio stimulation compared to that without audio
stimulation. Besides, 30 min stimulation of the proposed
VE method revealed 32% improvements in reaction time
with time-on-task. The SVM classifier vigilance enhance-
ment with 98.2 % accuracy using differential entropy learned
features. Our findings provide new insights into the neural
mechanisms of vigilance levels and highlight the importance
of using audio stimulation of pure tone at 250Hz as a potential
method of vigilance enhancement.
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