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LBGS: A Smart Approach for Very Large Data Sets
Vector Quantization
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Abstract

In this paper, LBGS, a new parallel/distributed technique for Vector Quantization is presented. It derives from
the well known LBG algorithm and has been designed for very complex problems where both large data sets and
large codebooks are involved. Several heuristics have been introduced to make it suitable for implementation on paral-
lel/distributed hardware. These lead to a slight deterioration of the quantization error with respect to the serial version
but a large improvement in computing efficiency.
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I. Introduction

Often, both in the industrial and the scientific world, clustering and vector quantization (VQ) techniques are applied
to very complex problems. The fields of application of such techniques range from texture and image segmentation [1,2],
magnetic resonance imaging [3] and computer vision [4] to information retrieval [5], machine learning [6] etc. When the
task is very complex, i.e. both large data sets and large codebooks are involved (for example, in image segmentation
[7], image coding [8, 9] and speech coding [10, 11]), the computing time required by a classical approach [12, 13] may be
prohibitive. A possible solution to this problem is the use of parallel and distributed computing systems [14–20]. Recent
studies [21,22] have shown that, for an efficient parallel implementation of the most advanced (serial) VQ techniques, it is
necessary to use computing systems whose hardware provides a large bandwidth for inter-process communications. Only
in this way, is it possible to use a large number of Processing Elements (PEs) efficiently to obtain a meaningful decrease
in the computing time. However, hardware systems with the required communication bandwidth are very expensive
and, for this reason, they are not within everybody’s reach. So, in recent years, low-cost distributed computing systems,
realized by clusters of personal computers (farms of PCs) have increased a lot in popularity.

Sometimes, VQ problems are so complex that, even though powerful hardware is used, the computing time is too long
or completely unacceptable. In these circumstances, the employment of particular VQ techniques can be useful that, at
the cost of a deterioration in the quality of the final results, perform a considerably lower number of calculations with
respect to traditional algorithms.

The work presented in this paper, LBGS, belongs to this field of research. In particular, it proposes a smart technique
that obtains very good results particularly with the most complex problems, i.e. when both the cardinality of the data
set and the codebook are considerable [7–11]. Its name derives from the LBG algorithm [12] which has been widely
modified to make it more suitable for implementation on parallel and distributed systems. In particular, the final “S”
has been added to LBG to specify Super-clustering, one of the new concepts we have introduced and that will be detailed
in Sections VI-VII.

The starting point of this work was the idea of developing a new parallel algorithm with a minimized inter-process
communication and with the tasks involved in the quantization process working as independently as possible from each
other. Besides, we tried to reduce the number of calculations performed by accepting, as regards the final quantization
error, lower-quality results than a classic serial approach. Moreover, the user can choose, to some extent, a compromise
between precision and speed. However, we wish to underline that the main objective of the work is to favour as far as
possible the error, i.e. the algorithm presented tries to obtain almost the same error as the original serial technique.
On the other hand, in literature, we can find works favouring speed at the expense of error [23]. In our opinion, the
objective has been reached and the results are relevant.

The particular features that we have briefly described make LBGS very suitable for a parallel implementation on a
cluster of PCs. As we said before, this is a low-cost distributed computing system whose main limitation is the low
availability of bandwidth for inter-process communication. This does not mean that LBGS is an algorithm for a cluster
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of PCs because the techniques developed for LBGS have general validity and, when more powerful computing systems
are available, it is possible to obtain lower computing times or, in an equal time, lower errors.

This paper is organized as follows: in Section II the computing system used for the implementation of LBGS is
presented; Section III is a brief summary of the terminology used; Section IV presents the basics of VQ; Section V is an
overview and a classification of several algorithms existing in literature that can be used in the same application domain
as LBGS; in Section VI, LBGS is presented; in Section VII, a more detailed description of LBGS is given; in Section
VIII, the results obtained by LBGS are presented and discussed; Section IX reports the authors’ conclusions.

II. The MULTISOFT Machine

The elaboration system used for the implementation of LBGS is called the MULTISOFT Machine (see Fig. 1). It is a
cluster of PCs with the LINUX operating system and consists of 32 Processing Elements (PEs) and a server (duplicated
for redundancy) acting also as a gateway towards the external LAN. All of the 32 PEs are mono-processor machines,
7 are based on Intel Pentium-II 233 and 25 on Intel Celeron 366. All of them are endowed with 32 MB of RAM, one
hard disk and one Fast-Ethernet network card. One server is a bi-processor computer with two Intel Pentium-II 300s
and two network cards.

Switch

Hub

Hub Hub Hub

Host 01

Server 02Server 01

Host 32...

External LAN

Fig. 1. The MULTISOFT Machine

The PEs are interconnected by a dedicated Fast Ethernet network and all of them share the same bus. Physical
connections have been realized by means of four 12-port hubs distributed on two levels as shown in Fig. 1. The highest
level hub is connected to a switch, where the servers are directly connected, too.

Inter-process communication is realized with the Parallel Virtual Machine (PVM) software1. It gives message passing
facilities and makes the user see several computers as a large and single virtual machine where each process (task,
according to the PVM nomenclature) has a unique identifier (task identifier, tid) inside the virtual machine. PVM uses
the transport functionality provided by the TCP/(UDP/)IP that are directly implemented inside the kernel of LINUX.

For diverse reasons, at the moment of the tests, some PEs were unavailable, So, in this paper, we will show our results
using only up to 20 PEs, all Celeron 366-equipped.

The MULTISOFT Machine has also been used for implementing other algorithms cited throughout the paper such as
our implementation of PKM, PARELBG [22] and PAUL [24].

III. Brief discussion of the terminology employed

Now, let us introduce some terms and acronyms that we will use in the remainder of the paper and that will be useful
to make the explanation of the concepts easier.

A. Performance and efficiency

The algorithms we deal with will be evaluated from the point of view of both the final quantization error and
computational efficiency. For the sake of brevity, in the former case, we will use simply the term performance, in the
latter we will use efficiency.

The term efficiency is for us of qualitative nature. We say that, given a precise hardware, an algorithm is efficient if
the possibility exists of implementing it with a software running on this hardware that uses the resources at its disposal
well. So, the efficiency is closely related to the hardware. Then one algorithm can be efficient for a particular computer
architecture and not efficient for another architecture.

For example, in the particular case of parallel and/or distributed architectures, we can find several algorithms that
are efficient when only one of the nodes available is used (we call this serial case) and absolutely not efficient when
more nodes are used. Clearly, in this particular domain the efficiency is linked to the speedup: an efficient algorithm for
parallel architectures reaches good speedups otherwise it is not efficient. This is mainly due to the intrinsically serial

1It is available for free at http://www.netlib.org/pvm
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nature of some of the operations executed (Amdhal’s law [25]), the overhead introduced by inter-process communication
and the synchronization between tasks required at each iteration. They can constitute a decided limitation to the
achievable speed-up, also when powerful computing systems are available.

B. Parallel algorithms

Often, the parallel implementation of an efficient serial clustering algorithm is not very efficient.
A possible improvement is the substitution of intrinsically serial operations with efficiently parallelizable versions that

try to approximate the original ones as well as possible. The cost of such an increase in efficiency is, generally, a decrease
in performance.

According to these considerations, it is useful, to simplify the treatment in the remainder of the paper, to classify the
parallel VQ we will deal with into two categories:
• Perfect Implementation of a Serial Algorithm (PISA). These are the algorithms that make, in parallel, the same
operations as the serial reference version obtaining, of course, the same identical performances. PISA VQ techniques
are often not efficient. The reasons for such behaviour will be analysed in detail in Section V-C;
• Modified Implementation of a Serial Algorithm (MISA). These are the algorithms that have a serial algorithm as a
reference but intrinsically serial operations are substituted by efficiently parallelizable versions that try to approximate
the original ones as well as possible. Generally, they are more efficient than PISA algorithms but their performances are
worse.

C. Table of the main symbols used in the paper

In table I we report the main symbols used in the paper with the aim of increasing the readability of the paper.

Symbol Description
NC total number of codewords
NP total number of patterns in the

input data-set
MQE Mean Quantization Error
Dcurr MQE at the current iteration
Dprev MQE at the previous iteration
MSE MQE when the Squared Error

(SE) is used as a distortion mea-
sure

RMSE square root of the MSE
ε threshold for the termination of

the algorithgm
N number of slave tasks

NCi number of codewords assigned to
the ith task

NSC total number of super-codewords
NST mean number of super-

codewords per task (NSC

N )
ns number of iterations to be per-

formed before a new super-
clustering of the codewords oc-
curs

nc number of iterations to be per-
formed before the slave com-
pares its codewords again with
the whole super-codebook

S speed-up
TABLE I
Symbols
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IV. Vector Quantization

A. Definition

The objective of VQ is the representation of a set of vectors x ∈ X ⊆ �k by a set, Y = {y1 , ...,yNC }, of NC reference
vectors in �k. Y is called codebook and its elements codewords. The vectors of X are called also input patterns or input
vectors. So, a VQ can be represented as a function: q : X −→ Y . The knowledge of q permits us to obtain a partition
S of X constituted by the NC subsets Si (called cells):

Si = {x ∈ X : q(x) = yi} i = 1 , . . . ,NC (1)

B. Quantization Error (QE).

The QE is the value assumed by d(x, q(x)), where d is a generic distance operator for vectors. Several functions can
be adopted as distortion measures [12]; in this paper we will consider the Square Error (SE), whose formulation is

d(x,y) =
k∑

i=1

(xi − yi)2 (2)

The Mean QE (MQE) is used to evaluate the performance of a quantizer. In particular, if the SE is adopted for the
distortion measure, the MQE is called Mean Square Error (MSE). We will also use the square root of the MSE (RMSE).

In general terms, when X is constituted by a finite number (NP ) of elements, the MQE is given by:

MQE ≡ D({Y,S}) =
1

NP

NC∑
i=1

Di (3)

where we indicate with Di the ith cell total distortion:

Di =
∑

n:xn∈Si

d(xn ,yi) (4)

Equations (3) and (4) show that the MQE can be calculated as a function (D) of the codebook (Y ) and the partition
(S).

Now, we report two important conditions we will use throughout this paper that are necessary for calculating the
optimal partition (when the codebook is fixed) and the optimal codebook (when the partition is fixed) [12].
• Nearest Neighbor Condition (NNC). Given a fixed codebook Y , the NNC consists in assigning the nearest
codeword to each input vector. So, it is possible to divide the input data set in the following manner:

S̄i = {x ∈ X : d(x,yi) ≤ d(x,yj ),
j = 1, ..., NC , j �= i} i = 1, ..., NC (5)

The sets S̄i just defined, constitute a partition of the input data set. This is called the “Voronoi Partition” [26] and is
referred to by the symbol P(Y ) = {S̄1, · · · , S̄NC}. It is possible to demonstrate that the Voronoi partition is optimal for
that codebook [12].
• Centroid Condition (CC). Given a fixed partition S, the CC concerns the procedure for finding the optimal
codebook. This is the codebook constituted by the centroid of each cell [12].
If we consider the set A ⊂ �k constituted by NA elements and the SE is adopted as the measure for distances, its
centroid x̄(A) is:

x̄(A) =
1

NA

∑
x∈A

x (6)

The codebook X̄(S) constituted by the centroid of all the cells of S:

X̄(S) ≡ {x̄(Si); i = 1, ..., NC} (7)
is optimum for that partition [12].

V. Previous works

In this section, we will present a brief overview of some VQ techniques, both serial (LBG [12], K-means [27] and
ELBG [13]) and parallel (PKM [14–19, 21, 28], PARELBG [21, 22], P-CLUSTER [20, 29, 30] and PAUL [24]), selected
from the large existing literature.
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A. Serial approach

A.1 LBG and K-means

LBG [12] is an iterative algorithm, that, NC being fixed, iteration by iteration, produces a quantizer better than or
equal to the one at the previous iteration. It is analogous, practically equivalent [31], to the traditional K-means [27],
another algorithm very well known in literature. The steps through which LBG develops can be summarized as follows:
1. initialization. This phase consists of the choice of an initial codebook. Several techniques are reported in literature
on the matter; among them, we mention the random initialization and the initialization by splitting [12];
2. partition calculation. Given the current codebook, the related Voronoi partition is calculated according to the
NNC (5);
3. termination condition check. The MQE at the current iteration (Dcurr) is compared with the one at the previous
iteration (Dprev). If the ratio |Dprev − Dcurr|/Dprev is less than a prefixed threshold (ε) then the algorithm ends;
otherwise, it continues with the next step;
4. new codebook calculation. Given the current partition, the new codebook is calculated according to the CC (7);
5. return to step 2.

A.2 Discussion regarding LBG

The main drawback of LBG is its high sensitivity to the choice of the initial codebook. This means that, if the
initialization is not good, it converges towards a bad local minimum because a certain quota of codewords remain
unused (i.e. they generate empty cells) or badly positioned; the consequence is a deterioration in performances.

Regarding the problem of the unused codewords, some simple solutions were proposed by the same authors of LBG.
For example, such codewords could be removed and, at the same time, the cells with the largest distortions (according
to (4) ) split.

However, there is a much more complicated problem which concerns the codewords that are badly positioned, although
they do not generate empty cells [13]. To try to solve this, several algorithms have been proposed in literature [13,32–38].

A.3 ELBG

An interesting algorithm among those mentioned above is The Enhanced LBG (ELBG) [13, 32, 33]. Its analysis is
important for two reasons:
1. for each of the tests performed, ELBG obtained performances better than or equal to the other algorithms considered;
so, it is a valid reference for evaluating other techniques;
2. a parallel version of ELBG [22], briefly described below, exists and can be used for comparison.

ELBG derives directly from LBG by adding a new computational step, called the ELBG-block, to manage the shifting
of badly positioned codewords.

(Sp,yp)

(Sl,yl)

(Si,yi)

Fig. 2. ELBG: A situation where the codewords are badly distributed, but locally optimally placed. The arrow indicates
a possible shift that, after a rearrangement, gives lower error

(Sp’,yp’)

(Sl’,yl’)

(Si’,yi’)

Fig. 3. ELBG: A better distribution for the codewords than the one shown in Fig. 2

In brief, the basic idea on which ELBG is based is described below.
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The aim of ELBG is to escape from the local minima by attempting to equalize the distortions introduced by the
cells (Di). In Fig. 2 a typical example of a local minimum is reported; the arrow indicates a possible shift that, after
a rearrangement, gives lower error. In Fig. 3 a better distribution of the codewords, that arises by executing the shift
indicated by the arrow and some local adjustments, is shown. The ELBG-block attempts to remedy the situation of
local minimum by smartly performing several shifts such as the one illustrated in Figs. 2 and 3.

The shift represented in Figs. 2 and 3 equalizes the total distortions (Di (eq. 4)) of the three represented cells. The
mathematical justification of such an operation was given in [13,32]. The basic idea of the ELBG-block is to go towards
the desired equalization by joining a low-distortion cell with a cell adjacent to it. At the same time, a high-distortion
cell is split into two smaller ones. So, it is as if the low-distortion codeword is moved inside the high-distortion cell. This
is a Shift of Codeword Attempt (SoCA). If it produces a decrease in the MQE, then the SoCA is confirmed, i.e. a Shift
of Codeword (SoC) is executed. Otherwise, the shift is discarded. Several SoCAs are executed inside the ELBG-block.
According to these definitions, Figs. 2 and 3 represent a simple example of a SoCA.

The execution of the ELBG-block introduces an overhead that has been kept low (around 10-20%) thanks to particular
sub-optimum techniques for local rearrangements and a data structure developed ad hoc [33]. Such are the benefits of
the ELBG-block that ELBG is, practically, independent of the choice of the initial codebook, has performances better
than or equal to the other algorithms used for comparisons and converges after a low number of iterations.

B. Distributed approach

In this sub-section we will describe several approaches, already existing in literature, to the realization of VQ algorithms
on parallel and distributed architectures and they will be valued in terms of performance and efficiency. The parallel
algorithms that will be briefly presented belong both to the PISA (PKM, PARELBG, P-CLUSTER) and MISA (PAUL)
families.

B.1 Parallel K-means (PKM): a family of PISA algorithms

In literature, a large number of parallel and distributed implementations of LBG and K-means exist. Various hardware
architectures have been employed such as, for example: specialized architectures [28], massively parallel processors [14],
transputers [15,16] and networks of workstations [17–19,21]. The idea at the basis of such techniques is the subdivision
of the most time-consuming part of the algorithm (the calculation of the Voronoi partition) into a certain number of
subtasks to be executed in parallel, while, the remaining operations (the calculation of the new centroids) are serially
executed by a single process. For the sake of brevity, we will identify this kind of technique as Parallel K-means (PKM).

For a better explanation and quantification of the previous statements, we report a numeric example obtained by
profiling the software that we developed to implement LBG. Let us consider the task of compressing the picture giraffe2

(it is a 256 gray-levels image of 984 × 1488 pixels size, see Section VIII-B for details) with NC = 1024. By profiling
LBG, we can see that 98.7% of the time is spent in calculating the Voronoi partition; the remaining 1.3% is spent for
I/O operations and the calculation of the new centroids. According to these numeric values, we can argue that the
time spent in calculating the new centroids is negligible with respect to the remaining times; for this reason, in these
algorithms, the new centroids are serially calculated by a single process.

In more detail, PKM uses a master-slave approach and a portion of the input patterns is assigned to each of the N
slave tasks. The generic slave computes a quota of the global partition by comparing each input pattern in its portion
with all of the codebook. At the end of the iteration, the master process collects the data related to the Voronoi partition
from all of the slaves, calculates the new centroids and begins a new iteration with the broadcasting of the new codebook
to the slaves. So, inter-process communication is rather low and tasks exchange information only at the beginning and
the end of every iteration. PKM is a PISA algorithm; so, it gets the same final quantization error and number of
iterations as the serial version. As regards efficiency, [21] shows that, for very complex problems, PKM achieves quite
high speed-ups also when a large number of processors are involved.

B.2 Discussion regarding PKM techniques

As we said previously, the main drawback of LBG and K-means is their sensitivity to the choice of the initial codebook;
of course, such a drawback is inherited by the related PISA algorithms. Regarding efficiency, let us, now, report a detailed
analysis of the factors that can keep the speed-up lower than its maximum theoretical value, i.e. the linear speed-up.
They are:
1. execution of non-parallelizable operations. In theory, the execution of intrinsically serial operations is a limitation to
the maximum achievable speed-up. However, in this particular case, we have verified (also by numeric values) that the
time required by the serial operations (essentially, the calculation of the new codebook) is negligible with respect to the
time spent for the parallel operations (the calculation of the Voronoi partitions). So, as regards the efficiency of this
algorithm, we can consider this problem to be less important than the following two;

2available at ftp://ai.unime.it/pub/data/giraffe.raw



7

2. overhead introduced by inter-process communication. The problem of the overhead introduced by inter-process com-
munication is typical of parallel algorithms and, in general, it is strongly dependent on the hardware architecture
employed. For example, with commodity super-computers, the communication system is realized by low-cost hardware,
whereas, in traditional super-computers, more efficient, but much more expensive (several orders of magnitude) shared
memory based solutions are available. In spite of the substantial money saving, the reduced performances of the com-
munication systems can be a bottleneck when a large amount of data has to be transferred and/or a large number of
processes are involved. In the particular case of the parallel hardware at our disposal, the MULTISOFT machine, in
addition to the problems deriving from the poor communication system available, based on a Fast Ethernet network,
we have to consider the problems deriving from the lack of a real broadcast function3. It would be very useful when, at
the beginning of each iteration, the master sends the whole codebook to all of the slaves;
3. synchronization between the tasks at each iteration. A new iteration starts after the master computes the new
codebook and distributes it to the slaves. However, to calculate the new codebook, the master needs, from each slave,
the results related to the computing of its portion of the Voronoi partition. Practically, it is not possible to start a new
iteration if all of the tasks have not completed the previous one and if all of the operations related to the transmission
of the data computed by each slave have not ended.

B.3 Another PISA algorithm: PARELBG

PARELBG [21,22] is the parallel implementation of ELBG that, as we have seen, is virtually insensitive to the choice
of the initial codebook and is not affected by the problem of local minima as, on the contrary, K-means and PKM are.
The approach followed for the implementation of ELBG is the same as PKM, i.e. a master-slave architecture where
the slaves perform, in parallel, the computation of the Voronoi partition and the master computes the new codebook.
Moreover, now, also the implementation of the ELBG-block is required. Unfortunately, the operations constituting the
ELBG-block are intrinsically serial; so, its execution has to be entirely allocated to a single process (the master, in this
case).

In practice, the master collects the results from the slaves (i.e. the computation of the Voronoi partition) and executes
the ELBG-block. Then it calculates the new codebook.

The execution of the ELBG-block by a single process considerably reduces the performances of PARELBG with respect
to PKM [21, 22]. In practice, while we could say that, in PKM, the time spent for the execution of serial operations
was negligible with respect to the time spent in other operations, now it is not true any more. Besides, the same other
limitations of PKM are present, i.e. the overhead introduced by inter-process communication and the synchronization
between the tasks at each iteration.

B.4 A MISA algorithm: PAUL

PAUL (A Parallel Algorithm for Unsupervised Learning) [24] is a MISA algorithm deriving from ELBG. It has been
designed for problems with a high number of input patterns and codewords in order to achieve performance very close
to ELBG and PARELBG and improved efficiency with respect to the latter.

The most important change introduced in ELBG is the substitution of the ELBG-block with a new block that
tries to emulate its functionalities but can be executed in parallel by all the tasks. In this way, the cost of serial
operations is reduced with respect to PARELBG even though the problems deriving from the overhead of the inter-
process communication and the synchronization between the tasks at each iteration remain.

The performances of PAUL are almost identical to those of PARELBG while, as regards efficiency, it is better than
PARELBG.

B.5 P-CLUSTER and P-CLUSTER with algorithmic enhancements (PISA algorithms)

P-CLUSTER [20,29,30] is the parallel version of CLUSTER [34]. The latter is, in principle, similar to K-means with
the addition of some steps whose aim is to escape from the situations of local minimum. However, its application domain
consists of small data sets (fewer than 4000 patterns) and it performs well inside it.

So, with the aim of elaborating larger data sets, P-CLUSTER was developed [29]. In particular, P-CLUSTER was
designed to be implemented on a Network of Workstations. In a second phase of their study, the authors developed
several enhancements to their algorithm [20,30] in order to prune as much computation as possible while preserving the
clustering quality.

Nevertheless, even if all the pruning techniques proposed by its authors are applied to P-CLUSTER, the number of
calculations it performs is rather high with respect to other, more efficient, algorithms [24].

3Although we use a network with broadcast functionalities, PVM implements such a function as a sequence of point-to-point
transmissions to the slaves. From the point of view of the user interface, the implementation is totally transparent; but it is
not the same as regards efficiency because the broadcast potentiality of the Fast Ethernet is not used. On the other hand, the
management of a reliable broadcast communication is a rather complex problem [39].
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Besides, when the number of the codewords increases, the number of computations explodes [20, 30], thus making its
employment prohibitive for problems with a high number of codewords.

C. Considerations

The overview presented confirms that, practically, the problems to be solved for realizing high-efficiency algorithms
are the same as we pointed out in V-B.2 for PKM techniques.

Now, let us summarize such issues and analyze the possible solutions for each of them. These considerations are the
starting point of this work.
• Serial operations. When the incidence of these operations is not negligible, we can look for new ones that try to
emulate the original and are suitable to be executed in parallel by the tasks. Practically, a PISA algorithm is turned
into a MISA one. This is a compromise between performance and efficiency because the increase in the efficiency is,
generally, paid for by a decrease in performances.
• Overhead introduced by inter-process communication. The only solution is the reduction of the information exchanged
between the tasks to what is strictly necessary.
• Synchronization between the tasks. This problem can be sidestepped if the tasks are allowed to work in asynchronous
mode, i.e. each task continues to communicate with the other tasks but, always, has operations to be executed and is
never inactive waiting for somebody to send it data. Generally, this independence produces an increase in efficiency at
the cost of a reduction in performances.

One last, very important consideration concerns all of the VQ techniques we have seen till now, both serial and
parallel: large improvements in efficiency can be obtained by employing suitable methods for reducing the number of
distance calculations performed during the Voronoi partition calculation (point 2 of LBG).

For example, the algorithm enhancements employed in P-CLUSTER use the mathematical properties of k-dimensional
spaces and triangular inequality to allow the correct partitioning of data. They produce the same result as the traditional
full-search technique, but with a lower number of calculations. The validity of such enhancements is general and the
field of application is not restricted to P-CLUSTER.

Later in this paper, we will show the heuristics that we used for the reduction of calculations. Even though they do
not guarantee the exact partitioning of data according to NNC (eq. (5)), they allow an increase in the efficiency of the
parallel algorithm because they allow the tasks working in parallel to operate in asynchronous mode. Besides, we will
see that the inevitable decrease in performance, deriving from the non-optimum operations performed, has been kept
inside some limits thanks to the introduction of particular techniques that will be detailed in Sections VI-VII.

VI. General description of LBG Super-cluster (LBGS)

LBGS is a parallel MISA algorithm whose serial reference version is LBG. In LBGS, each process works with a portion
of the input data set (IDS) and executes, autonomously, the traditional (serial) LBG for calculating a portion of the
codebook. At the end, by joining all of the sub-codebooks, the global codebook is obtained.

This heuristic method allows the number of distance computations to be performed to be considerably reduced because,
to calculate the Voronoi partition, each task compares only its portion of the IDS with its portion of codewords. Besides,
since the tasks are independent of each other, their synchronization at the end of each iteration is not required any more.
The combination of all these factors allows superlinear speedups to be obtained with respect to serial LBG.

In contrast to the benefits listed, the independence of the tasks is, however, a limitation; it can lead, as the final
result, to (global) codebooks with quantization error greater than the classic serial LBG where, in calculating the
Voronoi partition, each pattern is compared with all of the codewords.

In order to reduce the decrease in performance, we introduced a mechanism (the super-clustering of the codewords) for
the exchange of information between the tasks; in this way, each of them has a global, even though approximate, vision
of the whole codebook. The super-clustering is linked to another mechanism, the migration of patterns and codewords
that, as we will see, allows the resolution of some bad partitioning cases deriving from the subdivision of both the IDS
and the codebook.

A. The essential points of the new algorithm

Now, let us briefly analyze the main points of LBGS.
• Master-slave architecture. The whole algorithm is executed, in parallel, by one master and N slaves. From the
point of view of computation, the master makes a negligible job: essentially, it is restricted to the initialization and
termination operations of the algorithm. The slaves, on the contrary, perform all of the most important operations, i.e.
the codebook and super-codebook calculation and the migration of the patterns and the codewords. Each slave, even
though it continues to communicate with the master and the other slaves, works in a nearly autonomous way.
• Complete division of data. In LBGS, both the input patterns and the codewords are divided among the N slaves.
Such an operation is performed by a pre-clustering of the whole IDS, thus obtaining the grouping of data by a spatial
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neighborhood criterion. The pre-clustering is done by executing serial LBG (where NC = N) with the NP patterns
of the IDS. In the end, N groups (called macro-cells) are obtained and each of them, represented by its codeword, is
assigned to a task. Fig. 4 shows the situation after pre-clustering in the case of a simple bi-dimensional example that
we will also use in the remainder of the paper.
The information extracted during the pre-clustering is also used to opportunely assign to each task the number of
codewords (NCi) it has to calculate. So, it is possible to have N sub-quantizers evolving independently of each other. In
other words, the ith task, to which the ith group of patterns, made up of NPi elements has been assigned, performs LBG
with its patterns to obtain its portion of the codebook, made up of NCi codewords. By joining the N sub-codebooks
calculated in this way, the global codebook, made up of NC desired elements, is obtained. Fig. 5 reports the situation
we have described, in the case of the simple bi-dimensional example we are considering.

: codeword of the macro-cell

: input pattern

2

3

1

4

Fig. 4. Data pre-clustering. N = 4 macro-cells are reported, each represented by its codeword

: codeword

: input pattern

2

3

1

4

Fig. 5. The four sub-quantizers autonomously obtained by each of the four slaves

• Migration of patterns and codewords between tasks. The complete division of the data, on the one hand reduces the
number of calculations performed and allows the tasks to work autonomously; on the other hand, prevents the patterns
being compared to the whole codebook. More precisely, at each iteration of LBG and PKM, each pattern is assigned
to the nearest codeword and such a research involves the whole codebook. On the contrary, in LBGS, a pattern can be
represented only by the codewords that were assigned to the same slave. The result of such a local research is a final
codebook that, generally, has a greater quantization error than could be obtained by the serial algorithm or by PKM,
as we can see from the comparison of Fig. 5 with Fig. 6. In order to reduce the deterioration of the performances, we
have introduced a new technique for the exchange of information between the processes. It allows, to some extent, the
solution of these problems. Practically, it is a mechanism allowing the patterns to migrate from one process to another
when it is supposed that this will produce a better result.
Let us suppose that we have the patterns shown in Fig. 4 and we divide them into four parts (as shown in the same
figure). Now, let us assign each portion (macro-cell) to a different task. If no migration is allowed, the distributed
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: codeword

: input pattern

Fig. 6. Codebook obtained by LBG and PKM

: codeword

: input pattern

2

3

1

4

Fig. 7. Division of the patterns among the tasks after migration

algorithm, probably, reaches the configuration of Fig. 5. On the contrary, if we consider the complete technique, it is
easy to reach the configuration of Fig. 7 that, in practice, has a lower global error than the configuragion in Fig. 5.
Our mechanism for migration allows both patterns and codewords involved, shown in gray in Fig. 5, to “migrate”
from task 1 to task 2. Fig. 7 shows the result of the migration. So, after a rearrangement, it is possible to obtain a
configuration of the codewords as in Fig. 6.
• Super-clustering and migrations of patterns and codewords. The mechanism for identifying the cases when it is
opportune that some patterns migrate from one process to another is based on the super-clustering of the codewords.
It consists in the calculation of a super-codebook, i.e. a set of reference vectors representing the codebook. The elements
of the new codebook are called super-codewords. In practice, the super-codebook is the “codebook of the codebook”. It
is obtained, in a distributed way, by all of the slaves and the results are shared among them. This information is used
to direct the migrations of the patterns from one process to another as mentioned in the previous point. The complete
mechanism, here briefly described, will be detailed in Section VII-B.

As we will see in Section VIII, at the cost of a low deterioration in performances with respect to PKM, the efficiency
of LBGS is considerably increased with respect to it.

VII. Detailed description of LBGS

In this section, a more complete and detailed description of the algorithm will be given.

A. Pre-clustering and data subdivision

The first operation to be performed for the correct subdivision of data is the pre-clustering . After its realization, the
whole IDS has been divided into N portions (or macro-cells), each represented by its own codeword (Fig. 4).

After the pre-clustering, the N portions of patterns (and the related codewords) determined are assigned one to each
slave. Besides, each slave receives NCi codewords, constituting the portion of the codebook it has to calculate. The
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values for NCi have to be such that:
{ ∑N

i=1 NCi = NC

NCi ≥ 1 i = 1, · · · , N (8)

Let us observe that equation (8) can be satisfied only if NC ≥ N , i.e. at least one codeword for each processor is
needed. We can legitimately think that the last-named condition is fulfilled because LBG has been developed for very
complex problems where both the number of the input patterns and the codewords is large.

The criterion for assigning the values of NCi and its theoretical justification was suggested by Gersho’s theorem
[40,41]. It says that: “Each cell makes an equal contribution to the total distortion in optimal vector quantization with
high resolution”, i.e. all cells have the same total distortion (Di, according to eq. (4) )4.

Similarly to the concept of total distortion of a cell expressed by equation (4), we use the total distortion of a macro-
cell, that is available at the end of the pre-clustering phase. According to such values, a larger number of codewords is
assigned to the tasks that received macro-cells with high distortions and a smaller number of codewords to the tasks that
received low-distortion macro-cells. In this (heuristic) way, we try to pursue the equalization of the total distortion of the
cells as suggested by Gersho’s theorem. In particular, NCi is proportional to the total distortion of the ith macro-cell.

Let us notice that the pre-clustering is a serial operation. However, rather than leaving its execution to a single
process (for example, the master), it is more suitable that all the slaves perform it autonomously and at the same time.
In the same way, each slave is able to obtain autonomously its portion of patterns and the number of codewords it has
to calculate.

Once the i-th task has computed its portion of the IDS and NCi , it calculates the NCi initial codewords. More
precisely, the task splits the codeword representing the macro-cell until the value NCi is reached. Now, it begins with
the optimization of its codebook (of NCi elements) in an “almost” identical way to LBG. The term “almost” is used
because, in order to improve the final result, the portion of the input patterns of each slave are not static, but can
change as a result of patterns and codeword migrations between processess.

B. Super-clustering and codeword migrations

: codeword

: input pattern

2

3

1

4

: supercodeword

d
1

d
2

A

Fig. 8. Super-codewords

Let us now detail the mechanisms controlling the super-clustering of the codewords and the migration of patterns and
codewords that we have already mentioned in Section VI and that allow the transition from the situation in Fig. 5 to
the one in Fig. 7.

Super-clustering consists in calculating a codebook of the codebook; for this reason, we called it super-codebook.
Practically, it is a reduced representation of the main codebook, following the same criteria shown in Section IV. Each
task, at regular intervals, computes its portion of the super-codebook (i.e., it performs the super-clustering of its own
portion of codewords) and communicates it also to the other tasks. In this way, all of the tasks have a global (even though
approximated) vision of the distribution of all the codewords. The super-codebook is shown in Fig. 8; it is identical
to Fig. 5 with the addition of the super-codewords. In this simple example, a super-codeword for each slave has
been assigned. Generally, the number of the super-codewords (NSC) is a configuration parameter; they are distributed
among the tasks by employing the same criterion used for assigning the codewords, i.e. by equations analogous to (8)

4Actually, Gersho’s theorem is true when certain conditions are verified (according to [40], a high-resolution quantizer has a
number of codewords tending to infinite). But, in [13,42], experimental results proved that it maintains a certain validity also for
real problems where the codebook is constituted by a finite number of elements.
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and assigning to each task a number of super-codewords proportional to the total distortion of the macro-cells obtained
after the pre-clustering. From the tests performed, we suggest using the value NSC = N .

At regular intervals, each task compares its codewords with the whole super-codebook. If it establishes that one of
its codewords is closer to a super-codeword of another task, it transfers the whole cell in question (i.e., all of the input
patterns and the codeword constituting it) to the other task and removes that cell (patterns and codeword) from its
portion of data. Let us use Fig. 8 again to explain the concept better. By knowing the whole codebook, slave 1 is
able to calculate that codeword A is closer to the super-codeword of slave 2 rather than to its own (in the figure, it is
d2 < d1). So, it transfers the whole cell and the relative codeword (highlighted by shading) to process 2. This migration
leads to the improved situation of Fig. 7.

C. Considerations regarding the temporal complexity of LBGS

Now, let us analyze the temporal complexity of LBGS and compare it with LBG and PKM. As in [20,24], we assume
that, for a clustering algorithm like LBG, it is the function of the number of distance calculations between vectors. We
will show that the subidvision of the data between tasks previously illustrated produces (in the ideal case) a reduction
of the complexity by a factor N2 with respect to LBG. The following scheme shows in detail the comparison in question.
• Complexity of LBG. In LBG, at each iteration, all of the input data set is compared with the whole codebook; so, its
complexity is O(NP × NC).
• Complexity of PKM. In PKM techniques the calculation of the Voronoi partition is split among the N slaves, each
comparing a portion of the input data set with the whole codebook. In the case of a perfect load balancing, its temporal
complexity is, consequently, given by O(NP ×NC

N ).
• Complexity of LBGS. Here, the splitting of both the input data set and the codebook among the tasks produces a
further reduction of the complexity, by a factor N , with respect to PKM. However, this is true only in the case of a
perfect load balancing, i.e. when the size of the portions of input patterns and codewords is the same for all of the
slaves, i.e. made of NP

N and NC

N elements, respectively. In that case, the complexity would be O(NP ×NC

N2 ).
However, we wish to underline that this value has to be simply considered as a lower-bound of the temporal complexity.
But, as we will see in Section VIII, the results, in terms of speed up with respect to LBG, are very satisfactory, in
particular for the most complex problems.
The analysis of the complexity performed in such terms is referred to the number of calculations per iteration. It is
necessary to underline that, even by fixing NP , NC and N , when the configuration parameters change (see Section VIII),
also the number of mean iterations executed can change with the subsequent variation in the temporal complexity of
the algorithm.

D. The input parameters

From the description of the algorithm given so far, we can see that the tuning of some more parameters with respect
to LBG (essentially NC and ε) is required. Such parameters are related to the management of the super-clustering
and the communication. Depending on the values assigned, the amount of data exchanged between the processes, the
running time and the final results of the algorithm change. A list of the new input parameters is given below, together
with the suggested values for each of them.
• NSC : number of super-codewords. In conformity with the analysis of the result that will be presented in Section VIII,
we suggest choosing NSC = N ;
• ns: number of iterations for the super-codebook computing. This value specifies the number of iterations to be performed
before a new super-clustering of the codewords occurs. In all of our tests we used the value ns = 3;
• nc: number of iterations for the super-codebook comparison. This value specifies the number of iterations to be
performed before the slave compares its codewords again with the whole super-codebook in order to establish if any cells
have to be sent to another slave; if so, they are immediately, sent. In all of our tests we used the value nc = 3;

E. Evaluation of the overhead introduced by the calculation of the super-codebook

In VII-C we have shown that, in an ideal situation with a perfect load balancing, the temporal complexity of LBGS is
O(NP ×NC

N2 ). However, this formula does not consider the overhead introduced by the calculation of the super-codebook
and the subsequent comparison of codebook and super-codebook.

Now, let us give an estimate of such an overhead; let us assume again that the number of distance calculations
performed defines the temporal complexity of the algorithm and that the situation with a perfect load balancing is
verified.
• Super-codebook calculation. The calculation of the super-codebook is performed by means of the optimization
phase of LBG where NC

N codewords constitute the input patterns and NSC

N super-codewords are the reference vectors. So,
an iteration of the super-clustering implies NC

N × NSC

N calculations of the distance between vectors. ms being the number
of iterations required for the convergence of the super-quantizer, if we remember that the super-codebook calculation
occurs each ns iterations of LBGS, the overhead introduced per iteration of LBGS is:
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o1 =
NC × NSC

N2
× ms

ns
(9)

• Comparison between codewords and super-codewords. The comparison occurs between the NC

N codewords of
the single slave and the NSC super-codewords of the whole codebook. If we remember that this occurs each nc iterations
of LBGS, the overhead per iteration of LBGS is:

o2 =
NC × NSC

N
× 1

nc
(10)

By adding o1 and o2, after a rearrangement of the terms, we obtain the total overhead; its value is:

o = o1 + o2 =
NC × NSC

N2

(
ms

ns
+ N × 1

nc

)
(11)

If a = NP×NC

N2 is the original number of calculations (without super-clustering) performed by the single slave, the
percentage overhead introduced by the super-clustering can be defined as:

α = 100 × o

a
= 100 × NSC

NP

(
ms

ns
+ N × 1

nc

)
(12)

For a better quantification of the overhead, we can use equation (12) and insert some typical values used for applications
in the domain of LBGS (on the matter, see Section VIII):
– NP = 16384;
– N = 16;
– NSC = 3N ;
– ms = 3 (such a low value is justified by the fact that, usually, the number of super-codewords is small and so the

super-clustering reaches convergence very quickly);
– ns = nc = 3;

From (12) we have α = 1.86%.
• Communication complexity
We did not evaluate the communication complexity because, in all our experiments, even when very complex tasks were
executed using all the hosts, the communication overhead was negligible. Furthermore, if a more complex architecture
is used we would obtain less overhead. In fact, there are no practically distributed systems or supercalculators with 20
nodes with a total maximum (and statistical) throughput of 12.5Mbytes/s with a latency in the order of microseconds
as in the case of the farm of PC we used in our experimental results. As regards the processor power, in supercalculators
we have not so much difference with respect to the huge difference in the network capacity.

VIII. Results

In Section III-B, we defined PISA and MISA parallel algorithms and we said that, of course, the performances of a
PISA algorithm (for example, PKM and PARELBG) are identical to those of the original serial version. In that case,
the quality of the implementation is only estimated by the speed-up (S), i.e. the ratio of the computing time of the
serial algorithm to the computing time of the parallel one. While, for MISA algorithms (such as LBGS and PAUL), the
quality has to be considered from the point of view of both performance (the final RMSE) and speed-up.

In this section, LBGS will be analyzed from this perspective. We begin with a brief discussion regarding the data sets
and the configuration parameters used in the tests; after, we examine the final quantization error and the speed with
respect to LBG. Lastly, several comparisons to analogous parallel algorithms are presented.

A. Some considerations common to all of the tests performed

Now, let us report some considerations that are valid for all of the tests performed. In particular, they concern the
choice of the configuration parameters and the procedures for executing the tests.

To use LBGS, it is necessary to select the parameters described in Section VII-D properly. Regarding ε, ns and nc,
we have employed the following values in all of our tests:
• ε = 0.001 (see Section V-A.1);
• ns = nc = 3;

We still have to discuss the criterion for establishing the size of the supercodebook. As regards this, several elements
have to be considered:
• as we saw in Section VII-E, the supercodebook should be small enough in order not to produce a large overhead;
• its size must be related also to the number of slaves because it is calculated, in a distributed way, by all of them.

Finally, after many tests, we verified that a value taking these requirements into consideration is the mean Number of
Supercordewords per Task (NST ), defined as the ratio of the total number of supercodewords (NSC) to the number of
the slave tasks (N). The choice of NST is made by the user in conformity to the considerations that will be presented
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in the next sub-sections. Here, we say briefly that, the other parameters being fixed, NST allows the user to privilege
performance at the expense of speed-up and vice versa.

Regarding the distribution of the processes among the various PEs, we have used the following configuration: the
master runs on the server and the slaves (one per processor) on the Intel Celeron 366-equipped machines.

Besides, all of the tests have been executed five times for each configuration and the results presented are the mean
value of the five runs.

B. Analysis of the performances of LBGS

For our analysis, we chose the compression of the image we called giraffe5 (984× 1488 pixels). The whole picture was
subdivided into square blocks of 4 × 4 pixels, thus obtaining an input data set of 91512 16-dimensional vectors.

Many tests were performed with this data set, trying several values for NC , N and NST . In particular, the following
values were used:
• NC = {128, 256, 512, 1024, 2048, 4096};
• N = {1, 2, 4, 8, 16};
• NST = {0, 1, 2, 4, 8, 16}; NST = 0 is used for specifying the case with no interaction between the tasks, i.e. when, after
the pre-clustering, each of them takes its portion of data and works in a totally independent way from the others.

Here, we report only the results related to the case NC = 4096 because, with this value, the problem starts to be
sufficiently complex for an objective evaluation of the performances of LBGS.

N NST RMSE PSNR ∆E% m T S
1 1 7,379 42.81 0,00 10,00 5085,176 1,00

0 7.179 43.05 -2.72 8.00 1098.923 4.63
1 7,162 43.07 -2,94 9,80 1255,799 4,05
2 7,164 43.07 -2,92 9,70 1208,227 4,21

2 4 7,177 43.05 -2,74 8,50 1193,015 4,26
8 7,181 43.05 -2,69 8,80 1270,667 4,00
16 7,181 43.05 -2,69 7,60 1091,681 4,66
0 7.231 42.99 -2.01 8.75 224.404 22.66
1 7,217 43.00 -2,20 10,60 292,933 17,36
2 7,219 43.00 -2,18 9,55 279,202 18,21

4 4 7,217 43.00 -2,20 10,00 282,154 18,02
8 7,218 43.00 -2,19 10,15 290,096 17,53
16 7,228 42.99 -2,05 9,75 269,135 18,89
0 7.368 42.82 -0.15 9.75 66.233 76.78
1 7,335 42.86 -0,60 12,05 88,288 57,60
2 7,332 42.87 -0,65 14,58 100,696 50,50

8 4 7,355 42.84 -0,34 9,70 77,690 65,45
8 7,340 42.86 -0,53 11,65 76,568 66,41
16 7,354 42.84 -0,34 11,03 83,430 60,95
0 7.305 42.90 -1.01 8.44 23.008 221.02
1 7,217 43.00 -2,19 19,81 33,720 150,80
2 7,228 42.99 -2,06 21,40 36,424 139,61

16 4 7,255 42.96 -1,68 12,29 27,917 182,15
8 7,271 42.94 -1,47 11,03 26,332 193,12
16 7,281 42.93 -1,33 9,28 24,518 207,41

TABLE II
Results of LBGS for NC = 4096 with giraffe

Fig. 9 shows the trend of RMSE with NC = 4096 when the configuration changes. In the picture, we can see also a
curve labeled as ser0. Its meaning will be explained in the next sub-sections. Equally, Fig. 10 shows the trend of the
speed-up (S) for the same value of NC (NC = 4096).

Table II summarizes the results related to the compression of giraffe for NC=4096.
From Fig. 10 we can see that the final results depend on both N and NST . Thus, the values reported in the columns

of Table II have to be considered as functions of N and NST . In this table, several symbols appear, whose meaning has
not been explained yet. They are:

5available at ftp://ai.unime.it/pub/data/giraffe.raw
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• PSNR: The Peak Signal to Noise Ratio (PSNR) is often used in image applications to evaluate the resulting images
after the quantization process. The PSNR is defined as follows:

PSNR = 10 log10

2552

1
IJ

I−1∑
i=0

J−1∑
j=0

(f(i, j) − f̂(i, j))2
(13)

where f(i, j) and f̂(i, j) are respectively the grey level of the original image and the reconstructed one. All grey levels
are represented with an integer value comprised in [0, 255].
In our case, blocks of 4×4 pixels are considered (16-dimensional patterns) therefore I = J = 4 and the result of the sum-
mations in equation (13) is equal to (RMSE)2. It follows that the PSNR can be evaluated as 60.17− 20 log10(RMSE),
that is the expression used in Table II.
• ∆E%: percentage variation of the error with respect to the serial version. Its analytical definition is:

∆E(N, NST )% = 100 × RMSE(N, NST ) − RMSE(1, 1)
RMSE(1, 1)

(14)

• m: mean number of iterations executed by the tasks;
• T : total execution time of the algorithm;
• S: speed-up of the total execution time of the algorithm with respect to the execution time of the serial version, i.e.:

S(N, NST ) =
T (1, 1)

T (N, NST )
(15)
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From the analysis of the results published in the paper and of the innumerable ones not reported for the sake of saving
space, we have deduced that:
• sometimes, LBGS reaches a quantization error lower than the serial version;
• even in the cases where the error of LBGS is greater than the serial version, such an increase is contained in a few
percentage points;
• generally, N being fixed, when NST changes, performances and efficiency have opposite trends. In fact, larger values
of RMSE match larger values of S and vice versa;
• strange but true, there are some cases where LBGS obtains speed-ups larger than N2, i.e. the value that, in Section
VII-C, had been presented as the maximum theoretical achieveable;

All of these observations will be explained and justified in detail in the next sub-sections together with an in-depth
study of the dependence of the final results on the configuration parameters. This is very important because, on the
basis of such knowledge, the user can decide to favour performance at the expense of speed-up or vice versa.

At first, we will study the dependence of RMSE on N and NST ; afterwards, we will consider the dependence of S on
the same parameters.

B.1 How RMSE changes when N changes (NST being fixed)

NST being fixed, when N increases, we expect an increase of RMSE as a consequence of splitting the problem into
(almost) independent sub-problems. However, by analyzing Fig. 9 we can see a rather different trend.

To understand such behaviour, we must remember that, in an iterative optimization technique (like LBG), generally,
both the initialization and the optimization phase affect the final result. We have also seen that algorithms such as
ELBG, PARELBG and PAUL are virtually independent of the initialization because they include particular mechanisms
to escape from the situations of local minima. On the contrary, LBGS derives from LBG and, for this reason, it is sensitive
to the choice of the initial codebook.

Let us try to analyze how the two phases contribute to the achievement of the final result when N changes.
• Optimization. When N increases, the optimization is executed by an ever larger number of tasks working in an
(almost) independent way from each other. This produces an increase of the final RMSE.
• Initialization. Let us remember that, in LBGS, initialization occurs in two phases (see Section VI). The former
consists of the pre-clustering, whose result is the partitioning of the IDS into N macro-cells. Afterwards, the total
distortion of each macro-cell is used to establish the number of codewords (NCi) that the ith task has to calculate. This
enables us to assign a larger number of codewords to macro-cells with large distortion and a lower number where the
distortion is low. Thus, it appears that when N increases, as the number of initial macro-cells increases too, a smarter
initialization occurs, better than the one obtained in the serial case or for low values of N . We are going to see that such
a trend is often (but not always) observed. In fact, the assignment, to each task, of a number of codewords proportional
to the distortion of the original macro-cell is a very efficient heuristics but nothing ensures its optimality.
In order to estimate the effect of the initialization, the curve labeled ser0 has been drawn. It is obtained by initializing
the codebook, for each value of N , as if it was the parallel algorithm. This is realized by executing the pre-clustering
with N macro-cells, splitting each of them up to NCi and respecting (8). Afterwards, the N portions of initial codewords
(each constituted by NCi elements) are joined and the optimization phase starts. This is executed serially, i.e. by a
single task and not distributing the data among different tasks.
Of course, for the same values of NC and N , the error of ser0 is the lowest because, with the same initialization, the
serial algorithm produces the best result. The trend of ser0 shows exactly how the initialization affects the behaviour of
the algorithm. We can see in Fig. 9 that the other curves have the same trend as ser0. Therefore the behaviour of the
RMSE is not due to the modification introduced in the LBGS but to the original LBG and its sensitivity to different
initializations.

B.2 How RMSE changes when NST changes (N being fixed)

The number of the super-codewords affects the degree of interaction between the tasks; so, this study will provide
useful information about the values to employ for the parameter NST .

The first observation is that, for low values of N (N=2,4) the curves (except for ser0) overlap whereas they tend to
split when N increases. This can be explained by considering that, for low values of N , a few patterns and codewords are
in the border regions between the various group of patterns. Consequently, the interaction between the tasks (connected
to the number of the super-codewords and, consequently, to NST ) has a small influence on the final result. On the
contrary, for larger values of N , the interaction between the tasks becomes an important factor affecting the final RMSE
obtained. In that case, the following considerations are valid:
• generally, the curve related to NST = 0 (i.e., the case without any inter-process communication) represents the highest
error; this implies that super-clustering and inter-process communication improve the quality of the final result;
• generally, the best results are obtained for low values of NST (NST = 1, 2), whereas RMSE increases when NST

increases. This occurs because, for larger values of NST (and, consequently, of NS), the quality of the super-clustering
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improves and the super-codewords of each process are a better approximation of the related codewords with the effect of
a decrease in migrations. In this way, the number of mean iterations executed by the slaves decreases and, consequently,
RMSE increases. In other words, when NST increases, migrations decrease. A lower number of migrations implies that
also m decreases with the consequent increase of RMSE.

B.3 Speed-up: discussion regarding the effect of N and NST

We saw in Section VII-C that, in the ideal case, the complexity of LBGS is O(NP ×NC

N2 ). Therefore, N2 could be
considered as the maximum theoretical value achieveable for the speed-up with respect to the serial version, whose
complexity is O(NP × NC). However, the complexity in question has been calculated by considering, in the case of a
perfect load balancing, the number of distance calculations executed by each task per iteration. But, we know that,
in LBGS, the tasks work almost independently of each other; so, even if the hypothesis of perfect load balancing is
verified, each of them converges in a number of iterations that, generally, is different from the others. Besides, it is also
dependent on the configuration parameters. Therefore, a meaningful evaluation of the speed-up of LBGS with respect
to LBG can be performed only by considering the total execution times (see equation (15) ). The employment of mean
values per task and/or per iteration produces poor-utility estimates from a practical point of view.

After such considerations, we can say that N2 has to be considered as a simply theoretical reference for the speed-up.
In fact, on the one hand there are the factors discussed in Sections V-C and VII-C (serial part of the initialization,
non-perfect load balancing, inter-process communication) that, by introducing overheads with respect to the ideal case,
reduce the speed-up with respect to the value N2; on the other hand, we have to consider the variation of the number
of iterations executed by the processes when the configuration changes. The latter factor, can produce both an increase
and a decrease of the speed-up. In this way, it is possible to justify the presence of values of S greater than N2 in Table
II.

Like RMSE, S depends on the value of NST (as well as the value of N), too. In this respect, we can make the following
considerations about Fig. 10:
• NST being fixed, S increases when N increases;
• For low values of N (N=2,4) the curves (excpept for par0) overlap, while they tend to split when S increseases. Such
behaviour, analogous to what we have seen for RMSE, can be explained in the same way: for low values of N , each
macro-cell is large and the effect of the interaction between tasks is slight. On the contrary, for higher values of N , the
interaction is greater and the curves tend to be different from each other.
In that case, the best results, in terms of speed-up, are obtained for high values of NST . This is because, as we have
seen in Section VIII-B.2, when NST increases, the improved super-clustering leads to a reduction of the mean number of
iterations executed by the slaves. This means that a reduction of the computing time occurs with the consequent increase
of the speed-up. Also in this case, it is useful to analyze Table II where some useful numeric values for understanding
the phenomenon are reported.
Summarizing, if NST increases, a lower number of migrations occur, m decreases and S increases.

From the analysis of Table II it is possible to observe the quite relevant results, in terms of speed-up, for the most
complex problem among those considerated, i.e. the compression of giraffe with NC=4096. In particular, for N=16 and
NST =16, we get an execution time of 24.5 s whereas the serial execution time is 5085 s. This is a speed-up of about 207
(corresponding to a reduction in the elaboration time of 99.5%). On the contrary, if we prefer a higher quality clustering,
by choosing NST = 1, the other configuration parameters being fixed, we get a speed-up close to 151 (reduction of 99.3%
of the computing time). In both cases, for the reasons explained above (effect of a better initialization) there is a
reduction in the RMSE with respect to the serial version that is quantifiable in 1.33% and 2.19%, respectively.

B.4 Conclusions

From the detailed analysis of the results we have presented, the importance of NST appears. It is a parameter
the user can modify and through which decide if to privilege performance at the expense of speed-up or vice versa.
Summarizing, we can say that for low values of NST (NST =1,2), better performances (lower final quantization error)
and lower efficiency (lower speed-up) are obtained. When NST increases, speed-up increases, but the final quantization
error increases, too.

C. Comparison with PKM, PARELBG and PAUL

Let us now compare the performance of LBGS with the performances of several previous applications implemented
on the same computing system, i.e. the MULTISOFT machine. They are PKM and PARELBG, discussed before in
Section V and PAUL [24], a parallel algorithm for unsupervised learning deriving from ELBG [13,32, 33].

The comparison with PARELBG is very useful for the evaluation of the performances. In fact, as PARELEBG is
the PISA-version of ELBG, the two algorithms have the the same performances that, from the numerous comparisons
presented in [13], are better than or equal to the ones of the other algorithms considered.
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PARLBG PARELBG PAUL LBGS
NC NT RMSE PSNR Sp RMSE PSNR Sp RMSE PSNR Sp RMSE PSNR Sp

1 33.744 29.61 1.00 25.815 31.93 1.00 25.815 31.93 1.00 26.571 31.68 1.00
2 33.744 29.61 1.85 25.815 31.93 1.58 25.802 31.94 1.81 26.786 31.61 4.18

256 4 33.744 29.61 3.44 25.815 31.93 2.48 25.815 31.93 3.11 26.871 31.58 15.74
8 33.744 29.61 5.83 25.815 31.93 3.39 25.861 31.92 4.37 26.481 31.71 25.19
16 33.744 29.61 7.51 25.815 31.93 4.00 25.908 31.90 4.59 26.689 31.64 32.62
1 31.751 30.14 1.00 22.508 33.12 1.00 22.508 33.12 1.00 23.649 32.69 1.00
2 31.751 30.14 1.95 22.508 33.12 1.72 22.557 33.10 1.79 23.755 32.66 3.61

512 4 31.751 30.14 3.73 22.508 33.12 2.83 22.580 33.10 3.38 23.715 32.67 13.35
8 31.751 30.14 6.79 22.508 33.12 4.18 22.561 33.10 5.78 23.195 32.86 21.46
16 31.751 30.14 9.02 22.508 33.12 5.32 22.604 33.09 6.04 23.256 32.84 41.94
1 30.517 30.48 1.00 19.047 34.57 1.00 19.047 34.57 1.00 20.610 33.89 1.00
2 30.517 30.48 1.98 19.047 34.57 1.84 19.037 34.58 1.74 20.680 33.86 3.57

1024 4 30.517 30.48 3.89 19.047 34.57 2.95 19.047 34.57 3.24 20.276 34.03 13.45
8 30.517 30.48 7.17 19.047 34.57 4.65 19.101 34.55 5.04 19.845 34.22 27.89
16 30.571 30.48 11.24 19.047 34.57 6.35 19.101 34.55 8.35 19.655 34.30 54.06

TABLE III
Comparison of the results obtained by PARLBG, PARELBG, PAUL and LBGS with Lena

PAUL LBGS
NC NT RMSE PSNR Sp RMSE PSNR Sp

1 13.724 37.42 1.00 13.902 37.31 1.00
2 13.754 37.40 1.78 13.923 37.295 3.88

128 4 13.737 37.41 2.43 13.984 37.257 8.77
8 13.768 37.39 1.96 14.149 37.16 19.66
16 13.803 37.37 1.33 14.469 36.96 19.63
1 11.973 38.61 1.00 12.158 38.47 1.00
2 11.983 38.60 1.82 12.086 38.52 4.12

256 4 11.988 38.60 2.87 12.173 38.46 12.06
8 11.995 38.59 3.17 12.368 38.32 33.25
16 12.010 38.58 2.47 12.463 38.26 31.98
1 10.487 39.76 1.00 10.713 39.57 1.00
2 10.492 39.75 1.90 10.612 39.65 3.98

512 4 10.498 39.75 3.47 10.661 39.61 12.72
8 10.503 39.74 5.24 10.843 39.47 34.82
16 10.517 39.73 4.32 10.879 39.44 50.98
1 9.228 40.87 1.00 9.499 40.62 1.00
2 9.230 40.87 1.79 9.345 40.76 3.92

1024 4 9.244 40.85 2.94 9.438 40.67 15.98
8 9.244 40.85 5.24 9.555 40.57 34.91
16 9.247 40.85 7.51 9.580 40.54 75.97
1 8.078 42.02 1.00 8.402 41.68 1.00
2 8.088 42.01 2.06 8.251 41.84 5.03

2048 4 8.096 42.00 4.02 8.302 41.79 19.49
8 8.109 41.99 7.77 8.419 41.67 62.27
16 8.115 41.98 11.51 8.379 41.71 122.04
1 6.937 43.35 1.00 7.379 42.81 1.00
2 6.943 43.34 1.90 7.162 43.07 4.05

4096 4 6.958 43.32 3.73 7.217 43.00 17.36
8 6.967 43.31 7.11 7.335 42.86 57.60
16 6.990 43.28 12.55 7.217 43.00 150.80

TABLE IV
Comparison of the results of PAUL and LBGS with giraffe

The first test reported in Table III compares the results obtained by PKM, PARELBG PAUL and LBGS with the
famous image of Lena [43]. The original 8-bit gray level picture was subdivided into square blocks of 4 × 4 pixels, thus
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obtaining an input data set of 16384 16-dimensional vectors.
Actually, this task is too easy for LBGS which, as we have said many times, has been developed for very complex

applications where many patterns and many codewords are involved; however, Lena is the most widely employed data
set in the works that we deal with.

In Table III, the results otained by LBGS refer to the configuration with NST = 1 because it is the value that we
propose to use in most cases. As illustrated in Section VIII-B, it privileges the minimization of RMSE at the expense
of S.

Observations:
• in all of the cases examined, LBGS has the best speed-up;
• PARELBG and PAUL have the best performances in all of the cases considered. The performances of LBGS are a
little worse but its efficiency is much higher. For example, with NC = 1024 and N = 16, its RMSE is 2.9% higher with
respect to the one obtained by PAUL (which is almost the same as PARELBG and ELBG), but the speed-up is about
6.5 times the speed-up of PAUL.

In Table IV, a comparison is reported between LBGS and PAUL with the data set giraffe. The same considerations
made about Lena can be repeated.

D. Comparison with S-TREE

LBGS gets its high efficiency from the use of some techniques for reducing the number of distance calculations between
patterns and codewords with respect to the number performed by LBG. In literature, other types of algorithms using
similar solutions can be found. Among them, we cite the tree structured algorithms because the organization of the
codebook in such techniques is similar to the hierarchical structure supercodewords-codewords of LBGS.

In particular, we consider the S-TREE algorithms [23]; they obtain better results than traditional Tree-structured
Vector Quantization (TSVQ) [26], regarding both performances and efficiency.

An immediate comparison between S-TREE and LBGS is not easy to realize because LBGS was born directly as
a parallel algorithm, whereas S-TREE algorithms have been presented only in serial version. For this reason, before
comparing the two algorithms, it is necessary to make some considerations:
• the data set employed by the authors of S-TREE [23] for training their systems is composed of four gray-scale (8 bits)
images of 256× 256 pixels size; they are subdivided into square blocks of 4× 4 pixels, thus obtaining, altogether, 16384
16-dimensional vectors. Such a data set is equivalent, regarding size, to our Lena (512 × 512 pixels) that we will use in
this test;
• in [23], the authors report the results obtained, with the data set described at the previous point, by their S-TREE1
and S-TREE2, by the Generalized Lloyd Algorithm (GLA, the other name commonly used for LBG) and by TSVQ.
Tests are repeated for several values of NC and, for each of them, the training time and the PSNR of the codebook
obtained are reported. We have used the training times to calculate the speed-up of TSVQ, S-TREE1 and S-TREE2
with respect to GLA;
• to compare the speed-up of LBGS with the ones obtained by the serial algorithms cited above, we divide the value of
S obtained by LBGS (according to (15) ) by the number of hosts (N) used for executing the parallel algorithm. Such
a normalized speed-up can be directly compared with the values extracted from [23] where, we must remember, the
algorithms are considered only in serial form.

The result of the comparison is presented in Figs. 11 and 12.
Some considerations regarding the figures:

• we have chosen the tests related to NC = 512 because, for such a value, both the S-TREE algorithms and TSVQ have
the highest speed-up with respect to GLA;
• the values of delta PSNR and Snorm of LBGS are the mean values of the results obtained with different values of NST

(1,2,4,8);
• the PSNR obtained by LBGS is the best of all, that of TSVQ is the worst;
• the Snorm obtained by LBGS is lower than the other algorithms but, some remarks have to be made in this regard:
– we have supposed the ideal case of linear speed-up for all of the algorithms considered (TSVQ, S-TREE1 and S-

TREE2) in the event of a PISA version for them. Of course, in the real case, all of the overheads introduced by the
factors described in Section V-C should be kept in mind; whereas, for LBGS, the values reported are already inclusive
of such overheads;
– in LBGS, Snorm, at first, increases when N increases and, after, saturates. In the ideal case (see Section VII-C), it is

Snorm = N ; we expect that, for more complex problems the increasing trend of Snorm continues to higher values of N .
In conclusion, from the comparison between S-TREE1, S-TREE2, TSVQ and LBGS we can see that, if the main

requirement of the quantization task is precision, then LBGS is the algorithm to take into consideration; otherwise, the
development of techniques like S-TREE on parallel systems is suggested.
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IX. Conclusions

This paper describes a new algorithm named LBGS. It derives from the well-known clustering technique called LBG
and has been designed as a new proposal in the field of VQ techniques for very complex problems, where the number
of both patterns and codewords is large. LBGS inserts some heuristic changes to LBG that, on the one hand allow its
implementation in a very suitable way on parallel and/or distributed hardware; on the other hand, they lead to slightly
worse performances, in terms of quantization error. In literature, several types of research exist in this field and LBGS is
a valid instrument in those cases where it is necessary to obtain low computing times (by parallel algorithms) without an
excessive deterioration of performance. Other algorithms are more inclined to parallelization (i.e., it is possible to obtain
lower computing times with the same hardware and data) but, from the point of view of error, they obtain definitely a
worse error. Besides, LBGS is, to some extent, configurable; so, the user can, within certain limits, privilege speed at
the expense of error or vice versa. Such an interesting characteristic is rather uncommon in literature.
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[42] C.Chinrungrueng and C.H. Séquin, “Optimal adaptive K-Means Algorithm with Dynamic Adjustament of Learning Rate,”
IEEE Transaction on Neural Networks, vol. 6, pp. 157–169, Jan. 1995.

[43] D.C.Munson, Jr., “A Note on Lena,” IEEE Transactions on Image Processing, vol. 5, p. 3, Jan. 1996.


