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Abstract. A bigraded algebra of polynomial forms on a vector bundle is introduced and a
bidegree to each multivector valued form is assigned. Numerous examples of polynomial forms
appearing in various constructions in differential geometry are given. The Poincaré Lemma for
polynomial forms is proved.

1. Introduction.

Differential forms on vector bundles may posess particular properties in relation to the
linear structure of the fibres. The most frequently encountered type of a form on a vector
bundle is a linear form. Quadratic forms have also been considered. We introduce the
bigraded algebra of polynomial forms on a vector bundle and assign a bidegree to each
multivector valued form which acts as a differential operator in the algebra of polynomial
forms. Our definition of the bidegree is compatible with the usual terminology for differential
forms. Our definition of the bidegrees of a multivector valued form differs from the usual
conventions. The “linear” Poisson structures are polynomial bivector fields of bidegree
(=2, —1) in our terminology. The “quadratic” Poisson structures are assigned the bidegree
(—2,0). We give numerous examples of polynomial forms appearing in various constructions
in differential geometry. The Poincaré Lemma for polynomial forms is proved.

The analysis of polynomial forms presented in this note is far from complete. The impor-
tance of some of the examples suggests that a more extensive study should be undertaken.
The concept of a polynomial form is related to the concept of a double vector bundle [1].

2. Differential forms and differential operators.

Let N be a differential manifold. The tangent bundle is denoted by TN, the tangent
fibration is a mapping 7n: TN — N. Let x§, TN denote the p-fold fibred product of the
tangent bundle TN for p > 0. A differential p-form is a differentiable mapping

e xR TN — R. (1)
Restricted to a fibre xPT,N a p-form is p-linear and totally antisymmetric. A O-form is a

differentiable function on N. The space of p-forms on N will be denoted by ®P(N).
The exterior product of a p-form p with a p’-form p’ is the (p 4 p’)-form

% x?v"'p/TN —R

sgn(o)
: (Ula oo vUp+p’) = Z p!p,! N(Ua(l)a s 7vﬂ(p))/i,(vo(p+1)» s :'Uo(p—&-p'))a
oeS(p+p’)
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where S(p + p’) denotes the group of permutations of the set {1,...,p+ p’} of integers.
The product of a function f on N with a p-form p is the p-form

fu:xBTN - R
t(v1y e, 0p) o flrn(vr))p(vr, -, vp). (3)
This product makes the space ®”(N) a module over the algebra ®°(IN) of differentiable
functions. The exterior product f A p of a O-form f with a p-form p is identified with the
product fpu.

The tangent vector of a curve 7v:R — N will be denoted by ty(0). It is well known that
for each (vi,... ,vp41) € XZZ’VHTN there is a differentiable mapping y: RP*! — N such that
v; = t7;(0), where ; is the curve

vi:R — N
ts = x (08, ..., 0P L) (4)

fori=1,...,p+ 1. We introduce mappings

Xi,j:RZ — N
Z(S,t) l—>X(§1iS+51jt,... ,6p+1i8+5p+1jt) (5)

and curves

pijR—TN
15 = txi5(s, ) (0) (6)

fori=1,...,p+1and j = 1,... ,p+ 1. The ezterior differential of a p-form is the
(p + 1)-form

dp: xBPTN - R
p+1 -

21, Uptr) Z(_l)iﬂd%ﬂ(ﬂi,l(s),-~ Pii(8) - s pipr1(8)) : (7)

=1 s=0

The differential of a O-form f: N — R is the 1-form

df: TN - R
(0) e LTA)| (5)
s=0
The space
O(N) = &2 2" (N) 9)

with the exterior product A and the exterior differential d is a differential graded algebra.
Let (y*): V — R™ be a local chart of N. At each b € V there is a base of T, N composed of

vectors 9;(b) = t;5(0), with curves v;,: R — N characterized by (y*o7;)(s) = y'(b)+0%;s

for s sufficiently close to 0. The base (9;(b)) is dual to the base (dy’(b)) of T;N. We have

1

plvV = Huil...ipdy“ AL Ady'r, (10)
where Wiy .5, are the functions
Miy..ip:V — R
b= (i, (b), ... ,0:,(b)). (11)
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Following Claudette Buttin [2] we associate with each k-vector valued (k + ¢)-form
X:xEHTN - AFTN (12)

a differential operator
ix: ®(N) — ®(N) (13)

of degree q defined for a p-form p with p > k by

ixpu(vi, ..., Uptq)
sgn(o)
= ) G5 olp — X Wo s Votbta)s Vothsarn - Voprg) - (14)
ceS(p+q) ' '

with some abuse of notation. If u is a differential form of degree p < k, then ixu = 0. A
differential operator
dx:P(N) — ®(N) (15)

of degree ¢ + 1 is defined by
dx = [ix,d] =ixd + (=1)7"diy. (16)

These definitions include special cases of operators associated with differential forms (k = 0)
and with multivector fields (k + ¢ = 0). The exterior differential d is a special case of an
operator of degree 1.

In terms of a local chart (y): V — R™ of N we have the representation

1

X|V = m}(jl“_ik+q

Tede(dy™ AL Ady™ ) @ (04 AL A D) (17)

of a k-vector valued (k + q)-form X with functions X. Ji--jr defined by

i1ihtg

Ji-de 5 R
b= (dy? (b) A .. AdyTE(b), X (0, (D), - .., sy, (D)) (18)

X

T

3. The algebra of polynomial functions on a vector bundle.

Let ¢: F — N be a vector fibration. We denote by ®°(F) the algebra of differentiable
functions on F. We denote by (%9 () the subalgebra of the algebra ®°(F) composed
of mappings constant on fibres of ¢. Each element of II(°:%)(¢) is the pullback f o ¢ of a
differentiable function f: N — R. We denote by II(>:!)(y) the space of functions linear on
fibres of . A power (II(®V(p))" of the space II(®V)(p) will be denoted by (") (p) for
each r > 0. The graded algebra

10 () = +72117) () (19)

will be called the algebra of polynomial functions on the bundle F'.

4. Polynomial forms on a vector bundle.

Let e: E — M be a vector fibration. The tangent fibration Te: TE — TM is a vector
fibration. We have operations

S RXTE —TE
(A 11(0)) = t(A7)(0) (20)
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and

+:TE x1y TE - TE
H(t7(0), ©9(0)) = t(v +1)(0), (21)

where v:R — F and 7:R — E are differentiable curves such that € oy = € oy and the
symbols ty(0) and t/(0) denote the tangent vectors of the curves v and 4’. Relations

2(A " v) = AMe(v), (22)
Te(v+'vV") = 1R(V) + TEQW), (23)
Te(A ' v) = Te(v), (24)
Te(v+'v") = Te(v) = Te(v') (25)

follow directly from the definitions.
Let x%; pTe be the mapping

xhpTe x5 TE — <3y TM

(o1, ,0p) = (Te(vr), ..., Te(uy)). (26)
This mapping is again a vector fibration with operations

PR x (XELTE) — xLTE

tN, (V1,5 0p)) = (A on, e A ) (27)
and
P (X TE) xyr 1y (X TE) — xTE
(o1, s0p), (V- 0p)) = (v + o1, v+ ). (28)
The space
@ (e) = MO (xh, ,Te) N OP(E) (29)

will be called the space of polynomial forms on E of bidegree (p,r).

It is easily seen from formulae (2) and (3) that the exterior product A ' of polynomial
forms p and p' of bidegrees (p,r) and (p’,r’) respectively is a polynomial form of bidegree
(p+p,r+7"). It follows from formulae (7) and (8) that the exterior differential du of a
polynomial form g of bidegree (p,r) is a polynomial form of bidegree (p + 1,7). It follows
that

T1(e) = B2 +32 () (30)

is a subalgebra of the differential graded algebra ®(FE). This algebra will be called the
bigraded differential algebra of polynomial forms on E
If

Fr—¢%
@h { (31)
M —/—— M

is a vector fibration morphism and y is a polynomial form on E of bidegree (p, k), then o1
is a polynomial form on F' of the same bidegree (p, k).
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Let (2%):U € M — R™ be a local chart of M and let (z*,e?): e~ (U) C E — R™* be
an adapted chart of E. A p-form p on E is locally represented by
1
ple N U) = Z — e Ay A, AT A A A de AL Ade” (32)

VAPSNZ)
p'+p"'=p pip"!

with the functions Forir .ok Ar o A defined by

/"Lﬁl---’{p/Al---Ap” : E_l(U) - R
e (ks (), ..., 0k, (€),0a,(€),... , 04, (€)). (33)

The coordinates 2* are functions constant on fibres of € and coordinates e are linear. If s
is a polynomial form of bidegree (p,r), then each function Hsy oy Ay Ay 1S @ polynomial
form of bidegree (0,r — p”).

A polynomial differential operator is a differential operator of the algebra ® (M) which can
be restricted to the subalgebra II(¢). A polynomial operator K is said to be of bidegree (g, s)
if € IIP7) () implies Ky € TI®P*T47+9)(g). A multivector valued differential form X is
said to be a polynomial form of bidegree (g, s) if the differential operator ix is a polynomial
operator of bidegree (g, s). If a differential form p is a polynomial form of bidegree (p,r), it
is a polynomial 0-vector valued form of the same bidegree (p, r).

Let (2%, e4):e71(U) C E — R™** be an adapted chart of E. A k-vector valued (k + q)-
form is locally represented by

1
Xle ! = __ - x A1 A Bi. By
‘8 (U) - Z Z q"q”'k/'k”' K].“K,q/Al..AAq//
q'+q"=k+q k'+k"=k : e :

(dz™ AL Ada® Ade™ AL Ade? ) @ (Oa, A AON, AOp, A...0B,,) (34)

with the functions X,ﬁ___,gq,Al_“Aq,,Al"'Ak/Bl“'Bk” defined by

A1...A\rB1...By,
Xﬁl...liq/Al...Aq// b L k”(e)

= (dzM A ... Ada?r AdePr AL AdeBe X (0, (e), .. :Or,(€);0a,(€),... ,0a,,(€))).
(35)
If X is a polynomial form of bidegree (g, s), then each function Xm...nq/Al...Aqu AL A Bue By
is a polynomial form of bidegree (0,7 — ¢"" + k).
5. Examples.

ExaMPLE 1. Let e: E — M be a vector fibration. We introduce the mapping

xe)rExy E—-TE

:(e,€') — tv(0), (36)
where ~ is the curve
¥R —-FE
15— e+ se. (37)

The image of x(¢) is the subbundle of vertical vectors
VE ={v e TE; Te(v) =0} (38)

of the tangent bundle TE.



The Liouville field on E is the vector field

L(e):E - TE
ce— x(e,e). (39)

The Liouville field is a vector field of bidegree (—1,0). The flow of the Liouville field is the
mapping
Me))RxE—FE
:(s,€) — exp(s)e. (40)
ExampPLE 2. Let 0: M — E be a section of a vector fibration e: E — M. We define a
vector field

S:E—-TE
ce— x(e,o(e(e))). (41)

The flow of the field S is the mapping

occRxF—FE
(s,e) — e+ so(e(e)). (42)

The field S is a polynomial field of bidegree (—1, —1).

ExXAMPLE 3. Let e: E — M be a vector fibration. A connection on the fibration is vector
valued 1-form H: TE — TEFE such that H o H = H and the image of H is the vertical
subbundle VE C TE. The connection is said to be linear if H is a polynomial vector valued
form of bidegree (0, 0).

ExXAMPLE 4. Let M be a differential manifold. The pull back 75,u of a p-form p € ®(M)
is the p-form
* P
i xB TTM — R
Hwi, ., wp) = p(Trar(wi), ..o, Trar(wy)). (43)
A derivation ip: ®(M) — ®(TM) relative to the pull back monomorphism 75;: ®(M) —
O(TM) [3] is defined by
ipp: x5, TTM — R

H(wr, ., wp) o p(rrar(we), Tra(w), .. Trar(wp)) (44)
for a (p + 1)-form p. Relations (22)—(25) with e: E — M replaced by 7a: TM — M
imply that if 4 € ®P(M), then 755 u € TI®O(TM) and ipp € TIP~HV(75,). A derivation
dr: ®(M) — ®(TM) relative to the tangent projection 7js is defined by dp = ipd 4+ dip. If

p € ®P(M), then dpu € TIPD (7).
If the algebra ® (M) is interpreted as a trivial case

I(idar) = @pZo1(p, 0) (idar) (45)

of an algebra of polynomial forms, then the pull back monomorphisms is of bidegree (0, 0)
and the derivations ir and dg ore of bidegrees (—1,1) and (0, 1) respectively.
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EXaAMPLE 5. Let X: M — TM be a vector field. Let
ky:TTM — TTM. (46)
be the canonical involution appearing in the vector fibration isomorphism
TT™M — M TTM
TTMl T TMB . (47)

The mapping dr X = kp; o TX: TM — TTM is a vector field on TM. It is the tangent lift
of X. The tangent lift is a polynomial field of bidegree (—1,0).

EXAMPLE 6. Let M be a differential manifold. The Liouville 1-form on T*M is the
mapping
O TT*M — R
qw = (T (W), T (w)). (48)
Relations (22)-(25) with e: E — M replaced by the cotangent projection mp: T*M — M

imply that J5; is of bidegree (1,1). Consequently the symplectic form wy; = ddy; is of
bidegree (2,1) and the Poisson bivector field A is of bidegree (—2, —1).

EXAMPLE 7. Let X: M — TM be a vector field. The function

X:T*M - R
:p = (p, X(mas(p))) (49)

is form of bidegree (0,1). Consequently the Hamiltonian vector field Y on T*M defined by
iyddy = —dX (50)

is of bidegree (—1,0). The field Y is the canonical lift of X.

ExXAMPLE 8. Let X:x% TM — TM be a vector valued differential form. The g-form

Y. 4 *
Xixt, TTM —R
Hwi, . wg) = (T (wr), X (Taag(wr), ..., Trar(wg))) (51)

is of bidegree (g,1). The equation

defines a vector valued g-form on T*M of bidegree (¢ — 1,0). The vector valued form Y
can be considered the canonical lift of X.
EXaAMPLE 9. Let e: E — M be a vector fibration and let A be a Poisson bivector field on
E. If A is a polynomial field of bidegree (—2, —1), then the associated Poisson bracket
{, Ja:9°(E) x 9°(E) — ©°(E)
:(f,9) = (df Adg, A) (53)

is usually said to be linear [4].



A polynomial Poisson bivector field A on E of bidegree (—2, —1) induces a Lie algebroid
structure [5] on the dual fibration & E* — M. The space 1% (¢) is identified with the
algebra ®° (M) and the space IV (¢) is identified with the module T'(€) of sections of the
fibration £. With a function f € (%0 (g) we associate a function f € ®°(M) such that
f = foe. With a function g € H(O’l)(&t) we associate a section g: M — E* such that
(f(a),e) = f(e) for each @ € M and each e € E such that £(e) = a. If g € (%Y (¢) and
h € IOV (g), then {g,h}s € TV (g). A Lie bracket in I'(¢) is defined by

[,]:T(&) x T(&) — I'(é)
2(9,h) = {9, h}5- (54)

If f €09 ) and g € IOV (¢), then {f,g}a € T (g). The anchor p: E¥ — TM is
characterized by

(df(a), p(g(a))) = {f, g}a(a). (55)

EXAMPLE 10. Let e: E — M be a vector fibration and let u be a (p + 1)-form on E. A
vector fibration morphism

i

E—————— NT'M
El Wifk (56)
M———M
is characterized by
(v A A, i(e)) = p(x(€)(O(a), €), TO(0), ..., TO(vy)), (57)
where O: M — E denotes the zero section of ¢ and a = e(e) = 7y (v1) = ... = Tar(vp). Let

¥4, be the Liouville p-form on APT*M and let wh, = d¥¥, be the canonical (p+ 1)-form on
APT*M. For each vector fibration morphism

p

E—F o APT*M

El 77?4 (58)
M—,—————M

the form p*wh, is an exact polynomial form of bidegree (p + 1,1). In particular the form
f*wh, is an exact polynomial form of bidegree (p + 1,1).

Let u be a polynomial form of bidegree (p + 1,1) and let (z%,e?):e~1(U) C E — R™+F
be an adapted chart of E. The form g is locally represented by

_ 1 . .
Wl (U) = (pTl)WA;mmaneAdx VAL A daRet

1
+ Hum,mp,ﬁldx“l AL Adz" Ade? (59)

with fea,.,. and fy, .. x,A D T1(0, 0)(e).

~Kpt1
Let (27, puy..x,): (mhy) " H(U) — R™(%) be an adapted local chart of APT*M. The
mapping & defined above is locally characterized by

pnlu.np o /1 = (_l)puﬁl.unpAeA~ (60)
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The canonical (p + 1)-form wh, on APT*M is expressed locally by
— 1 K K
Wi () 1(U):;!dpmm,.ip/\dx YA L AdTRr. (61)

The local expression of the pull back i*w?, is the form

1
ﬂ*wﬁﬂa_l(U) = —'um,,,,gpAdx'“ A...Adz"™ Ade?
p!

_1)p
+ %@um,u%AeAdx” Adz™ AL Adzr. (62)

Using these local expressions it is easy to verify that the equality ﬁ*wi} = p holds if and
only if du = 0. It is also clear that if u = p*wﬁ/[, then o = p.
If 14 is a closed polynomial form on E of bidegree (p + 1, 1), then

p= fFwh, = FAvh, = At oy, (63)

It follows that the form p is exact. The Liouville form is a polynomial form of bidegree
(p,1). Hence, the form g*9%, is a polynomial form of bidegree (p,1). It follows that a
closed polynomial form on E of bidegree (p + 1,1) is the differential of a polynomial form
of bidegree (p, 1).

We conclude with the observation that there is a one to one correspondence between
closed (exact) polynomial forms on F of bidegree (p + 1, 1) and vector fibration morphisms
(58).

ExaMmPLE 11. Let m: P — M be a vector fibration and let w be a closed polynomial form
of bidegree (2,1) on P. Let B(p.): TP — T*P be the mapping characterized by

<ﬂ(P,w) (u)a U> = w(uv U) (64)

for w and v in TP such that 7p(v) = 7p(u). The vector fibration morphism

Pp— %Y L T*Vm

w‘ WMk (65)

M:M

defined in the preceding example is an isomorphism if and only if w is nondegenerate in the
sense that the diagram

Tp_ e ip
TP‘ WP‘ (66)
P — P

is a vector fibration isomorphism. The correspondence between closed nondegenerate poly-
nomial forms of bidegree (2,1) on P and vector fibration isomorphisms (65) is one to one.

The closed nondegenerate polynomial form of bidegree (2,1) on T*M associated with the
identity morphism 1
T*M T*M T M

W‘ mh (67

M:M



is the canonical symplectic form wp,. This property can be used to characterize the canonical
form wjy.

Let (P,w) be a symplectic manifold. A vector fibration m: P — M is called a special
symplectic structure for (P,w) if w is a polynomial form of bidegree (2,1) on P in relation
to this fibration. The objects w and m establish a symplectomorphism between (P,w)
and (T*M,wyr). The concept of a special symplectic structure is useful for constructing
generating functions of Lagrangian submanifolds of (P,w). Two important examples of
special symplectic structures are known. The form drwys is a symplectic form on TT*M.
This form is a polynomial form of bidegree (2, 1) in relation to the fibration 7, TT*M —
T*M and also in relation to the fibration Tmy: TT*M — TM. Consequently we have vector
fibration isomorphisms

/6(1—*]\/[,(4}1\4)
_—

TT*M T*T*M

TT*Mk 7TT*M‘ (68)
T*M ———— T*M
and
TT*M — M T*T )
Tka WTM‘ . (69)
™ ——— TM

ExaMPLE 12. The “quadratic” Poisson structures classified by Xu [6] are polynomial
bivector fields of bidegree (—2,0) in our terminology.

6. Poincaré Lemma for polynomial forms.
We define a polynomial differential operator K of bidegree (—1,0) by the formula

1

K(p) = “ire(w), (70)
where L(g) is the Liouville field on E and p is of bidegree (p + 1,7), r > 0, i.e.,
1
K(u)(v,...,0p) = ;,u(L(E)(TE’Ui), V1, ene s Up) (71)

and K(p) = 0 for p of bidegree (p,0).

PROPOSITION 1. For each polynomial form p of bidegree (p,r), where r > 0, we have the
formula

p=K(dp) + dK(u). (72)
PRrOOF: Let (v1,...,v,) € X5, TE and let x be a differentiable mapping x: RP** — E such
that v; = t;(0), where ; is the curve
vi:R—E
ts = x(0Yis, ..., 0P:8) (73)
for i =1,...,p. As in Section 2 we introduce mappings x; j: R? — E and curves p; j: R —

TE by the formulae (5) and (6). The exterior differential dC(u) is given by

A (u) (v, .. yvp) = Z(—l)”lc%ﬁ(u)(pm(S), . 7p;-Z9), oy Pip(8))

=1

s=0

—

Z(*l)i“%#(L(e)(m(m,l(smy pii(8)s - pii(8), - s pip(s)) (74)

S| =

s=0
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On the other hand,

K)o, ) = (D) (o)), v, vp).
Let us define a mapping x:RP*! — E by the formula
Xt ty) = (1 +8)x(t1, ..., tp).
We introduce ; ; and p;; by using the formulae (5) and (6). We obtain

Xi—1,j—1(5,1), fori,j7 #1
X(s,t) =4 (1 +s)x(83¢,. .., 517“ t), fori=1,7#1

(1+t)x(5§.s,...,5§+1 ), fori#1l,j=1

It follows that

Pi—1,j—15 fori,j #1
pi(s)=1q (1+s) v, fori=1,7#1
L(e)(x(0%s, ..., 0" s)) = L(e)(tm(pin(s)) fori#1,j=1

Consequently, the formula (75) assumes the form

pt1 -
K(dp)(vy,...,vp) = 1Z(—l)iH%H(L(f)(ﬁi,h5i,2(8)7~-- 1 Pii(8) - Pipta(s))

T
=1

—

=~Z D L) (pia () pia () ia(), - pip(5)

s=0

d
+ ﬁ,u((l—i—s)/vl,... L(1+s) " vp)

From this formula and from (74), we get

S
\&

(K(dp) + d(w)) (v, ... ,vp) = p((L+s) vy, (T+5) " vp)

QL
ﬁ\H )

The formula (72) is the classical homotopy formula applied to the contraction
IXE>(te)—tec E

and to polynomial forms.

d
S| o) = )

(78)

s=0

COROLLARY 1. Let u be a closed polynomial form of bidegree (p+1,r), r > 0. There exists

a polynomial form v of bidegree (p,r) such that p = dv.

PRrOOF: It is enough to take v = KC(u). From the formula (72) dyp = 0 implies p = dK(u)
dv. Since K is a polynomal operator of bidegree (—1,0), we have that v is of bidegree (p,

|
The formula (63) of Example 10

p=p*wh, = ptddh, = dp* vk,

11

.



gave us a similar result for polynomial forms of bidegree (p,1). Since ji: E — APT*M is
linear in fibers, it sends the Liouville vector field L(e) into the Liouville vector field L(r%,).
Hence

ine) () = i (ip(er \why) = 0% (81)
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