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ABSTRACT Recent developments in machine learning applications are deeply concerned with the poor 
interpretability of most of these techniques. To gain some insights in the process of designing data-based 
models it is common to graphically represent the algorithm’s results, either in their final or intermediate 
stage. Specially challenging is the task of plotting multiclass classification results as they involve 
categorical variables (classes) rather than numeric results. Using the well-known MNIST dataset and a 
simple neural network as an example, this paper reviews the existing techniques to visualize classification 
results, from those centered on a particular instance or set of instances, to those representing an overall 
performance metric. As classification results are commonly summarized in the form of a confusion matrix, 
special attention is paid to its graphical representation. From this analysis, a new visualization tool is 
derived, which is presented in two forms: confusion star and confusion gear. The confusion star is centered 
on the classification errors, while the confusion gear focuses on the classification hits. The proposed 
visualization tools are also evaluated when facing: (i) balanced and imbalanced classifiers issues; (ii) the 
problem of representing errors with different orders of magnitude. By using shapes instead of colors to 
represent the value of each matrix cell, the new tools significantly improve the readability of the confusion 
matrices. Furthermore, we show how the area enclosed by the confusion stars and gears are directly related 
to standard classification metrics. The new graphic tools can be also usefully employed to visualize the 
performances of a sequence of classifiers. 

INDEX TERMS Machine learning, classification performance, confusion matrix, data visualization, 
confusion star, confusion gear.

I. INTRODUCTION 
Machine learning models in general, and deep learning 
algorithms in particular, are powerful algorithms able to 
provide very good results when there is a pattern to be 
learnt from available data, but at the cost of operating as a 
black-box. 

On the other hand, having some insights about how they 
work is a key issue for several reasons: improving the 
interpretability and explainability of the models [1], 
debugging and improving architectures and algorithms [2], 
comparing and selecting results [3], and even for 
pedagogical purposes [4]. Therefore, a common approach 
to unveil their functioning relies on some kind of 
visualization of their inner operation and final results e.g., 
in the computer vision domain [5]. 

The main target audience of these tools is the model 
developer community [6], but also technically skilled 
model users  [7] and even non-experts [8] can benefit of a 
visual description. 

These users may be interested in the visual representation 
of different types of models’ information, such as model 
architecture [9], neural network’s weights [10], 
convolutional filters’ values [11], neurons’ activation 
outputs [12] or   edges’ backpropagation gradients [13]. 
However, by far the most represented information is the 
model’s predictions either for a particular instance [14], for 
a group of instances [15] or for the overall dataset [16].  

Many methods have been described with the aim of 
visualizing the prediction process. An up-to-date 
comprehensive survey of them, structured using the Five 
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W’s and How questions (Why, Who, What, How, When, 
and Where), can be found in [17]. Also a perspective of 
visual analytics for understanding, diagnosing, and refining 
models is reviewed in [18]. Additionally, different 
visualizing tools integrating several approaches have been 
developed [19]–[23].  

Focusing on how to visualize the results predicted by 
machine learning algorithms, different approaches should 
be considered depending on the type of problem addressed. 
The information to be represented (prediction results) is 
qualitatively different for tasks such as regression, 
classification, clustering, reinforcement learning, etc. This 
paper addresses the issue of visualizing the results obtained 
by multiclass classification algorithms, since this is one of 
the most frequent tasks in machine learning applications 
(for instance, around 75% of the datasets in the well-known 
University of California Irvine Machine Learning 
Repository [24] contain classification problems). 

In most cases, the performance of a classifier is 
summarized by a single metric (accuracy, precision, etc.), 
but “it is important to understand both what a classification 
metric expresses and what it hides” [25]. For this reason, a 
classification metric can also be disaggregated as a set of 
values with the purpose of gaining better insight into the 
classifier’s results. 

As for the level of disaggregation to be used in 
visualizing classification results, three approaches are 
considered in the paper:  

 Low-detailed results, using a single-valued metric 
for the classification of the whole dataset. 

 Medium-detailed results, where the classification 
of the whole dataset is summarized by a small set 
of values. 

 High-detailed results, representing classification 
scores for a single instance or a set of instances in 
the dataset. 

Although the paper briefly examines how to represent low 
and high-detailed classification results, its main focus is on 
how to visualize them at a medium level of detail, which is 
commonly described by its multiclass confusion matrix 
[26]. 

The main contributions of this research can be 
summarized as follows: 

 Two new approaches to visualize the results of a 
multiclass classifier are proposed, namely the 
confusion star and confusion gear graphics. 

 Their use as an intuitive guideline to understand 
the classification behavior is explored. 

 Their application to imbalanced datasets is 
considered. 

 Their role to compare different classifiers is 
highlighted, as well as to understand the influence 
of classifier’s hyperparameters. 

 The relationships between the shape of these 
graphs and common classification metrics are 
derived. 

The paper is organized as follows. Section II describes 
the structure of the dataset used in the research, defines the 
classification scoring procedure and formalizes the concept 
of confusion matrix. Then, in section III, several techniques 
to visualize classification scores and multiclass confusion 
matrices are reviewed. The extension of these ideas is 
addressed in section IV, where the confusion star and 
confusion gear concepts are presented. Later, in section V 
these new tools are discussed, tackling issues such as the 
impact of imbalanced datasets, the inner and outer areas of 
the graphics, the use of logarithmic scale and the 
visualization of evolving classifiers by means of a sequence 
of the new graphics. Finally, the main findings of the 
research are presented in the conclusion section. 

II. METHODOLOGY 

A. DATASET 
Throughout this research the MNIST  (Modified National 
Institute of Standards and Technology) dataset [27] has been 
used as the primary dataset. It contains 70,000 images, each 
of them representing a handwritten digit (0 to 9). The dataset 
is split into a 60,000 images subset that is used to train the 
classifier (training dataset) and a 10,000 images subset 
employed for generalization purposes (testing dataset). In this 
case there are 10 classes, one for each digit. 

This dataset has been widely used as a reference to 
analyze different classification algorithms. Our goal in this 
paper is not to obtain a better classifier but, given the 
results of any of them, to explore how to represent its 
confusion matrix. 

As a first example, a classifier implemented as a very 
simple neural network has been considered, with only an 8-
neurons hidden layer and a sigmoid as activation function. 
The output layer contains 10 nodes (one for each class) 
with a softmax activation function. Such a network is 
trained during just 5 epochs, and its generalization results 
are evaluated on the testing dataset. These test results are 
used in the following to show different visualization 
methods. 

This classifier is advisedly simple for the purpose of 
obtaining low performance: in this case, differences among 
the considered visualization techniques can be more easily 
appreciated. By increasing the number of hidden layers, the 
number of nodes per layer, and the number of training 
epochs, much better classification results can be obtained. 
As instance, using convolutional neural networks, excellent 
results (99.8% accuracy) have been reported [28]. 

In the final part of the paper, it is discussed the evolution 
of the classification performance as a function of the number 
of training instances. In this case the MNIST dataset has also 
been used, now raising the number of neurons in the hidden 
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layer up to 128-neurons and training the neural networks 
during 100 epochs.  

To show the ability of confusion stars and gears to 
visualize classification results in problems with a high 
number of classes, a second dataset, the CIFAR-100, has 
also been considered [29]. This dataset consists of 60000, 
32x32 color images in 100 classes, with 600 images per 
class, where 50000 images (83%) are used for training and 
10000 for test (17%). A 6-layer Convolutional Neural 
Network (CNN) classifier has been employed, according to 
the code in [30]. This is not a very powerful classifier as it 
shows an accuracy of about 40%, while the state of the art 
classifiers for this problem reach figures over 96% [31]. 
However this moderate accuracy is quite convenient to 
depict confusion stars and gears with many classes. 

Finally, to show the impact of imbalanced datasets on 
confusion stars and gears, a reduced version of the Abalone 
dataset is employed. This dataset, available in [24], derives 
from a non-machine-learning study [32] and contains 
physical measurements (height, several lengths, diameter, 
sex) of the abalone mollusk exemplars, along with the 
number of “rings” present in the shell. The number of rings 
is proportional to the age of the mollusk. The purpose is to 
classify each observation in its age class. Certain classes in 
the original dataset contains very few instances (some 
classes with one or no elements) making unaffordable any 
prediction. To overcome this problem a reduced dataset has 
been obtained by selecting only 10 classes, from class (age) 
4 to 13, containing 3670 instances which represents the 
88% of the total population. The resulting dataset contains 
the same number of classes (10) than the MNIST problem 
but they are highly imbalanced, which is quite convenient 
for the sake of comparison. A simple multiclass logistic 
regression has been used as classifier. 

B. CLASSIFICATION SCORE MATRIX 
Let us consider a statistical population 𝒫 that contains a set 
of elements, usually in a large and potentially infinite 
number. In this population 𝑛 elements are randomly sampled, 
obtaining a dataset 𝒟 = {𝑑ଵ, 𝑑ଶ, ⋯ , 𝑑௡}, where 𝑑௜ represents 
the 𝑖-th element. Let also be a set of classes 𝚯 =
{𝜃ଵ, 𝜃ଶ, ⋯ , 𝜃஼} where 𝐶 is the number of classes, and 𝜃௝ 
represents the 𝑗-th class. A certain element 𝑑 ∈ 𝒟 is defined 
by a pair 〈𝚽 , 𝜃〉 formed by a vector 𝚽 = [𝜑ଵ, 𝜑ଶ, ⋯ , 𝜑ி] 
that contains the 𝐹 features that define the element, and the 
class 𝜃 to which the element belongs to. Let us call 𝒫஍ =
{𝚽ଵ , 𝚽𝟐, ⋯ , 𝚽𝒏} the set containing the feature vectors 𝚽 of 
the population 𝒫. 

A classifying algorithm 𝒜 is defined as a function from 
the population 𝒫 to ℝ஼ (the set of real numbers of dimension 
𝐶), which can be expressed as 𝒜: 𝒫 → ℝ஼. Therefore, each 
element belonging to 𝒫 is associated to a scoring vector 
𝚿 = [𝜓ଵ, 𝜓ଶ, ⋯ , 𝜓஼], that is, a score for each class in 𝚯. If 
the scores can be interpreted as probabilities, the algorithm is 

a probabilistic classifier. Otherwise, if scores are binary 
values (0,1) the algorithm is a hard classifier. 

A decision rule ℛ is defined as a function which associates 
a scoring vector 𝚿, defined in ℝ஼, in an estimation of the 
class 𝜃෠ ∈ 𝚯. 

Finally, a classifier 𝒞 is defined as an ordered pair of 
functions 〈𝒜, ℛ〉 indicating that it first applies the 
classification algorithm  𝒜, and then the decision rule ℛ. So, 

𝒞: 𝒫஍

𝒜
→ ℝ஼

ℛ
→ 𝚯. Considering not the whole dataset but 

each single element, a classifier can be described as two 

sequential transformations, 𝚽
𝒜
→ 𝚿

ℛ
→ 𝜃෠, where 𝜃෠ is the class 

estimate. 
Therefore, the result obtained applying the classifier 𝒞 to 

an element in the dataset 𝒟 is a scoring vector 
[𝜓ଵ, 𝜓ଶ, ⋯ , 𝜓஼], and a class estimation 𝜃෠. To measure the 
classifier performance, the actual class of the element must 
also be included. Then, the performance of a classifier, 
operating on a dataset with 𝑛 instances, can be expressed by 
the score matrix (𝑺𝑴), with 𝑺𝑴 ∈ ℝ௡×(஼ାଶ), given by 

𝑺𝑴 ≡

⎣
⎢
⎢
⎡
𝜓ଵଵ 𝜓ଵଶ … 𝜓ଵ஼ 𝜃෠ଵ 𝜃ଵ

𝜓ଶଵ 𝜓ଶଶ … 𝜓ଶ஼ 𝜃෠ଶ 𝜃ଶ

⋮ ⋮ ⋱ ⋮ ⋮ ⋮
𝜓௡ଵ 𝜓௡ଶ … 𝜓௡஼ 𝜃෠௡ 𝜃௡⎦

⎥
⎥
⎤

. (1) 

This matrix contains the information about the 
performance of the classifier at its maximum level of 
disaggregation. 

C. CONFUSION MATRIX 
In many situations, the classifier performance is analyzed not 
considering the scores associated to each class, but just 
comparing the estimated and the actual class for each 
instance in the dataset. So, by discarding the first 𝐶 columns 
of the score matrix, the more compact estimation matrix 
(𝑬𝑴) is obtained  

𝑬𝑴 ≡

⎣
⎢
⎢
⎡
𝜃෠ଵ 𝜃ଵ

𝜃෠ଶ 𝜃ଶ

⋮ ⋮
𝜃෠௡ 𝜃௡⎦

⎥
⎥
⎤

. (2) 

The estimation matrix 𝑬𝑴 is has a smaller dimension (less 
columns) than the score matrix 𝑺𝑴, but it still has a high 
level of disaggregation, since it contains information for each 
instance in the dataset. Therefore, it is common to summarize 
it using the confusion matrix (𝑪𝑴) defined as  

𝑪𝑴 ≡ ൦

𝑚ଵଵ 𝑚ଵଶ … 𝑚ଵ஼

𝑚ଶଵ 𝑚ଶଶ … 𝑚ଶ஼

⋮ ⋮ ⋱ ⋮
𝑚஼ଵ 𝑚஼ଶ … 𝑚஼஼

൪, (3) 

where 𝑚௜௝ represents the number of instances of class 𝜃௜ 

estimated by the classifier as belonging to the class 𝜃෠௝. The 
results obtained classifying the MNIST dataset with the 
neural network previously described can be summarized in 
the confusion matrix shown in TABLE I. Last column also 
shows that there are a similar number of instances in each 
class, which means that classes are quite balanced. 
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TABLE I 
CONFUSION MATRIX OBTAINED CLASSIFYING THE MNIST DATASET WITH A VERY SIMPLE NEURAL NETWORK 

 Predicted class  

 0 1 2 3 4 5 6 7 8 9 Inst. 

A
ct

ua
l c

la
ss

 

0 700 1 9 12 0 214 20 20 3 1 980 

1 1 995 4 15 0 1 8 2 108 1 1135 

2 67 184 468 38 10 52 14 152 38 9 1032 

3 102 42 20 674 1 76 6 43 41 5 1010 

4 1 0 0 7 652 10 40 50 48 174 982 

5 65 13 16 47 18 608 38 15 63 9 892 

6 27 0 1 1 1 104 742 29 28 25 958 

7 1 25 24 13 31 1 6 880 5 42 1028 

8 7 52 7 24 11 95 32 11 701 34 974 

9 5 1 0 18 156 17 15 127 34 636 1009 

Estim. 976 1313 549 849 880 1178 921 1329 1069 936 10000 

 

 
TABLE II 

CONFUSION MATRIX FOR A MULTICLASS CLASSIFICATION 

  
Estimated Class 

 

  
𝜽𝟏 𝜽𝟐 ⋯ 𝜽𝑪 Instances 

Actual 

Class 

𝜽𝟏 𝜆ଵଵ𝑚ଵ 𝜆ଵଶ𝑚ଵ ⋯ 𝜆ଵ஼𝑚ଵ 𝑚ଵ 

𝜽𝟐 𝜆ଵଵ𝑚ଵ 𝜆ଵଶ𝑚ଵ ⋯ 𝜆ଵ஼𝑚ଵ 𝑚ଶ 

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 

𝜽𝑪 𝜆ଵଵ𝑚ଵ 𝜆ଵଶ𝑚ଵ ⋯ 𝜆ଵ஼𝑚ଵ 𝑚஼ 

Estimations 𝑔ଵ 𝑔ଶ ⋯ 𝑔஼ 𝑚 

In the definition of the confusion matrix, is usual to 
describe 𝑚௜௝ as a fraction of the total number of instances 𝑚௜ 
belonging to the class 𝜃௜. By calling this ratio 𝜆௜௝ ≡ 𝑚௜௝/𝑚௜, 
then 𝑚௜௝ can be expressed as 𝑚௜௝ = 𝜆௜௝ · 𝑚௜, and the 
confusion matrix can be rewritten as  

𝑪𝑴 = ൦

𝜆ଵଵ𝑚ଵ 𝜆ଵଶ𝑚ଵ … 𝜆ଵ஼𝑚ଵ

𝜆ଶଵ𝑚ଶ 𝜆ଶଶ𝑚ଶ … 𝜆ଶ஼𝑚ଶ

⋮ ⋮ ⋱ ⋮
𝜆஼ଵ𝑚஼ 𝜆஼ଶ𝑚஼ … 𝜆஼஼𝑚஼

൪ = 𝜦 ∘ 𝑴. (4) 

The symbol ∘ represents the element-wise multiplication 
(also called Hadamard product), 𝚲 is the unit confusion 
matrix expressed by, 

𝜦 ≡ ൦

𝜆ଵଵ 𝜆ଵଶ … 𝜆ଵ஼

𝜆ଶଵ 𝜆ଶଶ … 𝜆ଶ஼

⋮ ⋮ ⋱ ⋮
𝜆஼ଵ 𝜆஼ଶ … 𝜆஼஼

൪, (5) 

and 𝑴 is the matrix defined by 

𝑴 ≡ ൦

𝑚ଵ 𝑚ଵ … 𝑚ଵ

𝑚ଶ 𝑚ଶ … 𝑚ଶ

⋮ ⋮ ⋱ ⋮
𝑚஼ 𝑚஼ … 𝑚஼

൪. (6) 

TABLE II summarizes the main elements considered in 
the definition of the confusion matrix, where 𝑔௝ is the 
number of instances estimated as belonging to the 𝑗-th class. 

III. VISUALIZING CLASSIFICATION RESULTS 

A. CLASSIFICATION SCORES OF INSTANCES 
Fully detailed classification results regarding the 𝑖-th instance 
correspond to the 𝑖-th row of the score matrix (1) defined by 

𝑺𝑴𝒊 ≡ [𝜓௜ଵ 𝜓௜ଶ … 𝜓௜஼ 𝜃෠௜ 𝜃௜]. (7) 

The classification scores for the first three instances in the 
MNIST testing dataset can be depicted as in Fig. 1 (in colors 
blue, orange and green respectively).  

 
FIGURE 1.  Classification scores for the first three instances in the 
MNIST testing dataset. (Filled dots) Correctly classified instances. 
(Empty dots) Not correctly classified instances. 

In this classifier the scores are generated by the softmax 
activation function of the 10-neurons output layer, so they are 
in the range [0,1], sum up to 1 and, therefore, they can be 
interpreted as probabilities. For example, the first instance 
(represented by a blue line) has a (0.05,0.07,0.12, ⋯ ) 
probability of belonging to the class (0,1,2, ⋯ ). Belonging 
to class 7 obtains the highest probability (0.34), so this is the 
class estimated by the classifier. In this case, the instance is 
classified correctly, which is indicated using filled dots. For 
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the second instance (represented by an orange line), 
belonging to class 0 obtains the highest probability (0.26). In 
this case, this is an error as the actual class is 2 which is 
indicated using empty dots. 

This type of representation only has meaning for a single 
instance or for a very reduced number of them. In order to 
depict classification scores for many instances a scatter polar 
plot has been proposed [33] as it is shown in Fig. 2 for every 
instance in the MNIST testing dataset.  

 
FIGURE 2. Polar representation of the classification scores for the 
MNIST testing dataset. 

Each class is represented by a certain angle 𝜑௝, which for 
the 𝑗-th class is defined by 

𝜑௝ =
2𝜋(𝑗 − 1)

𝐶
. (8) 

The classification result for the 𝑖-th instance is depicted as a 
dot in a position defined by its vector 

𝑟௜ = ෍ 𝑟௜௝

஼

௝ୀଵ

= ෍ 𝜓௜௝∠𝜑௝

஼

௝ୀଵ

, (9) 

where 𝑟௜௝ is a vector of module 𝜓௜௝  and phase 𝜑௝. 

B. CLASSIFICATION SCORES OF CLASSES 
A partial perspective of the score matrix may consider not 
every instance in the dataset, but only those belonging to a 
certain class. In this case, the scoring results of the instances 
belonging to the 𝑗-th class are defined by a slice of the score 
matrix 𝑺𝑴(𝒋) ≡ {𝑺𝑴𝒊}, ∀𝑖|𝜃௜ = 𝑗. As the level of 
disaggregation of this matrix is still very high, it is 
commonly summarized using some statistics for each column 
(mean score value, standard deviation, density function, etc.).  

Fig. 3 depicts one of these summaries, here in the form of 
a boxplot. The 𝑖-th subplot considers the 𝑚௜ instances 
belonging to the 𝑖-th class and the 𝑗-th box indicates the 
distribution of the values 𝜓௜௝ , ∀𝑖|𝑑௜ ∈ 𝜃௝, that is the scores of  

elements of the 𝑖-th class that are being estimated as 
belonging to the 𝑗-th class. 

The instances belonging to class 1, for example, are 
estimated as belonging to class 1 with a probability 
distributed as it is shown in the second box of the second 
plot, clearly outperforming the remaining probability 
distributions. Then, very good classification results should be 
expected for instances belonging to class 1.  

Conversely, instances belonging to class 2 (third plot) have 
a probability of being correctly classified as it is shown in the 
third box. This distribution is only slightly better than the 
ones corresponding to the estimated classes 1 and 7, so many 
classification errors should be expected for instances 
belonging to class 2. 

C.  REPRESENTATION OF THE CONFUSION MATRIX 
Let us now focus on how to represent the classification 
results using a medium level of detail, that is, based on its 
confusion matrix. The most common way to depict a 
certain multiclass confusion matrix is straightforwardly 
drawing it as a 𝐶 × 𝐶 colored grid where each cell has a 
color scaled according to its value. Sometimes the cell also 
contains a text with its numeric value, as it shown in Fig. 4. 

In case of an imbalanced dataset, it is better to represent 
the unit confusion matrix, commonly expressed by the 
percentage values, as it is depicted in Fig. 5. 

The confusion matrix or the unit confusion matrix can be 
alternatively represented as in Fig. 6 where, for each actual 
class, a set of 𝐶 stacked bars are drawn. The height of each 
bar in a certain stack (actual class) is proportional to the 
number (or ratio) of instances estimated as belonging to each 
class, that is, corresponding to the values of a row in the 
confusion matrix. A similar stacked bar approach is used in 
[34]. 

D. REPRESENTATION OF BINARY  CONFUSION 
MATRICES 
Sometimes it is worth to assess the classification results of 
one class versus all the remaining ones (OvA binary 
classification). So, let us consider the instances belonging to 
the 𝑖-th class which will be denoted as the “positive” (P) 
class. The remaining instances belong to different classes 
which will be collectively denoted as the “negative” (N) 
class. In this way, the number of instances correctly 
classified as positives (𝑇𝑃: True Positives) is 𝑇𝑃 = 𝑚௜௜. 
Similarly, the number of instances erroneously classified as 
positives (𝐹𝑁: False Negatives) is 

𝐹𝑁 = 𝑚௜ − 𝑚௜௜ = ൮෍ 𝑚௜௞

஼

௞ୀଵ
௞ஷ௜

൲ − 𝑚௜௜ . (10) 
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FIGURE 3.  Statistical distribution of the classification scores (probabilities) for the instances in the MNIST testing dataset belonging to a certain 
class. 

 
FIGURE 4. Straightforward colored grid representation of the confusion 
matrix corresponding to the classification of the MNIST testing dataset. 

 
FIGURE 5. Straightforward colored grid representation of the unit 
confusion matrix corresponding to the classification of the MNIST 
testing dataset. 

 
FIGURE 6. Stacked bar representation of the unit confusion matrix 
corresponding to the classification of the MNIST testing dataset. 

The number of elements not belonging to the 𝑖-th class 
(that is, belonging to the negative class) which are 
erroneously classified (𝐹𝑃: False Positives) is  

𝐹𝑃 = ൮෍ 𝑚௞௜

஼

௞ୀଵ
௞ஷ௜

൲ − 𝑚௜௜ . (11) 

Finally, the number of elements not belonging to the 𝑖-th 
class (that is, belonging to the negative class) which are 
correctly classified (𝑇𝑁: True Negatives) is  

𝑇𝑁 = 𝑚ே − 𝐹𝑃 = 𝑚 − ෍ 𝑚௞௜

஼

௞ୀଵ
௞ஷ௜

. (12) 

Considering these results, the binary matrices 
corresponding to every class can be represented as it is 
shown in Fig.7. Alternatively, they can be represented using 
stacked bar plots, as it is depicted in Fig. 8.  
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FIGURE 7. Straightforward representation of the unit binary confusion matrices corresponding to the classification of the MNIST testing dataset. 

 
FIGURE 8. Stacked bar representation of the unit binary confusion matrices corresponding to the classification of the MNIST testing dataset. 

 
FIGURE 9. ROC curves corresponding to the OvA binary classification 

of the MNIST testing dataset.  
 
Binary classification results can also be analyzed using the 

receiver operating characteristic (ROC) curve [35]. 
Converting the classification scores for an instance into its 
estimated class requires a decision rule ℛ which, in the 
binary case, is usually a threshold 𝜏. If the score of belonging 
to the positive class 𝜓௜௉ is greater than the threshold, the 
instance is estimated as positive; otherwise as negative. So, 
the elements of the binary confusion matrix depend on 𝜏, and 

also their related metrics. Specifically, the True Positive Rate 
(𝑇𝑃𝑅) and the False Positive Rate (𝐹𝑃𝑅) are defined as  

𝑇𝑃𝑅(𝜏) ≡
𝑇𝑃(𝜏)

𝑚௉

;      𝐹𝑃𝑅(𝜏) ≡ 1 −
𝑇𝑁(𝜏)

𝑚ே

. (13) 

The ROC is built as a parametric curve in 𝜏, with 𝐹𝑃𝑅(𝜏) 
in the horizontal and 𝑇𝑃𝑅(𝜏) in the vertical axis. The 
resulting ROC curves for the 10 binary classifiers are 
depicted in Fig. 9. 

 
FIGURE 10. Chord diagram representation of the confusion matrix 
corresponding to the classification of the MNIST testing dataset. 
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FIGURE 11. Sankey diagram representation of the confusion matrix corresponding to the classification of the MNIST testing dataset.

E. ALTERNATIVE REPRESENTIONS OF THE 
CONFUSION MATRIX 
Some authors have proposed alternative representation for 
the confusion matrix such as, for instance, in [14] where a 
chord diagram, called by the authors confusion wheel, is 
used. This plot is depicted in Fig.10  where each class 
corresponds to a circular sector with a size proportional to the 
number of instances belonging to that class. Later a chord is 
drawn starting at the actual class sector and ending at the 
estimated class sector. The width of the chord at each side is 
proportional to the number of instances belonging to that 
class classified as belonging to the other side’s class. The 
color of the chord is that of its widest side. 

Also in [36] it is proposed to represent the confusion 
matrix using a Sankey diagram as in Fig. 11 . In the upper 
part each class (origin) is represented by a rectangle with a 
width proportional to the number of instances belonging to 
that class. In the lower part, the estimated classes 
(destinations) are drawn with a width proportional to the 
number of instances predicted as belonging to that class. The 
ribbons drawn in the middle represent the instance belonging 
to the upper side class but classified as belonging to the 
lower side class. 

In [37] the confusion matrix is conceived as a similarity 
matrix between classes. Then, it is transformed in its 
opposite, that is, a dissimilarity or distance matrix. Finally 
this matrix is represented in a two-dimensional plane using 
the multidimensional scaling (MDS) technique. 

The result is shown in Fig. 12 where each class is 
represented by a point in the new 2D plane. The closer a pair 
of classes, the more similar they are and, therefore, the more 
difficult is to separate them. For example, classes 4 and 9 are 
very close in the MDS plane, which means that it is very 
difficult to separate them and so a high number of 
classification errors should be expected. 

Along with the individual representations described above, 
it is also common to find visual representations of the 
classifier results that combine several of the preceding 
graphs. 

Although these more sophisticated graphics may seem 
visually very appealing, they do not necessarily provide 
additional information compared to the more conventional 
representations. Therefore, in the following section, a new 
graphical representation is proposed. 

 
FIGURE 12. MDS transformation of the confusion matrix corresponding 
to the classification of the MNIST testing dataset. 

IV. BEYOND CONFUSION MATRIX 

A. LINEAR REPRESENTATION OF THE CONFUSION 
MATRIX 
Let us consider the 𝑚௜ instances belonging to the 𝑖-th class. 
The results of their classification are summarized in the 𝑖-th 
row of the confusion matrix, 𝑪𝑴𝒊 ≡ [𝑚௜ଵ 𝑚௜ଶ … 𝑚௜஼], 
where 𝑚௜௝ represents the number of instances belonging to 
the 𝑖-th class, estimated as belonging to the 𝑗-th class. 

Then, it is possible to represent the confusion matrix as a 
sequence of 𝐶 lines, each of them corresponding to a row 
𝐂𝐌𝐢. Every line is defined by 𝐶 values, corresponding to 
each 𝑚௜௝ elements. The result is depicted in Fig. 13. A 
similar approach is used in [38]. 

In a good classifier most instances are correctly estimated 
as belonging to its actual class, so 𝑚௜௜ ≈ 𝑚௜;  𝑚௜௝ ≈ 0, ∀𝑗 ≠

𝑖. That is, a single very high value escorted by the remaining 
very low values. This important imbalance in the values of 
each row is clearly seen in the plot and it makes difficult its 
interpretation. This is also the reason why such graphic is not 
commonly used to represent the confusion matrix. 

To overcome the issues raised in the previous 
representation, the 𝑪𝑴𝒊 containing the classification results 
corresponding to the 𝑖-th class is transformed into a new 
vector 𝑬𝑴𝒊 ≡ [𝑒௜ଵ 𝑒௜ଶ … 𝑒௜஼], where its elements are 
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defined as 𝑒௜௜ = 𝑚௜ − 𝑚௜௜ and 𝑒௜௝ = 𝑚௜௝ , ∀𝑗 ≠ 𝑖. Then, for a 
perfect classification, 𝑒௜௝ = 0, ∀𝑗. The matrix 𝑬𝑴 = {𝑒௜௝} is 
denominated the error matrix. 

 
FIGURE 13. Linear representation of the confusion matrix 
corresponding to the classification of the MNIST testing dataset. 

The 𝑖-th row of this matrix can also be formulated in terms 
of the ratio over the total number of instances belonging to 
the 𝑖-th class, 𝑬𝑴𝒊 = [𝜖௜ଵ𝑚௜ 𝜖௜ଶ𝑚௜ … 𝜖௜஼𝑚௜], where 
the ratio 𝜖௜௝ = 𝑒௜௝/𝑚௜. The matrix 𝚬 = {𝜖௜௝} is denominated 
the unit error matrix and can be represented as a sequence of 
𝐶 lines, as it is shown in Fig. 14. 

 
FIGURE 14.  Linear representation of the unit error matrix 
corresponding to the classification of the MNIST testing dataset. 

In the previous linear representation (Fig. 14) an 
abnormally high value is observed in each line, 
corresponding to the element 𝑒௜௜, that is, the number of 
instances belonging to the 𝑖-th class erroneously classified as 
belonging to any other class.  

To explain these peaks let us first remind that the 𝐶 
elements of the 𝑖-th row in the confusion matrix are mutually 
dependent having 𝐶 − 1 degrees of freedom, that is, they 
obey the equation  

෍ 𝑚௜௝

஼

௝ୀଵ

= 𝑚௜௜ + ෍ 𝑚௜௝

௝ஷ௜

= 𝑚௜ . (14) 

Then, the number of hits (correct classifications) for the 𝑖-th 
class is 

𝑚௜௜ = 𝑚௜ − ෍ 𝑚௜௝

௝ஷ௜

. 
(15) 

Recalling the definition of the elements of the error matrix, 
its diagonal elements can be written as 

𝑒௜௜ = 𝑚௜ − 𝑚௜௜ = ෍ 𝑚௜௝

௝ஷ௜

= ෍ 𝑒௜௝

௝ஷ௜

. 
(16) 

The term 𝑒௜௝ counts the number of instances belonging to 
the 𝑖-th class, erroneously classified as belonging to the 𝑗-th 
class. Calling 𝑒̅௜௝ its mean value, ∀𝑗 ≠ 𝑖, it can be written that 
𝑒௜௜ = (𝐶 − 1) · 𝑒̅௜௝ . Then, in the MNIST example (with 
𝐶 = 10), the value of  𝑒௜௜ will be 9 times higher than the 
mean of the remaining 𝑒௜௝. This is the reason why a peak 
appears in the linear representation of Fig. 14. The 
distribution of the classification errors for each class is 
depicted in Fig. 15, where it is clearly shown that the value of 
𝑒௜௜ (in green) is much higher (9 times) than the value of 𝑒̅௜௝ 
(in blue). 

 
FIGURE 15.  Boxplot containing the distribution of the values for 
𝒆𝒊𝒋, ∀𝒋 ≠ 𝒊. The mean value 𝒆ത𝒊𝒋 (in blue) and the 𝒆𝒊𝒊 (in green) are also 
depicted. All the error values are expressed in %. 

Considering the 𝐶 − 1 degrees of freedom in the rows of 
the error matrix, any of them can be omitted without losing 
information. Then, removing the element 𝑒௜௜ is a convenient 
decision as it eliminates the peaks in the plot, as it is depicted 
in Fig. 16. 

It must be noted that the horizontal axis does not indicate 
the estimated class but an index to this class once the 
redundant element has been removed, that is, the value 
corresponding to the same class. Then, for instance, in the 
green line (actual class 2), the index corresponds to the 
estimated classes 0, 1, 3, 4,…, 9, a sequence where the class 
2 has been omitted. More formally, for the 𝑖-th actual class 
(the row in the matrix) and the 𝑗-th estimated class (column), 
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the index 𝑘 of the estimated class is defined by the 
expression 

൜
𝑘 = 𝑗, ∀𝑗 < 𝑖
𝑘 = 𝑗 − 1, ∀𝑗 > 𝑖

. (17) 

 

 
FIGURE 16. Linear representation without redundancies of the unit error 
matrix corresponding to the classification of the MNIST testing dataset. 

B. STEP REPRESENTATION OF THE ERROR MATRIX 
In the linear representation without redundancies of the unit 
error matrix (Fig. 16) let us focus on a particular class, for 
instance, class 2 as this is the class obtaining the worst 
classification results. The row of the matrix corresponding to 
this class can be represented as in Fig. 17. 

 
FIGURE 17.  Linear representation without redundancies of the unit 
error matrix corresponding to the classification of the MNIST testing 
dataset (actual class 2). 

Recalling that the row values in the error matrix are 
𝑒௜௝ = 𝑚௜௝ , ∀𝑗 ≠ 𝑖, the sum of this values is 

෍ 𝑒௜௝

௝ஷ௜

= 𝑒௜௜ = 𝑚௜ − 𝑚௜௜ . (18) 

As 𝑒௜௝ = 𝜖௜௝𝑚௜, this equation can be rewritten as 

෍ 𝜖௜௝

௝ஷ௜

=
1

𝑚௜

෍ 𝑒௜௝

௝ஷ௜

=
1

𝑚௜

(𝑚௜ − 𝑚௜௜) = 1 −
𝑚௜௜

𝑚௜

, (19) 

which is the sum of the values in Fig. 17. 
The term 𝑚௜௜/𝑚௜ is usually denominated the True Positive 

Rate of the 𝑖-th class (𝑇𝑃𝑅௜), also known as Sensitivity or 
Recall. Its complementary, that is 1 − 𝑇𝑃𝑅௜ , it is called False 
Negative Rate (𝐹𝑁𝑅௜) or Miss Rate. Then it can be said that 
the sum of values in Fig. 17 is 

෍ 𝜖௜௝

௝ஷ௜

= 𝐹𝑁𝑅௜ . (20) 

To visualize this value as the area under the line in Fig. 17, 
it is better to transform the linear representation of the error 
matrix in a step representation, as it is depicted in Fig. 18. 
There, each non-redundant value of the error matrix for the 𝑖-
th class is represented as a step of unit width. The linear 
equivalent representation is also drawn as a dashed line. 

 
FIGURE 18.  Step representation without redundancies of the unit error 
matrix corresponding to the classification of the MNIST testing dataset 
(actual class 2). The dashed green line is the equivalent linear 
representation. The dashed blue line is the cumulative area. 

Considering the unit width of each step, the area under the 
step line is 

𝐴௜ = ෍ 𝐴௜௝

௝ஷ௜

= ෍(1 · 𝜖௜௝)

௝ஷ௜

= ෍ 𝜖௜௝

௝ஷ௜

= 𝐹𝑁𝑅௜. (21) 

The cumulative values of these areas are also drawn in the 
graphic (dashed blue line). 

C. POLAR REPRESENTATION OF THE ERROR MATRIX 
The visualization of the error matrix row for class 2 (linearly 
represented in Fig. 17), can be redrawn in a radial shape. For 
this purpose, 𝐶 − 1 radii are sketched, each one 
corresponding to a non-redundant element of the 𝑖-th row in 
the error matrix. The 𝑘-th non-redundant element is 
represented by a line at an angle (respect to the horizontal) 

𝜑௞ =
2𝜋𝑘

𝐶 − 1
. (22) 

Then the angular width corresponding to each class is 

Δ𝜑 =
2𝜋

𝐶 − 1
. (23) 
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The result of this plot is depicted in Fig. 19. It must be noted 
again that the labels in the outermost circle do not indicate 
the estimated class but the indices to the estimated class. 

 
FIGURE 19. Radial representation without redundancies of the unit error 
matrix corresponding to the classification of the MNIST testing dataset 
(actual class 2). 

To make the resulting area meaningful, it is better to 
transform the radial representation of the error matrix into a 
representation by arcs, as shown in Fig. 20. In this plot, 
which can be denominated the sectorial or pie 
representation, each non-redundant value of the error matrix 
for the 𝑖-th class is represented by a circular sector of 
constant angular width, Δ𝜑. The dashed line represents the 
equivalent radial representation. The area inside the resulting 
plot is  

𝐴௜ = ෍ 𝐴௜௝

௝ஷ௜

= ෍൫Δ𝜑 · 𝜖௜௝൯

௝ஷ௜

= ෍ ൬
2𝜋

𝐶 − 1
· 𝜖௜௝൰

௝ஷ௜

=
2𝜋

𝐶 − 1
෍ 𝜖௜௝

௝ஷ௜

=
2𝜋

𝐶 − 1
𝐹𝑁𝑅௜. 

(24) 

It can be seen that this area is proportional to the miss rate.  

 
FIGURE 20. Sectorial representation without redundancies of the unit 
error matrix corresponding to the classification of the MNIST testing 
dataset (actual class 2). The dashed line is the equivalent radial 
representation. 

D. CONFUSION STAR 
In the radial (Fig. 19) and sectorial (Fig. 20) plots discussed 
in the previous subsection, the representation of a single row 
of the error matrix have been addressed. To extend this 
visualization to the whole matrix, one plot for each actual 
class can be drawn, using different colors to distinguish 
them. The resulting graphic is depicted in Fig. 21. 

 
FIGURE 21. Sectorial representation without redundancies of the unit 
error matrix corresponding to the classification of the MNIST testing 
dataset. Each color represents the results for an actual class (row of the 
error matrix). 

Reading this plot is not an easy task as the 𝐶 lines are 
overlapped. An alternative to improve its readability is to 
divide the circle in 𝐶 regions, each one corresponding to an 
actual class (a row of the error matrix). Then, each region is 
again divided into 𝐶 − 1 sectors, one for each column once 
the redundant 𝑒௜௜ element is removed. 

If the 𝐶 regions have the same size a balanced 
representation is obtained where the angular separation 
between two radii is 

Δ𝜑 =
2𝜋

𝐶 · (𝐶 − 1)
. (25) 

The so obtained star-like result is depicted in Fig. 22.  

 
FIGURE 22.  Balanced confusion star corresponding to the 
classification of the MNIST testing dataset. 
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This shape justifies naming this representation as the 
confusion star.  It must be noted that the gray labels in the 
outermost circle do not indicate the estimated classes but the 
indices to these classes once the redundant elements 𝑒௜௜ have 
been removed. In [39] a similar although simpler polygonal 
solution is proposed with the name of cobweb. 

E. CONFUSION GEAR 
The confusion star has been defined based on the error 
matrix. An alternative election is to use the classification hits 
instead of the errors. So, the classification results of the 
instances belonging to the 𝑖-th class, summarized in the 𝑖-th 
row of the confusion matrix 𝑪𝑴𝒊, are now transformed in the 
vector 𝑯𝑴𝒊 ≡ [𝑤௜ଵ 𝑤௜ଶ … 𝑤௜஼], whose elements are 
defined as 𝑤௜௜ = 𝑚௜௜  and 𝑤௜௝ = 𝑚௜ − 𝑚௜௝ , ∀𝑗 ≠ 𝑖. For a 
perfect classification 𝑤௜௝ = 𝑚௜ , ∀𝑗. The matrix 𝑯𝑴 = {𝑤௜௝} 
is called the hit matrix of the classifier. 

The 𝑖-th row of this matrix can also be formulated in terms 
of the ratio over the total number of instances belonging to 
the 𝑖-th class, 𝑯𝑴𝒊 = [𝜓௜ଵ𝑚௜ 𝜓௜ଶ𝑚௜ … 𝜓௜஼𝑚௜], where 
the ratio 𝜓௜௝ = 𝑤௜௝/𝑚௜. The matrix 𝚿 = {𝜓௜௝} is called the 
unit hit matrix.  

To represent this matrix, a procedure similar to that used in 
the representation of the error matrix is followed: the circle is 
divided into 𝐶 regions (one for class) and then each region is 
again divided into 𝐶 − 1 sectors, one for each column once 
the redundant 𝑤௜௜  element is removed. If the 𝐶 regions have 
the same size, a balanced representation of the hit matrix is 
obtained as in Fig. 23. The resemblance of this graph to a 
gear is used to refer to it as the confusion gear. 

 
FIGURE 23.  Balanced confusion gear corresponding to the 
classification of the MNIST testing dataset. 

Recalling that the row values in the hit matrix are 𝑤௜௝ =

𝑚௜ − 𝑚௜௝ , ∀𝑗 ≠ 𝑖, the sum of these values is 

෍ 𝑤௜௝

௝ஷ௜

= ෍ 𝑚௜ − 𝑚௜௝

௝ஷ௜

= (𝐶 − 1)𝑚௜ − ෍ 𝑚௜௝

௝ஷ௜

. (26) 

Considering that 

෍ 𝑚௜௝

஼

௝ୀଵ

= 𝑚௜௜ + ෍ 𝑚௜௝

௝ஷ௜

= 𝑚௜ , (27) 

then  

෍ 𝑚௜௝

௝ஷ௜

= 𝑚௜ − 𝑚௜௜ , (28) 

and substituting this result in (26), it is obtained that 

෍ 𝑤௜௝

௝ஷ௜

= (𝐶 − 2)𝑚௜ + 𝑚௜௜ . (29) 

As 𝜓௜௝ = 𝑤௜௝/𝑚௜, this equation can be rewritten as 

෍ 𝜓௜௝

௝ஷ௜

=
1

𝑚௜

෍ 𝑤௜௝

௝ஷ௜

= (𝐶 − 2) +
𝑚௜௜

𝑚௜

. (30) 

Recalling that the term 𝑚௜௜/𝑚௜ is the True Positive Rate of 
the 𝑖-th class (𝑇𝑃𝑅௜), (30) can finally be expressed as 

෍ 𝜓௜௝

௝ஷ௜

= 𝐶 − 2 + 𝑇𝑃𝑅௜ . (31) 

V. DISCUSSION 

A. IMBALANCED CONFUSION STAR AND GEAR 
To obtain the balanced confusion star (Fig. 22) and gear (Fig. 
23), the circle was divided into 𝐶 equal-sized regions. A 
different imbalanced approach is also possible using regions 
whose sizes are proportional to the number of instances 
belonging to each class. The region corresponding to the 𝑖-th 
class spans an angle of 

𝛽௜ = 2𝜋
𝑚௜

𝑚
, (32) 

and the angular separation between two radii is 

Δ𝜑௜ =
2𝜋𝑚௜

𝑚(𝐶 − 1)
. (33) 

As the classes in the MNIST dataset are barely 
imbalanced, the reduced Abalone dataset is used in this case. 
The balanced confusion star is depicted in Fig. 24, while the 
corresponding imbalanced version is shown in Fig. 25.  

 
FIGURE 24. Balanced confusion star corresponding to the classification 
of the reduced Abalone dataset. 
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FIGURE 25. Imbalanced confusion star corresponding to the 
classification of the reduced Abalone dataset. 

In the imbalanced star it can be noted that, for example, 
the region corresponding to class 9 (with 138 instances) is 
remarkably wider than that corresponding to class 4 (with 11 
instances). 

B. AREAS OF THE CONFUSION STAR AND GEAR 
Intuitively it can be seen that the area enclosed by the 
confusion star is a metric of the classifier’s performance: the 
larger the area, the worse the classifier. The opposite 
statement can be affirmed for the confusion gear: the larger 
the area, the better the classifier. So, analyzing these areas 
can be useful as their use as alternative classification metrics. 

Let us consider a balanced confusion star where the 
enclosed area is the sum of the area of each sector 𝐴௜௝, that is, 

𝐴 = ෍ ቌ෍ 𝐴௜௝

௝ஷ௜

ቍ

஼

௜ୀଵ

= ෍ ቌ෍൫Δ𝜑 · 𝜖௜௝൯

௝ஷ௜

ቍ

஼

௜ୀଵ

. (34) 

Recalling (25)  

𝐴 = ෍ ቌ෍ ൬
2𝜋

𝐶 · (𝐶 − 1)
· 𝜖௜௝൰

௝ஷ௜

ቍ

஼

௜ୀଵ

. (35) 

𝐴 = ෍ ቌ
2𝜋

𝐶 · (𝐶 − 1)
෍ 𝜖௜௝

௝ஷ௜

ቍ

஼

௜ୀଵ

. (36) 

Considering (20) 

𝐴 =
2𝜋

(𝐶 − 1)
·

1

𝐶
෍ 𝐹𝑁𝑅௜

஼

௜ୀଵ

=
2𝜋

𝐶 − 1
𝐹𝑁𝑅. (37) 

The ratio of this area to the total area of the circle is called 
the Internal Area Ratio (𝐼𝐴𝑅) and is defined as  

𝐼𝐴𝑅 ≡
𝐴

2𝜋
=

𝐹𝑁𝑅

𝐶 − 1
, (38) 

that is, a value proportional to the multiclass miss rate 
(𝐹𝑁𝑅). For binary classification (𝐶 = 2), 𝐼𝐴𝑅 = 𝐹𝑁𝑅. 

Focusing on the area outside the confusion star, an 
analogous External Area Ratio (𝐸𝐴𝑅) can be defined as  

𝐸𝐴𝑅 ≡ 1 − 𝐼𝐴𝑅 = 1 −
𝐹𝑁𝑅

𝐶 − 1
=

𝐶 − 1 − 𝐹𝑁𝑅

𝐶 − 1
. (39) 

Recalling that 𝐹𝑁𝑅 = 1 − 𝑇𝑃𝑅 it can be written that  

𝐸𝐴𝑅 =
𝐶 − 1 − (1 − 𝑇𝑃𝑅)

𝐶 − 1
=

𝐶 − 2 + 𝑇𝑃𝑅

𝐶 − 1
. (40) 

Considering now the imbalanced confusion star, the 
enclosed area is 

𝐴 = ෍ ቌ෍ 𝐴௜௝

௝ஷ௜

ቍ

஼

௜ୀଵ

= ෍ ቌ෍൫Δ𝜑௜ · 𝜖௜௝൯

௝ஷ௜

ቍ

஼

௜ୀଵ

. (41) 

Recalling (33)  

𝐴 = ෍ ቌ෍ ൬
2𝜋𝑚௜

𝑚(𝐶 − 1)
· 𝜖௜௝൰

௝ஷ௜

ቍ

஼

௜ୀଵ

. (42) 

𝐴 = ෍ ቌ
2𝜋

𝑚(𝐶 − 1)
෍ 𝑚௜𝜖௜௝

௝ஷ௜

ቍ

஼

௜ୀଵ

. (43) 

Since 𝑒௜௝ = 𝑚௜𝜖௜௝ , this equation can be rewritten as 

𝐴 =
2𝜋

𝑚(𝐶 − 1)
෍ ෍ 𝑒௜௝

௝ஷ௜

஼

௜ୀଵ

. (44) 

Recalling (18)  

𝐴 =
2𝜋

𝐶 − 1
·

1

𝑚
෍(𝑚௜ − 𝑚௜௜)

஼

௜ୀଵ

. (45) 

𝐴 =
2𝜋

𝐶 − 1
൭

1

𝑚
෍ 𝑚௜

஼

௜ୀଵ

−
1

𝑚
෍ 𝑚௜௜

஼

௜ୀଵ

൱. (46) 

Since ∑ 𝑚௜
஼
௜ୀଵ = 𝑚, 

𝐴 =
2𝜋

𝐶 − 1
൭1 −

1

𝑚
෍ 𝑚௜௜

஼

௜ୀଵ

൱. (47) 

Two of the most common classification performance 
metrics are the accuracy, defined as 

𝐴𝐶𝐶 ≡
1

𝑚
෍ 𝑚௜௜

஼

௜ୀଵ

, (48) 

and the error rate 𝐸𝑅 ≡ 1 − 𝐴𝐶𝐶. Substituting these 
expressions in (47)  yields 

𝐴 =
2𝜋

𝐶 − 1
(1 − 𝐴𝐶𝐶) =

2𝜋

𝐶 − 1
𝐸𝑅. (49) 

The Internal Area Ratio (𝐼𝐴𝑅) is then 

𝐼𝐴𝑅 ≡
𝐴

2𝜋
=

𝐸𝑅

𝐶 − 1
, (50) 

that is, a value proportional to the multiclass error rate (𝐸𝑅). 
For binary classification (𝐶 = 2), 𝐼𝐴𝑅 = 𝐸𝑅. 
 

TABLE III 
SUMMARY OF AREAS: INTERNAL AND EXTERNAL AREA RATIOS FOR THE 

CONFUSION STAR AND GEAR. 

 
Star Gear 

Balanced Imbalanced Balanced Imbalanced 

𝑰𝑨𝑹 
𝐹𝑁𝑅

𝐶 − 1
 

𝐸𝑅

𝐶 − 1
 

𝐶 − 2 + 𝑇𝑃𝑅

𝐶 − 1
 

𝐶 − 2 + 𝐴𝐶𝐶

𝐶 − 1
 

𝑬𝑨𝑹 
𝐶 − 2 + 𝑇𝑃𝑅

𝐶 − 1
 

𝐶 − 2 + 𝐴𝐶𝐶

𝐶 − 1
 

𝐹𝑁𝑅

𝐶 − 1
 

𝐸𝑅

𝐶 − 1
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FIGURE 26.  Relationship between the Internal Area Ratio (IAR) and the accuracy (ACC) for the imbalanced confusion gear: linear dependency for a 
single dataset (left) and nonlinear relation for different datasets (variable number of classes, right). 

Regarding now the confusion gear, similar expressions can 
be derived for its internal and external areas. All these results 
are summarized in TABLE III. From the previous results it 
can be seen that the areas in the confusion star and gear, are 
directly related to classical performance metrics. For 
example, the imbalanced confusion gear has an internal area 
linearly proportional to the accuracy (ACC), while the 
external area is linearly proportional to the error rate. So 
these areas can be considered a visual representation of the 
classification performance. 

However, the relation among areas and classical metrics 
has to be carefully considered. While this relation is linear for 
a certain dataset (a constant number of classes 𝐶), it becomes 
nonlinear if the classification performance is analyzed 
through different datasets. The relationship between the 𝐼𝐴𝑅 
and the 𝐴𝐶𝐶 for the imbalanced confusion gear is depicted in 
Fig. 26, both for a single dataset (left) and for different 
datasets (right). 

 

 
FIGURE 27. Balanced confusion star corresponding to the classification 
of the MNIST testing dataset (logarithmic scale). The radii values 0.1, 1, 
10 and 100, correspond to percentage of errors in logarithmic scale. 

C. LOGARITHMIC CONFUSION STAR 
Both the balanced (Fig. 22) and the imbalanced (Fig. 24) 
confusion stars do not properly visualize the values of the 
error matrix when they are very small. To overcome this 
problem and to accommodate in a single graphic very 
different error values, the length of the radii are made 
proportional to the logarithm of the errors. The result 
obtained using this procedure is depicted in Fig. 27. 

In this graphic the center of the circle does not correspond 
to a null error but to an arbitrarily chosen small value (0.01 in 
the graphic). 

In general, hit matrices do not have very small values 
(usually greater than 50%), so the use of the logarithmic 
scale is not required. 

D. CONFUSION STARS FOR MANY CLASSES 
As the number of classes increases, any graphic 
representation of the confusion matrix becomes less clear. 
For instance, the colored grid corresponding to the 
classification of the CIFAR-100 dataset is shown in Fig. 28. 
In that graphic is very difficult to identify in which classes 
the classifier is underperforming and should be improved. 

If the classifier performance is visualized using the 
confusion star, the result is depicted in Fig. 29. In this plot is 
easier to identify that, for example, the classifier is having 
problems to correctly identify instances of class 47 and 52. 
Therefore, although the confusion star becomes less clear as 
the number classes increases, it is a better representation than 
the classical colored grid. 

E. SEQUENCE OF CONFUSION STARS 
Following the evolution of a certain feature or metric is a 
common task in science and engineering [40]. In the field of 
classification algorithms there are some applications where it 
is convenient to visualize the performance, not of a single 
classifier, but of a sequence of classifiers, comparing their 
results depending on the value of a certain parameter or 
hyperparameter. Even some tools has been proposed to 
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visualize the evolution of the classification process either at 
the instance level [36] or the confusion matrix level [41]. 

 
FIGURE 28. Colored grid corresponding to the classification of the 
CIFAR-100 dataset. 

 
FIGURE 29. Confusion star corresponding to the classification of the 
CIFAR-100 dataset. 

Also the confusion stars and gears can be used for this 
purpose. To show how it can be done let us consider again 
the MNIST dataset and the same neural network classifier 
with a single hidden layer and a sigmoid as the activation 
function. For this analysis the number of neurons in the 
hidden layer is increased from 8 to 128 and the number of 
training epochs rises from 5 to 100. The objective of these 
improvements is to obtain a wider range of classification 
performances. 

To determine the impact of the number of training 
instances on the classification performance, a variable 
number of instances to train the network are used, 
observing the accuracy of the classification in each case. 
The result is usually known as the learning curve, depicted 
in Fig. 30. 

 
FIGURE 30.  Learning curve of the MNIST dataset using a neural 
network with a single 128-neurons hidden layer.  

This representation properly summarizes the performance 
of a classifier in a single metric, the accuracy in this example. 
However, it is possible to exploit the descriptive power of the 
confusion star for a better and more detailed insight of the 
evolution of the classification performance. Indeed, each dot 
in the learning curve has a corresponding confusion matrix 
that can be properly visualized as a confusion star. 

Let us consider, for example, the significant increasing in 
the accuracy occurring around 500 training instances. While 
the learning curve does not detail what this improvement is 
due to or how it is distributed in each of the classes, an 
analysis of the confusion stars in accuracy, before and after 
the jump, can shed more light on the question. In Fig. 31, the 
confusion stars corresponding to a point with 502 samples 
(before the jump, accuracy of 38%) and another point with 
610 samples (after the jump, accuracy of 67%) are shown. 
Quite important improvements (smaller errors) can be 
observed in, for example, the 0 classified as a 2, the 2 
classified as a 1, and so on. In other words, the representation 
of the confusion matrix not only informs us of the overall 
improvement of the classifier, but also of how this 
improvement is distributed. 

A similar representation can also be obtained using the 
confusion gear. 

The application of the confusion stars to compare two 
points of the learning curve can be extended to a sequence of 
points, drawing a grid of stars as it is shown in Fig. 32. In 
that graphic, which resembles the concept of as small 
multiple [42], can be seen that, for example, the problems 
classifying instances of classes 4, 8 and 9 that shows the 
classifiers trained with up to 1000 training instances, are 
mostly solved once the 3000 instances barrier is overcome. 
From this point on, a smooth and continuous improvement of 
the classification results is obtained. The same information 
can be obtained analyzing the corresponding confusion gears. 
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FIGURE 31. Confusion stars (in logarithmic scale) corresponding to a pair of points before and after the first jump in the learning curve: 502 instances 
(left; accuracy of 38.13%) and 610 instances (right; accuracy of 67.23%). 

 

 
FIGURE 32.  Sequence of logarithmic confusion stars corresponding to several point of the learning curve. 

 
Representing a sequence of confusion matrices by a grid of 

stars has an obvious limitation of space: the more matrices to 
be represented, the smaller is the size of each star. To tackle 
this problem, the sequence of confusion matrices can be 
represented generating a movie where each frame 
corresponds to a single confusion matrix. An example of this 
video can be seen in the online version of the paper (see also 
appendix). In Fig. 33, an example of a frame of the movie is 
shown. 

F. SUMMARY OF VISUALIZATION METHODS 
Through the paper, up to 13 methods for visualizing 
classification performance have been described. Some of 

them focus on classification scores of single instances while 
others are interested on how the classifiers behave for the 
instances of certain classes. On the other hand, some 
visualization methods are designed primarily for two classes 
(binary classification) while others can represent multiple 
classes. 
Visualization methods can be featured by how they represent 
the different classes (actual or estimated) and the 
classification performance. Some of them use color to 
convey the required information while others use geometric 
elements for this purpose: X and/or Y axis position in 
rectangular plots, radial and/or angular position in polar 
plots, length and/or width of graphical elements, etc.  
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TABLE IV. SUMMARY OF VISUALIZATION METHODS 

Visualization 

method 
Fig. Element 

Multiple 

classes 

Representation of… Comments 

Classes Classif. performance  

Linear scores 1 Instance Yes X-axis position Y-axis position 
For a single instance or for a very 

reduced number of them 

Polar scores 2 Instance Yes Color Polar position 
For many instances (detailed 

information) 

Box-plot scores 3 Instance Yes 

Position in a matrix of graphics 

(actual class). 

X-axis position (estimated class) 

Box-plot with the 

statistical distribution 

For many instances (statistical 

information) 

Colored grid 4, 5 Class Yes Cell position Color 
Straightforward color-based 

representation of a confusion matrix 

Stacked bar 6 Class Yes X-Y position Stack length 
Length-based representation of a 

confusion matrix 

Binary colored 

matrices 
7 Class No 

Position in a matrix of graphics 

(actual class). 
Color 

Classification results of each class 

(color-based representation) 

Binary stacked 

bars 
8 Class No 

Position in a matrix of graphics 

(actual class). 
Stack length 

Classification results of each class 

(length-based representation) 

Binary ROC 

curves 
9 Class No Color Form of a curve 

Classification results of each class 

with different decision thresholds 

Chord diagram 10 Class Yes Color and angular position Width of a chord 
Polar width-based representation of 

a confusion matrix 

Sankey diagram 11 Class Yes Color and linear position Width of a ribbon 
Linear width-based representation 

of a confusion matrix 

Multidimensional 

scaling 
12 Class Yes Color Distance among classes 

Similarity among classes as they are 

seen by the classifier 

Confusion star 22 Class Yes Color and angular position Radial position 
Polar length-based representation of 

a confusion matrix (focus on errors) 

Confusion gear 23 Class Yes Color and angular position Radial position 
Polar length-based representation of 

a confusion matrix (focus on hits) 

 
 

 
 A summary of the visualization methods described in the 

paper is shown in TABLE IV. 
 

 
FIGURE 33.  Frame of the movie generated to visualize the learning 
process: learning curve drawn up to 1000 training instances (right), and 
its corresponding confusion star in logarithmic scale (left). 

VI. CONCLUSION 
This paper has reviewed several methods to visualize 
classification results at different levels of detail: from those 
centered on how a particular instance or set of instances are 

classified, to those that summarize the classification 
performance in a single metric. 

A particular interest has been devoted to classification 
results which are summarized in the form of a confusion 
matrix, presenting the main procedures to visualize it from 
the straightforward row-column matrix representation, with 
colors indicating the value of each matrix cell, to more 
complex and sophisticated graphics. 

From this analysis, a new way of representing the 
information conveyed by confusion matrices is proposed in 
the form of a confusion star (focusing on the errors) or a 
confusion gear (centered on the hits). The new visualization 
tool can be employed to represent the original and possibly 
imbalanced confusion matrix, or the balanced unit version of 
that matrix. 

The new tool successfully represents multiclass 
classification results in the form of a radial plot. The 
traditional way to represent confusion matrix uses colors 
(and eventually texts) to indicate the number of instances 
belonging to an actual class that are classified to an estimated 
class. Instead, confusion stars and gears use shapes to convey 
that information. Changing colors by shapes significantly 
improves the readability of the proposed graphics.  
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An additional property of the confusion stars and gears is 
that the enclosed area provides information about the overall 
classification performance. The relation of these areas to 
standard classification metrics has also been derived. 

Finally, it has also been shown that the new graphic tools 
can usefully be employed to visualize the performances of a 
sequence of classifiers. 

APPENDIX 
Supplementary materials can be found in the on line version 
of the paper or they and can also be downloaded from 
https://github.com/amalialuque/confusionstar. They contain: 
1) Three Excel files with the confusion matrices described 

in Section II.A. 
2) An Excel file with the sequence of confusion matrices 

described in Section V.E. 
3) A video file (in Graphics Interchange Format, GIF, 

format) visualizing the learning process described in 
Section V.E. 

4) A Jupyter notebook, providing an implementation of 
the functions required to plot a confusion matrix as a 
confusion star (or confusion gears); and to generate a 
video file visualizing a sequence of confusion matrices 
in the form of confusion stars (or confusion gears). 

Additionally, the algorithm that converts a confusion matrix 
into a confusion star plot can be found as supplementary 
material to the paper. 
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