

Nuclear Instruments and Methods in Physics Research A 461 (2001) 420-421

www.elsevier.nl/locate/nima

Pixel segmented ionization chamber for therapeutical beams of photons and hadrons

S. Belletti^a, R. Cirio^b, L. Cocuzza^b, P.G. Degiorgis^b, M. Donetti^{b,*}, E. Madon^c, F. Marchetto^b, M. Marletti^b, L. Marzoli^a, C. Peroni^b, E. Trevisiol^c, A. Urgesi^c

^a Servizio di Fisica Sanitaria, Spedali Civili Di Brescia, P.le Ospedale 1, I-25013 Brescia, Italy ^b University and INFN of Torino, Via Giuria 1, I-10125 Torino, Italy ^c OIRM S.Anna, V. Baiardi 43, I-10126 Torino, Italy

Abstract

A fast and precise detector to monitor on-line the dose delivered by an active scanning therapeutical beam has been built and tested. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Beam monitoring; Dosimetry; Hadrontherapy; Ionization chamber; Radiotherapy

1. Introduction

A fast and precise detector is essential for exploiting the therapeutical capabilities of radiotherapy with Intensity Modulated photon (IMRT) and hadron beams. We have developed a large area ionization chamber that allows 2D reconstruction in real time [1,2].

2. Design of the detector

The detector is a parallel plate ionization chamber with an extended sensitive volume that has to cope with the largest treatment field. A sketch of the detector is shown in Fig. 1. The anode, which is segmented in 1024 pixels to cover a total area of (24×24) cm², and the cathode planes

are glued to vetronite frames. The front-end acquisition boards are mounted on the anode frames. The gas gap is defined by the thickness of a frame placed between the anode and the cathode. The anode has been obtained with the printed circuit board technology on a substrate of $100 \,\mu\text{m}$ thick vetronite foil. The cathode is made of aluminized 25 μm thick mylar foil. The equivalent water thickness is less than 1 mm.

3. Front-end electronics and data acquisition

The front-end electronics is based on Very Large Scale Integration (VLSI) chips that digitize the charge collected by the pixels [3,4]. Every chip serves 64 pixels. The data acquisition can handle up to 16 chips and read the counters with a frequency up to 10 MHz. A VME CPU controls the data acquisition using two PCI mezzanine cards (PMC) to generate the control signals and to acquire the data with a real-time operating system.

^{*}Corresponding author. Tel.: +39-11-6707332; fax +39-11-6699579.

E-mail address: donetti@to.infn.it (M. Donetti).

^{0168-9002/01/\$ -} see front matter \odot 2001 Elsevier Science B.V. All rights reserved. PII: S 0 1 6 8 - 9 0 0 2 (0 0) 0 1 2 6 3 - 8

Fig. 2. Uniformity measurements.

4. Results

The chamber has been tested with photon, electron and hadron beams. To measure the uniformity of the chamber, it has been irradiated

with a flat beam. We found that the uniformity is better than 3% before any calibration (see Fig. 2 top) which is improved to less than 1% after channel-to-channel calibration (see Fig. 2 bottom). The position resolution has been determined by comparing the center of gravity measurements to the known positions of the beam. With a C^{+6} beam 8.8 mm (FWHM) wide the resolution is better than 0.3 mm (see Fig. 3).

References

- [1] S. Belletti et al., Phys. Med. XV(3) 1998 137.
- [2] C. Brusasco et al., Nucl. Instr. and Meth. A 389 (1997) 499.
- [3] G.C. Bonazzola et al., Nucl. Instr. and Meth. A 405 (1998) 111.
- [4] G.C. Bonazzola et al., Nucl. Instr. and Meth. A 409 (1998) 336.