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Abstract

A fully non-linear analysis of forcing influences on temperatures is performed in the climate system by means of neural
network modelling. Two case studies are investigated, in order to establish the main factors that drove the temperature behaviou
at both global and regional scales in the last 140 years. In particular, our neural network model shows the ability to catch
non-linear relationships among these variables and to reconstruct temperature records with a high degree of accuracy. In thi:
framework, we clearly show the need of including anthropogenic inputs for explaining the temperature behaviour at global scale
and recognise the role of El Mb southern oscillation for catching the inter-annual variability of temperature data. Furthermore,
we analyse the relative influence of global forcing and a regional circulation pattern in determining the winter temperatures in
Central England, showing that the North Atlantic oscillation represents the driven element in this case study. Our modelling
activity and results can be very useful for simple assessments of relationships in the complex climate system and for identifying
the fundamental elements leading to a successful downscaling of atmosphere—ocean general circulation models.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction By means of AOGCMs, we can use our theoretical
description of the single main phenomena and pro-
Itis well known that atmosphere—ocean general cir- cesses in the climate system, put them together in a
culation models (AOGCMs) are the standard tools for system of equations and parametrisation routines and
grasping the complexity of climate system and sim- dynamically reconstruct the simplified behaviour of
ulating its behaviour, in the past as well as in future this complex system in a computer, that can be seen
scenarios. In particular, they allow us to reconstruct as a virtual laboratory. In this context, we are able to
and forecast the climate at large scale. recognise the role of some cause—effect relationships
and to relate them with the underlying causes of the
"+ Corresponding author. Tel.: +39 06 90672274: major changes in the behaviour of some important vari-
fax: +39 06 90672660. ables, like the annual global temperatuf®(ghton et
E-mail address: pasini@iia.cnr.it (A. Pasini). al., 200).
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Nevertheless, this dynamical approach also shows Walter and Scbnwiese (2002)he authors’ attention
some limits in the simulations at regional and local was devoted almostcompletely to attribution and detec-
scales and, at a more fundamental stage, in the delicatetion of anthropogenic climate change; here, we discuss
balance among the relative strength of feedbacks andthe role of both natural and anthropogenic forcings,
the various parametrisation routines, which can cru- together with the peculiar contributions of El iidi
cially affect the results of AOGCMs. southern oscillation (ENSO) and the North Atlantic

In this framework, a non-dynamical approach, oscillation (NAO) to the temperature behaviour at
which is able to catch non-linear relationships among global and regional scales, by using real time series
several variables in the climate system, can be use-as references. Finally, the present paper is an improve-
ful in order to perform an independent analysis of ment of previous analyseB4sini et al., 2003b
influence/causality, to “weight” the magnitude of dif- In what follows we will present the data available
ferent causes on a single effect (like the temperature in literature and in web sites (Secti@hand our neural
variations) and to assess the relative importance of network model (SectioB)). In Sectiond, an influence
global forcings and regional circulation patterns, even analysis of physical-chemical forcings and ENSO on
on regional mean variables. the behaviour of annual global temperature will be per-

The simplest non-dynamical approach is surely formed. In Sectiorb, a regional case study, related
given by the application of a multivariate linear regres- to the influence of global forcings and the NAO phe-
sion model (forcings versus temperature) in the attempt nomenon on the temperature time pattern in an English
at understanding the amount of variance explained by region, will be presented. Finally, we will draw brief
the various forcings in the reconstruction of tempera- conclusions and discuss about further possible work.
ture records. But, as we will see, a linear model is too
simple to catch the complex non-linear behaviour of
the temperature. So, in this situation, a neural network 2. pata
model could be useful, due to its characteristic features

of a multivariate non-linear regression model thatcan At present, in both recent papers and web sites

be seen as a global correlative law-finder. a lot of quantitative information is available about
Recently, neural network models were specifically global/regional meteorological parameters and indices,

developed and applied to particular problems in atmo- as well as data about physical-chemical forcings to

spheric and climate sciences, namely in boundary layer the climate system. Here, we deal with the following
short range forecasting?ésini and Ameli, 2003 El data:

Niflo prediction Tangang et al., 199&nd AOGCMs

downscaling $nell et al., 200D Here, we adopt this e Global temperature anomalies since 1856 (from

neural strategy and concentrate on two case stud- http://www.cru.uea.ac.9k

ies in which we can analyse the influence of natu- e Central England temperatures (CET) since 1659

ral/anthropogenic forcings and circulation patterns on  (from http://www.badc.nerc.ac.uk/data/ceThese

the temperature behaviour at global and regional scales. monthly mean temperatures are representative of
At our knowledge, a similar neural approach has a roughly triangular area of the United Kingdom

been followed in the past only Biyalter et al. (1998) enclosed by Preston, London and Bristol.

and Walter and Scbnwiese (2002) However, our e Solar irradiance anomalies, representative of the

present attempt is quite different from their investiga-
tion, for several reasons. First of all, we develop and

apply a neural network model endowed with some well e
founded peculiarities, like the presence of amomentum

term in the backpropagation training rule, the applica-
tion of a so-called “all frame” training, to be discussed
in Section3, and a network topology characterised

by few hidden neurons for short time series analy- e

sis. Furthermore, while irWalter et al. (1998)and

solar activity, since 1700 (frorhloyt and Schatten
(1993)andhttp://daac.gsfc.nasa.gov

Stratospheric aerosol optical thickness at 550 nm
since 1850 (fronBato et al. (1993andhttp://www.
giss.nasa.gov/data/stratpehis series is represen-
tative of the past volcanic activity in terms of the
optical properties of low stratosphere.

Global concentration of carbon dioxide (g)ince
1860 (fromhttp://cdiac.esd.ornl.ggv


http://www.cru.uea.ac.uk/
http://www.badc.nerc.ac.uk/data/cet
http://daac.gsfc.nasa.gov/
http://www.giss.nasa.gov/data/strataer
http://www.giss.nasa.gov/data/strataer
http://cdiac.esd.ornl.gov/
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e Emissions of sulfates (SQ at global level since  al. (2003a) Finally, an early stopping method is also
1850 (from http://www.rpi.edui~sternd/datasite.  used in order to prevent overfitting.

html). As far as the topology of our neural networks is
e Southern oscillation index (SOI), related to ENSO, concerned, we stress that it is driven by the peculiar

since 1866 (fronhttp://www.cru.uea.ac.gk problem we handle with. In particular, we aim at per-
o Monthly NAO index since 1821 (frorhttp://www. forming a multivariate non-linear regression by neural

cru.uea.ac.uk modelling in order to understand the possible influence

role of forcings and circulation patterns (inputs) in the
Hereafter, we will consider solar irradiance and determination of a record of temperature at a global
stratospheric optical thickness as indices of natural or regional scale (target). Thus, in the following we
forcings to the climate system, while G@oncentra-  consider networks characterised by up to five inputs
tion and sulfate emissions will be considered as anthro- and one output; furthermore, we deal with few (four
pogenic forcings. or five) hidden neurons in a single hidden layer: this
In what follows, our idea is to analyse the influence  allows us to obtain a good representation of the under-
of these forcings and of the circulation patterns on the |ying function without falling down into any kind of
available series of temperatures, in order to understandoyerfitting.
which of them are the most important so to allow us Once trained, the neural network is nothing but a
to reconstruct the temperature records at global and function that maps input patterns to values of temper-
regional scales. In doing so, we apply a neural net- ature at the same time, thus representing a fully non-
work model, that will be briefly described in the next |inear diagnostic correlative law, which links together
section. a set of inputs (physical-chemical variables and circu-
lation patterns) and the values of temperature forced by
them. However, due to the non-linear nature of network
3. Neural network model regression, a neural model would be able to exactly
mimic the target values without extracting any corre-
A neural network development environment, char- lation law if the correspondent inputs—target patterns
acterised by some original features, has been createdare included in the training set and a sufficiently large
some years agdP@sini and Poteat 1999. Its models number of hidden neurons were allowed. Thus, in order
and training facilities have been progressively applied to discover the physical relationship between inputs
to short-range prognostic problems in the boundary and targets, we exclude some inputs—target pair from
layer (Pasini and Poteadt 1995; Pasini et al., 2001, the training set on which we build the correlative law.
2003a; Pasini and Ameli, 20Dp3Recently, also a pre-  Once trained the network, we use the excluded pairs as
liminary attempt at analysing climatic data has been a validation/test set in order to assess the modelling
performed by the same todPésini et al., 2003b performance on new cases that are unknown to the
The neural networks considered in the present study network.
are feed-forward and trained by means of a backprop- Due to the limited statistics available (about 140
agation strategy. We use a generalised Widrow—Hoff inputs—target patterns for each case study), every tem-
rule for updating the connection weights that is char- perature value is estimated at a time after the exclusion
acterised by the presence of both gradient descent andof the correspondent inputs—target pattern from the
momentum termsRasini and Potesf 1999. A partic- training set used for fixing the connection weights.
ular attention is paid to the form of sigmoids, which Here, we use a facility of our tool, the so-called “all
represent our neural transfer functions: therein, the frame” training procedure: it is simply sketched in
arguments of the exponential function are normalised Fig. 1, where our total set of patterns is divided in
with respect to the number of connections converging two subsets. The white squares represent the elements
to a single neuron of the input and hidden layer, respec- (patterns) of our training set, while the gray square
tively, as sketched iRasini et al. (2001)A discussion (one single element) represents the test set. The relative
aboutthis choice and its advantages, together with prac-compositions of training and test sets change at each
tical examples of application, can be foundiasini et step of an iterative procedure of training + test cycles.


http://www.rpi.edu/~sternd/datasite.html
http://www.rpi.edu/~sternd/datasite.html
http://www.cru.uea.ac.uk/
http://www.cru.uea.ac.uk/
http://www.cru.uea.ac.uk/
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j-th estimation perature time pattern in the following four cases, when
(T T T T T T T Tl T T 11 the models themselves are fed by data about:

(a) natural forcings only;

otal o PAteL (b) anthropogenic forcings only;
(c) natural + anthropogenic forcings;
(i+1)-th estimation (d) natural +anthropogenic forcings + ENSO.

L PP PP Tl [T ] In doing so, we adopt the “all frame” training pro-
\ cedure previously described, for both the neural model
\ ot pa@/ and the multi-linear regression. In the latter case, we
total set ,
estimate each annual temperature by means of the lin-
Fig. 1. Sketch of the iterative procedure called “all frame” training. ear combination law obtained by the regression on
the other forcings/temperature patterns of our sam-
A *“hole” in the complete set represents our test set and ple. As well known, due to the use of a least-squares
moves across this total set of patterns, thus permitting method in the linear regression, our “all frame” pro-
the estimation of all temperature values at the end of cedure could enhance the role of outliers in this case.
the procedure. For this reason, together with the classical multivari-
ate linear regression, we perform also a “robust” linear
regression endowed with distinct weights for the out-
4. An influence analysis at global scale liers themselves: anyway, the results are very similar
and we can find differences only in the fourth decimal
In this first case study at global level, we would digit of the linear correlation coefficient.
like to estimate the influence of natural/anthropogenic  The performance of linear and neural models in
forcings and ENSO on the behaviour of annual global reconstructing the global annual temperature is pre-
mean temperature since 1866. As already cited in Sec-sented inTable 1in terms of the linear correlation
tion 2, here we consider solar irradiance and strato- coefficientR (observedr versus estimated). Note
spheric optical depth as indices of natural forcings that the error bars associated to the results of the neural
on the climate system, while GQroncentration and  network model come from ensemble runs (10 for each
sulfate emissions, mainly due to manmade activities, case) with different random initial weights, so that the
are seen as anthropogenic forcings. Furthermore, alsonetworks are able to widely explore the landscapes of
data about the ENSO phenomenon are included in the cost functions: they indicat&2 standard devia-
this analysis, because the large amount of ocean sur-tions.
face affected by the oscillation between warming and  With reference toTable 1 it is clear that the full
cooling periods and recognised ENSO teleconnections non-linear method (neural networks) allows us to bet-
with other regions of the world (see, for instance, terreconstructtemperature in the last three cases, while
Bronniman et al. (2004)could contribute to deter-  the relationship between natural forcings and temper-
mine the value of annual mean temperature over the ature is probably characterised by a weak non-linear
world. component which does not permit to overcome the
The first preliminary aim of our investigation is to  |inear performance. Furthermore, when anthropogenic
assess the non-linearities hidden in the climate system
as represented by our data about physical-chemicalTable 1
forcings, an inter-connected ocean—atmosphere circu-Reconstruction performance in terms of the linear correlation coef-
lation pattern (ENSO) and temperature. For this rea- ficient R for this analysis at global scale (four case studies)

son, together with the application of a neural network Input forcings Linear model ~ Neural model
model, we use a classical multivariate linear analysis, Natural 0.661 0.622:0.014
too. By these models, we want to achieve also our fun- Anthropogenic 0.818 0.84%0.005
damental goal, the cited influence analysis, by finding Natural +anthropogenic 0.828 0.832.005
Natural + anthropogenic+ ENSO  0.844 0.870.004

the best linear and non-linear reconstructions of tem-
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forcings were taken into account, the increase in per- can appreciate the better performance obtained by neu-
formance is statistically significant (outside the error ral modelling. Furthermore, in any of these latter cases,
bars). In these latter cases, a fully non-linear model only a smooth trend is partially caught by the linear
shows its usefulness in catching non-linearities hidden model, and no sign of inter-annual variability is shown
in the data and in using them for exploring correlative by the reconstructed temperatures.

laws that grasp just this non-linear influence of forcings Now, with reference td-ig. 2, we analyse in more

on global temperature. detail the results coming from the application of our
A more comprehensive analysis can be performed neural network model to this global case study.
by looking at the specific time evolution of recon- First of all, it is clear that taking only the natural

structed temperature versus the observed temperaturénputs into account, we are not able to find a correlative
record. Even if we do not show the graphs related to the law that explains the behaviour of global temperature.
performance of linear correlation for lack of space, we In particular, we find a very strong failure in the recon-
can say that, in the case of linear and neural models fedstruction during the period 1900-1960 and we can note
by natural forcings only, a similar failure in reconstruct-  difficulties even for the more recent warming of the last
ing temperature is visible, while, in the other cases, we decade. Our result can be compared with an analogous
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Fig. 2. Observed annual global temperature (black curve) vs. estimated annual global temperature by neural modelling (gray curve) when the
networks have been trained by inputs related to: (a) natural forcings only; (b) anthropogenic forcings only; (c) natural + anthropogenic forcings;
(d) natural + anthropogenic forcings + ENSO.
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failure in reconstructing the global temperature record Amplitude Spectrum of Residuals
by application of ensemble runs of an AOGCM driven ‘ ‘ ‘ ‘
uniguely by observed variations of natural forcings in
the pastfoughton etal., 2001In that dynamical anal-
ysis a peculiar failure in reconstructing the warming of
the last 40 years was found and this result (among many
others) leads to consider the anthropogenic forcings as
fundamental for reconstructing the global temperature
of this recent period. In the present analysis, because of —15
the nature of neural modelling (which can be defined
as a globally correlative and non-dynamical method), —20}
our results cannot infer so precise conclusions, but sub-
stantially mean that our networks are not able to find -28
a valid correlative law if fed by natural inputs only.

Among the many correlative laws explored during the Frequency [cycles per 10 years]
training phase (each of them is erroneous), the law
finally found is simply the closer one to the target
data.

In the second application of the neural model to our to say that ENSO acts as a second-order corrector to
global problem, when two anthropogenic forcings are the estimation obtained by anthropogenic and natural
used to feed the network, we can appreciate a very evi- forcings and leads to a better catching of inter-annual
dent increase in performance. In particular, the trend variability. Nevertheless, we can note that, of course,
of global temperature is well recovered and some dis- in a non-linear system we cannot separate the single
crepancies can be only found in the too smooth form of contributions to the final result.
the reconstructed temperature, which shows only weak  As a partial conclusion, we can say that this anal-
traces of an inter-annual variability, in the overestima- ysis clearly shows a strong non-linear link between
tion of the absolute minimum and the underestimation anthropogenic forcings and the temperature record of
of arelative maximum (around 1945) of the time series. the period considered, so that these forcings can appear
Anyway, this result shows the need to consider the asthe main probable causes of these changes. Further-
real variations of anthropogenic forcings if we want more, the joint use of anthropogenic/natural forcings
to reconstruct the annual global temperature. This hints and ENSO data leads to a very good reconstruction of
that anthropogenic forcings can be fundamental causesour time series, so that we can advance the hypothe-
of temperature variations during the period considered sis that the variance not explained by our final model
here. could be probably due (almost completely) to a natural

The natural further step in our analysis is the intro- variability of the climate system.
duction of data about both anthropogenic and natural A simple way to possibly corroborate or falsify this
forcings as inputs in our model. The joint use of these last conjecture is to look at the structure of the residuals
kinds of forcing leads to a very little increase in perfor- in order to understand if they appear as due to arandom
mance (within an error bars overlapping), if compared process or to some hidden dynamics coming from one
to the previous case (anthropogenic forcings only). In or more neglected dynamical causes. As well known
any case, now the amount of variance not explained by by statistics (see, for instanogn Storch and Zwiers
our model is almost completely due to the inter-annual (1999)for a general reference), a random process is
variability. linked to a white noise spectrum in the Fourier analysis

Finally, we add an input neuron to the latter net- and to an autocorrelation function (ACF) characterised
work topology in order to insert data about ENSO. by approximately null values (except the first one). In
The results presented ifable 1andFig. 2(d) show our case, even if such an analysis is obviously limited
that we obtain a further quite consistent improvement by the shortness of the sample available, however, some
in performance. In a certain sense, one could be led considerations can be done by lookindrags. 3 and 4
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Fig. 3. Fourier spectrum of our residual time series.
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Sample Autocorrelation Function of Residuals
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Fig. 4. Autocorrelation function of our residual time series.

First of all, the Fourier spectrum shows no particular
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Fig. 5. MCSSA test against red noise.

dynamics. This “eigenvalues” method is quite complex
and we refer tAllen and Smith (1996andGhil et al.

peak and periodicity. On the other hand, the spectrum (2002)for a wide explanation of its theoretical founda-
trend is almost flat, but some decrease in the amplitude tions. Here, we apply it to our time series of residuals
is visible when frequency increases above three cyclesand discuss about the results showirig. 5.

per 10 years, so that a hypothesis of red or pink noise

can be alternative to that of white noise. Really, we have
not enough data to support one of these hypotheses.
Looking atFig. 4, we see that the autocorrelation
function is almost completely confined inside the lines,
which determine the limits for white noise. Further-
more, some oscillations are visible in the graph, but
these are more uncoupled than in results of previ-
ous studies (se@alter and Schnwiese (2002jor an
example of ACF application to an analogous problem).
As a matter of fact, no undoubted conclusion can be
reached by the analysis of Fourier spectrum and ACF.
Here, the main difficulty is due to the shortness of our

In Fig. 5, the vertical bars represent the confidence
limits for a red noise signal “compatible” with our time
series. They are estimated running a Monte Carlo sim-
ulation, by using an AR(1) process whose parameters
are extracted from the original time series of resid-
uals: this is a usual way of acting when an a priori
knowledge of the process is unknown. Furthermore,
the SSA covariance matrix of our series is projected
onto the eigenbasis of red noise generated by the red
noise parameters cited above, thus giving the projected
eigenvalues in this new basis. fig. 5, the black stars
properly represent these projected eigenvalues. Both
confidence limits and projected eigenvalues are plot-

time series of residuals. Furthermore, these methodsted against the dominant frequencies of the red noise

can allow us to discriminate between white noise and
periodic/dynamic signals, while in geophysical time
series the most frequent feature is the fingerprint of red
noise.

Thus, we choose to apply a more specific tool to
the analysis of our short record of residuals, namely
the so-called Monte Carlo singular spectrum analysis
(MCSSA): secAllen and Smith (1996For a specific
reference andshil et al. (2002)for a more general

eigenbasis.

In Fig. 5, even if the great majority of black stars
liesinside the confidence limits, some points exceeding
these limits suggest the presence of components differ-
ent from red noise, so probably due to some dynamics.

In short, no undoubted conclusion can be reached
by our analysis of residuals. Besides, it is well known
how difficultis to distinguish between noise and chaotic
dynamical signals in short time series. The most power-

review. This method is particularly useful for the anal- fultool used here (MCSSA) shows that some dynamics
ysis of short geophysical time series and can help to can be hidden in these residuals, so suggesting the
distinguish between red noise and signals of hidden presence of further dynamical elements that force the
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climate system, neglected in the present study. Never- 8 -
theless, the large amount of variance explained by our 7
model leads to be confident that the major elements of . | Iy
the climate dynamics have been considered here and £, 1N T A ) 'r”
that only dynamical elements that act at a second-order £ ®1 Mﬂ’m m “ ,
stage have been neglected in our study. ‘g 4 i Hl —Jﬂ U 'V
Hiluas
22 |
5. An influence analysis at regional scale ;
In this regional case study, we want to analyse 0 T T " T

1860 1880 1900 1920 1940 1960 1980 2000

the fundamental elements that drive the temperature v
ears

behaviour at a regional scale, with the same strategy
used in the previous section.

It is well known that a peculiar teleconnection has
been recognised between NAO and patterns of tem-
perature and precipitation in Europe, especially during  This first very clear result shows that global forc-
winter. For example, NAO index correlates linearly ings have a very little influence on the behaviour of
quite well with winter temperatures: sometimes a so- temperatures in the Central England. Furthermore, it
called extended winter (December—March) is consid- seems quite plausible, if we consider that the extended
ered in these studies, as well as in the present analysiswinter CET series irFig. 6 shows a small increasing

In a previous papeiRasini et al., 2003bwe found linear trend but no clear sign of change in time, unlike
that a neural model is able to estimate temperature what happens at the global temperature behaviour,
values at regional and local scales from data of NAO which is highly correlated with global forcings,
index and its performance is better than that of linear too.
models. It is worthwhile to stress that this result has In this situation, the next obvious step consists in
been obtained simply by starting from the characteris- considering the influence of the NAO phenomenon
tic features of correlative law-finder of a neural network on these regional temperatures. In doing so, we build
model and from data about NAO index only. up two networks: the first one is trained by using a

Here, instead, we follow the approach described seasonal NAO index related to extended winter (built
in the previous section, in order to assess the relative up as the average of monthly NAO indices related to
influences of global forcing and a regional circulation December—March) and has a simple topology with one
pattern like the NAO on temperatures behaviour, by input; the second one allows the merging of data about
considering the case study of an air temperature recordboth global forcings and NAO index and, obviously,
during extended winters (since 1860) on Central Eng- is endowed with five inputs. The results of these two
land, derived from the more complete CET time series attempts at reconstructing the CET series are quite
(seeFig. 6). similar. In particular, the values of linear correlation

The first attempt at reconstructing the winter CET coefficient (estimated” versus observed) are both
series has been done by use of a neural network fedaround 0.72—0.75.
by both natural and anthropogenic global forcings as  If now we look also at~ig. 7(b) and (c), we can
inputs. The result of this reconstruction is very poor, appreciate: (i) the good reconstruction performance of
with very low linear correlation coefficient in the anal-  the two neural models that use NAO data as inputs;
ysis of observed temperatures versus estimated tem-(ii) the similar low values of MAE in these two cases.
peratures and quite high values of the mean absoluteHowever, we stress that the values of linear correlation
error (MAE). InFig. 7the absolute values of residuals coefficients in these successful cases of regional recon-
(estimated temperaturesobserved temperatures) and struction are lower than in the analogous situations of
values of MAE are shown for the three cases considered previous global case study. If we consider the enhanced
here. inter-annual variability of climate at regional scale (as

Fig. 6. CET time series during extended winters (December—March).
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clearly visible inFig. 6 when compared witlrig. 2), els have to consider NAO as a fundamental element for

this is not a surprising result: now, at least patrtially, the the determination of a reliable climate scenario on this

not explained variance can reach higher values for this zone.

reason. Furthermore, we can suggest that the regional

influence of some other circulation pattern, like the

Arctic oscillation (AO), could be important for better 6. Conclusions and perspectives

reconstructing the temperature behaviour at this lati-

tude and scale. In this paper, we have presented the application of
In summary, the present regional analysis shows a neural network model for the evaluation of the rela-

that NAO can be considered as the driving force of tive importance of global physical-chemical forcings

temperature time pattern in Central England during and circulation patterns on the behaviour of tempera-

extended winters, while global forcings do not influ- tures at global and regional scales. This non-dynamical

ence directly this temperature behaviour. This evidence approach allows us to obtain simple assessments

is very important for a correct estimation of climate in  about the influence magnitude of different hypothetical

this zone, both in past reconstructions and in predic- causes on the same effect (here, temperature changes)

tion of future scenarios. In particular, this importance in a complex system.

is two-fold: first of all, we expect that only regional At global scale, as suggested also by the use of

dynamical models that are able to correctly describe dynamical models (AOGCMSs), we are able to recon-

the NAO phenomenon have a chance to give reliable struct the global temperature behaviour only if we take

reconstructions and predictions of the climate features the anthropogenic forcings into account. Furthermore,

in this region; secondly, statistical downscaling mod- we are able to recognise the influence of ENSO in better
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catching the inter-annual variability of our global time  Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden,
series of temperature. P.J., Dai, X., Maskell, K., Johnson, C.A. (Eds.), 2001. Climate
At a regional scale. the recognition of the major Change 2001: The Scientific Basis. Cambridge University Press,

. . . . Cambridge, p. 710.
influence of NAO on the CET time series during Hoyt, D.V., Schatten, K.H., 1993. A discussion of plausible

extended winters appears very important. In general, “sojar irradiance variations, 1700-1992. J. Geophys. Res. 98,
our results can be used in order to identify the funda-  18895-18906.

mental elements for obtaining both successful dynami_ Pasini, A., Ameli, F., 2003. Radon short range forecasting through
cal regional models and reliable statistical downscaling ~ time series preprocessing and neural network modelling. Geo-

. - . phys. Res. Lett. 30 (7), 1386, doi:10.1029/2002GL016726.
of AOGCMs, not Only on climate reconstructionsin the Pasini, A., Ameli, F., Log, M., 2003a. Short range forecast of atmo-

past, but also on future scenarios. spheric radon concentration and stable layer depth by neural
As a perspective of further work, we want to stress network modelling. In: Proceedings of CIMSA 2003, IEEE,

that our neural network modelling activity can be used Lugano, Switzerland, pp. 85-90.

as a phenomenological tool for obtaining preliminary Pasini A., Ameli, F., Lo, M., Pelino, V. Zuji¢, A., 2003b. Appli-

assessments on the maanitude of influence of sev- cation of a neural network model to the analysis of climatic
g observations at global, regional and local scales. In: Miglietta,

eral other possible causes of climate change at dis- ¢ valentini, R. (Eds.), Proceedings of the First Italian IGBP

tinct scales and in other regions here not explored. For  Conference Italian IGBP Committee, CNR. Paestum, Italy, pp.

instance, it will be certainly fruitful: (i) to consider an 185-187.

extension of inputs in the neural model to other kinds of Pasini: A., Pelino, V., PotesS., 2001. A neural network model for

forcing (e.g., through insertion of data about changes in V!S:It.)lllty nowcgstln.g from st_Jrface observations: results and sen-
- . . sitivity to physical input variables. J. Geophys. Res. 106 (D14),

land use and deforestation) and to other circulation pat-  14951-14959.

terns or oscillations known in the climate system; (ii) Pasini, A., Potedt, S., 1995. Short-range visibility forecast by means

to apply our method to other regions of the world; (iii) of neural-network modelling: a case study. Nuovo Cimento C 24,

to extend further our treatment to the reconstruction of __305-516. .
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