

#### The Electromagnetic Calorimeter of the CMS Experiment



8th Topical Seminar on Innovative Particle and Radiation Detectors - Siena 22/10/2002

Siena 22/10/2002





- General considerations and motivations
- Physics benchmark
- Crystals
- Photodetectors
- Readout
- Key points in energy resolution
- Regional Centers for assembly and test

# LHC experimental conditions





#### CMS ECAL Structure



#### ≈75000 PWO Crystals + Preshower (Endcaps)

| Parameter                        | Barrel          | Endcap                   |
|----------------------------------|-----------------|--------------------------|
| η coverage                       | η  < 1.48       | 1.48 <  η  < 3.0         |
| Granularity (Δη×Δφ)              | 0.0175×0.0175   | varies in η              |
| Crystal Dims. (cm <sup>3</sup> ) | 2.18×2.18×23    | 2.85×2.85×22             |
| Depth in X <sub>e</sub>          | 25.8            | 24.7 (+3X <sub>o</sub> ) |
| No. of crystals                  | 61,200          | 14,950                   |
| Crystal Volume (m <sup>3</sup> ) | 8.14            | 3.04                     |
| Photodetector                    | APDs            | VPTs                     |
| Modularity                       | 36 supermodules | 4 Dees                   |



## Motivations for Crystals

- Excellent energy resolution (over a wide range)
- High detection efficiency for low energy e and  $\gamma$
- Structural compactness:
  - simple building blocks allowing easy mechanical assembly
  - hermetic coverage
  - fine transverse granularity
- Tower structure facilitates event reconstruction
  - straightforward cluster algorithms for energy and position
  - electron/photon identification



# Instrumental Effects

Precision has a price... a long list to take care:

- Longitudinal and lateral shower containment
- Light production and collection
- Light collection uniformity
- Nuclear counter effect (leakage of particles in PD)
- Photo Detector gain (if any) stability
- Channel to channel intercalibration
- Electronic noise
- $\boldsymbol{\cdot}$  Dead material (energy loss and  $\boldsymbol{\gamma}$  conversions)
- Temperature stability and uniformity
- Radiation damage
- Pileup



>

# A question of philosopy...

A crystal calorimeter is a very precise instrument that requires a tremendous effort to be finalized

- understand & optimize crystal parameters
- technology for growing crystals
- extreme resolution very fragile

#### Is it worth?

If you look for some specific reaction...



#### Higgs hunt: low mass?



Siena 22/10/2002



CMS ECAL benchmark

#### Low mass Higgs discovery:

$$\Gamma_{\rm H} (m_{\rm H} \cong 100 \text{ GeV}) \sim 2 - 100 \text{ MeV} ~ \Gamma_{\rm H} / m_{\rm H} \le 10^{-3}$$

Precision given by experimental resol

$$m_{\gamma\gamma} = 2 E_1 E_2 (1 - \cos\theta)$$

$$\frac{\sigma_{\rm m}}{\rm m} = \frac{1}{2} \left[ \left( \frac{\sigma_1}{\rm E_1} \right)^2 + \left( \frac{\sigma_2}{\rm E_2} \right)^2 + \left( \frac{\sigma_{\theta}}{\rm tg\theta/2} \right)^2 \right]^{1/2}$$

T

$$\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c$$

$$\begin{array}{l} a \sim 0.025 \; \text{GeV}^{\mbox{\tiny 1/2}} \\ \text{arget} \rightarrow & b < 200 \; \text{MeV} \\ c \sim 0.005 \\ \text{and an angular resolution} \\ \sigma_{\theta} \sim 50 \; \text{mrad}/\sqrt{E} \end{array}$$



#### L3 photon measurements

#### Beautiful instrument & excellent physics results





# Which crystal?

|                  | Nal(TI) | BaF2    | CsI(TI) | Csl  | CeF3    | BGO  | PWO  |                   |
|------------------|---------|---------|---------|------|---------|------|------|-------------------|
| ρ                | 3.67    | 4.88    | 4.53    | 4.53 | 6.16    | 7.13 | 8.26 | g/cm <sup>3</sup> |
| <b>X0</b>        | 2.59    | 2.05    | 1.85    | 1.85 | 1.68    | 1.12 | 0.89 | ст                |
| RM               | 4.5     | 3.4     | 3.8     | 3.8  | 2.6     | 2.4  | 2.2  | cm                |
| τ                | 250     | 0.8/620 | 1000    | 20   | 30      | 300  | 15   | ns                |
| λ <mark>p</mark> | 410     | 220/310 | 565     | 310  | 310/340 | 480  | 420  | nm                |
| n (λp)           | 1.85    | 1.56    | 1.80    | 1.80 | 1.68    | 2.15 | 2.29 |                   |
| LY               | 100%    | 15%     | 85%     | 7%   | 5%      | 10%  | 0.2% | %Nal              |

Typical light yield of NaI ~ 40000  $\gamma$ /MeV



# The choice of Lead Tungstate

| Parameter           |       | Value |
|---------------------|-------|-------|
| Radiation length    | cm    | 0.89  |
| Moliere radius      | cm    | 2.2   |
| Hardness            | Moh   | 4     |
| Refractive index    |       | 2.3   |
| Peak emission       | nm    | 440   |
| % of light in 25 ns |       | 80%   |
| Light yield (23 cm) | γ/MeV | 100   |



- Fast scintillation
- Small X<sub>0</sub> and R<sub>m</sub>
- Intrinsic radiation hardness
- Relatively easy to grow
- Massive production capability

- Low Light Yield
- High index of refraction
- Strong LY dependance on T



# Main CMS ECAL challenges

- Improve the low level of light yield of crystals
- Keep fast response (understand decay kinetics)
- Insure radiation resistance
- Improve growing and production techniques
- Achieve longitudinal response uniformity
- Develop solid state photodtector with gain (APD)
- Develop suitable radiation hard electronics
- Control effects below few permill
- Design low-Z support structure
- Test and assembly ~ 75000 crystals



#### Crystals R&D 1995 - 1998



# Facts on Radiation Damage





#### Major R&D problem

- $\rightarrow$  Only e.m. radiation produces a damage
- $\rightarrow$  Scintillation mechanism is not affected
- $\rightarrow$  Only crystal transparency is reduced

creation of color centers

 $\rightarrow$  Damage level depends on dose rate

creation and annealing of color centers at room temperature

- $\rightarrow$  Damage level reaches an equilibrium after a small administered dose
- $\rightarrow$  Partial damage recovery in few hours
- $\rightarrow$  Loss in extracted light of few % is tolerable and can be followed with a monitor system

Dose rates [Gy/h] in ECAL at luminosity  $L=10^{34}$  cm<sup>-2</sup>s<sup>-1</sup> Siena 22/10/2002





#### **Crystals** Preproduction

Sept. 1998 to Dec. 2000

#### 6000 crystals produced by BTCP





#### **Preproduction Goals**





Siena 22/10/2002

M. Diemoz – INFN Roma



#### **Preproduction Goals**





M. Diemoz – INFN Roma



#### 2001: Crystals New Technology

Technology steps in Bogoroditsk



Siena 22/10/2002



Production of barrel crystals started in 2001: 5700 crystals delivered In parallel R&D to increase productivity (driven by endcap ingot success)

Siena 22/10/2002

#### New Technology: Quality



Siena 22/10/2002



#### New Technology: Production

138 ovens upgraded for up to 85mm



New cutting technology: yield!







M. Diemoz – INFN Roma

Siena 22/10/2002



#### Crystals New Technology

Technology for 65mm ingots under control: quality comparable with "standard crystals"



Further increase of the PWO ingot diameter under study: 2Endcap or 4Barrel crystals in one ingot is feasible

Siena 22/10/2002



# Crystal production schedule

| Years                         | 2001     |          |          | 2002               |          |          | 2003      |           |           |           | 2004      |           |           |           | 2005      |            |            |       |
|-------------------------------|----------|----------|----------|--------------------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|-------|
| Quarters                      | 1Q       | 2Q       | 3Q       | 4Q                 | 1Q       | 2Q       | 3Q        | 4Q        | 1Q        | 2Q        | 3Q        | 4Q        | 1Q        | 2Q        | 3Q        | 4Q         | 1Q         | 2Q    |
| CERN/ISTC #354b- 6000 barrel  |          |          |          |                    |          |          |           |           |           |           |           |           |           |           |           |            |            |       |
| Delivered                     | 6000     |          |          |                    |          |          |           |           |           |           |           |           |           |           |           |            |            |       |
| CERN/ISTC #1718- 30000 barrel |          |          |          |                    |          |          |           |           |           |           |           |           |           |           |           |            |            |       |
| Schedule<br>Sept 2001         |          | 1500     | 1200     | 2100               | 2500     | 2600     | 1800      | 2600      | 2900      | 2900      | 2900      | 2900      | 2900      | 1200      |           |            |            |       |
| New.sched                     | 15       | 00       | 500      | 500                | 200      | 200      | 200       | 400       | 2500      | 4000      | 4000      | 4000      | 4000      | 4000      | 3200      | 800        |            |       |
| Delivered                     | 15       | 00       | 500      | 500                | 200      | 200      | 200       |           |           |           |           |           |           |           |           |            |            |       |
| <b>CERN/ETH</b>               | Z Con    | tract 26 | õ00 b:   | arrel              |          |          |           |           |           |           |           |           |           |           |           |            |            |       |
| Contract<br>SCIONIX           |          |          |          |                    |          |          | 2600      | 2600      | 2600      | 2600      | 2600      | 2600      | 2600      | 2600      | 2600      | 2600       |            |       |
| Delivered                     |          |          |          |                    |          |          | 2600      |           |           |           |           |           |           |           |           |            |            |       |
| Additionna                    | l order  | for Ba   | rrel (37 | <sup>th</sup> SM - | ⊦ spare  | s)       |           |           |           |           |           |           |           |           |           |            | -          |       |
| Potential<br>product.         |          |          |          |                    |          |          |           |           |           |           |           |           |           |           |           | 2150       |            |       |
|                               |          |          |          |                    |          |          |           |           |           |           |           |           |           |           |           |            |            |       |
| Dotortial EE                  | tais pro |          |          |                    | <u> </u> | <u> </u> |           |           | Ï         |           |           | <u> </u>  | İ         |           |           |            |            |       |
| production                    |          |          |          |                    |          |          |           |           |           | 200       | 400       | 400       | 400       | 400       | 1200      | 1450       | 7000       | 3550  |
|                               |          |          |          |                    |          |          |           |           |           |           |           |           |           |           |           |            |            |       |
| Barrel Total<br>Cumulative    | 7500     |          | 8000     | 8500               | 8700     | 8900     | 11.7<br>K | 14.7<br>K | 19.8<br>K | 26.4<br>K | 33.0<br>K | 39.6<br>K | 46.2<br>K | 52.8<br>K | 58.6<br>K | 64.15<br>K |            |       |
| EE Total<br>Cumulative        |          |          |          |                    |          |          |           |           |           | 200       | 600       | 1000      | 1400      | 1800      | 3000      | 4450       | 11.45<br>K | 15.0K |

Assumes 2 crystals per ingot for barrel and endcap



#### Avalanche Photo Diodes - Barrel





- Insensitive to B-field (4T)
- Internal gain (needed for PWO, M=50 used, V<sub>M50</sub>≈380V)
- Good match to PWO scintillation spectrum (Q.E.~80%)



#### Avalanche Photo Diodes - Barrel

#### Critical points

- $\bullet$  Contributions to all  $\sigma({\rm E})/\!\!/\!{\rm E}$  terms
  - C & Idark  $\Rightarrow$  b (1/E)
  - excess noise factor  $\Rightarrow$  a (1/ $\sqrt{E}$ )
  - Gain stability  $\Rightarrow$  c
- Nuclear counter effect
- Radiation hardness



APDs optimized with an extensive R&D program are now in production

Capacitance 75 pF & Idark few nA $\Rightarrow b = 150 \text{ MeV} (\Sigma 5x5 \tau_s = 40 \text{ns})$ F=2.2 ( $\rightarrow$  fluctuations in multiplication) $\Rightarrow a \text{ increase } 1.6\% \rightarrow 2.3\%$ dM/dV = 3%/V and dM/dT = -2.3%/°C $\Rightarrow c \sim 0.5\%$  develop very stable systems

 $d_{eff} \cong 6 \ \mu m$  ( $\rightarrow$  acceptable response to ionizing radiation)

Idark increases with neutron irradiation:  $\sqrt{2}$  contribution to noise of single channel after 10 years running

ok



# Vacuum Phototriodes - Endcaps





• Q.E. ~ 20% at 420 nm





M. Diemoz – INFN Roma

Siena 22/10/2002



#### Read out chain/old



- 40 MHz clock
- High dynamic range to measure an energy interval 50MeV →2TeV

ALL RADIATION HARD

Energy

 $\rightarrow$ Light

PbWO<sub>4</sub>

Crystal

A difficult and costly project!





Read out chain/new

- Major revision of the project imposed by budget and possible thanks to 0.25µm CMOS rad hard technology:  $\succ \Sigma$  trigger e data storage on detector > read out of data only if L1 OK Same scheme  $\succ$  three links each trigger tower (25 xl) of TP (1994) xtais Front End APD Readout (2) Timing (-Si avalanche (iii) → Readout photodiode To Mother Powo, costal Board Dicital (Fenix .....) readout ○→ Insper Light Current Voltage Bit Energy Light Current Voltage Bits Floating point Preamplifier ADC Very Front End Board (5 Channels/VFE board) Front End Board (25 Channels/FE board)
  - Reduction of about a factor 8 in the number of data links
  - •Simplification of off-detector electronics
  - •Equivalent performances



#### New construction scheme

#### Bare/Dressed Super Modules





#### Design Resolution is achievable



#### 280 GeV electrons:

 no sign of rear leakage, which could cause direct signal in APD

# Resolution as a function of energy:

 on 1999 prototype, matrix with 30 preproduction crystals and APDs

$$\frac{\sigma}{E} = \frac{2.74\%}{\sqrt{E}} \oplus 0.40\% \oplus \frac{142 \text{MeV}}{E}$$



#### Energy resolution

#### Standard parametrization:



- a: stochastic term from Poisson-like fluctuations
  - sampling contribution
  - (natural advantage of omogeneous calorimeters)
  - intrinsic contribution from photostatistics ( $\Rightarrow$  L.Y.)
  - other contributions often important
- b: noise contribution, relevant at low energy
  - electronic noise converted in energy units through N $_{\rm pe}/{\rm MeV}~\Rightarrow$  b depends on Light Yield too
- c: constant contribution, dominated by stability
  - dangerous limitation to high energy resolution
  - important contribution from calibration constants



#### Resolution: stocastic term a

- photostatistics contribution, including
  - LY
  - light collection efficiency
  - geometrical efficiency of the photodetector
  - photocatode quantum efficiency
  - $N_{pe}/GeV = 4000 \text{ for } 0.5 \text{ cm}^2 \text{ APD } \rightarrow 1.6\%$
- electron current multiplication in APD, contributing a square root of excess noise factor, F = 2
  - 1.6×1.4 = 2.25%
- Lateral containment (5×5 matrix)  $\rightarrow$  1.5% Total stochastic term a = 2.7 %



#### Resolution: noise term b

#### 40 ns shaping time, summed over 5x5 channels

- Serial noise (p.d. capacitance)  $\propto 1/\sqrt{t}$ 
  - 150 MeV
- Parallel noise (dark current)  $\propto \sqrt{t}$ , mostly radiation induced
  - negligible at the start of the experiment
  - 30 MeV after one year at low luminosity
  - 100 MeV after one year at high luminosity
- Physics pile-up (simulated, with big uncertainties)
  - low luminosity 30 MeV
  - high luminosity 100 MeV
- Total contribution
  - low luminosity 155 MeV
  - high luminosity 210 MeV



#### Resolution: constant term c

#### Most dangerous at high energy

- leakage (front, rear, dead material)
  CMS full shower simulation < 0.2 %</li>
- system instabilities designed to be at the permill level  $t \sim 3t_{cal}$ 
  - temperature stabilization < 0.1 °C (dLY/dT = -2.0%/°C @ 18°C ; dM/dT ~ -2.3 %/°C)
  - APD bias stable at ±20 mV (dM/dV = 3%/V)

Key issues to keep  $c \sim 0.5$  % :

·light collection uniformity

 $\cdot$ intercalibration by monitor and physics signals at 0.5 % including the radiation damage effect



# Uniformity of light collection

- Focusing effect due to tapered shape of crystals (first seen and studied in L3)
- •High index of refraction (n=2.3) enhance the effect:  $\theta_c \approx 26^\circ$

Uniformity can be controlled by depolishing one lateral face with a given roughness

PAY A LOSS IN LY





# Effect of non uniformity

• A non uniformity of the light collection in the shower max region may significantly contribute to the constant term in the energy resolution







#### Electron vs Light signal





# Monitor: L3 10 years of follow-up

#### Response may change! Even if not foreseen



- system able to track the BGO response decrease (few %/year)
- porting of previous year calibration: 1.3%
- spread after Xe+Bhabha corrections: 0.8% from calibration in 1991



In 1999 0.5% from calibration after refinements of methods



#### Calibration on test beam

#### Why pre-calibration of each single channel is desirable?

• Full system test

• Be ready as soon as possible for precision measurement independently from other CMS sub-detectors (precision on intercalibration has a direct impact on the constant term of the energy resolution)

#### A partial calibration is anyway mandatory to understand

- Geometrical effects (energy deposition depends on  $\eta$ )
- Effects of gaps between crystals, modules
- Thermal stability
- Gain stability in electronics chain
- Monitoring system
- MC simulation in all its aspects
- In situ calibration through reference regions



#### **Compare Intercalibration**







#### ECAL Regional Centers





# Crystal quality insurance





#### Automatic control of:

- Dimensions
- Transmission (radiation hardness)
- Light yield and uniformity



# Module assembly and test



#### Transport of modules to CERN





#### Conclusions

- A challanging project
- Intense and rewording R&D effort performed
- Now in the construction phase
- Few years of construction ( $\rightarrow$  2005)
- Few years to understand in detail the system behaviour
- Aiming to outstanding physics results







