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Abstract

A fully non-linear analysis of forcing influences on temperatures is performed in the climate system by means of neural
network modelling. Two case studies are investigated, in order to establish the main factors that drove the temperature behaviour
at both global and regional scales in the last 140 years. In particular, our neural network model shows the ability to catch
non-linear relationships among these variables and to reconstruct temperature records with a high degree of accuracy. In this
framework, we clearly show the need of including anthropogenic inputs for explaining the temperature behaviour at global scale
and recognise the role of El Niño southern oscillation for catching the inter-annual variability of temperature data. Furthermore,
we analyse the relative influence of global forcing and a regional circulation pattern in determining the winter temperatures in
Central England, showing that the North Atlantic oscillation represents the driven element in this case study. Our modelling
activity and results can be very useful for simple assessments of relationships in the complex climate system and for identifying
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he fundamental elements leading to a successful downscaling of atmosphere–ocean general circulation models.
2005 Elsevier B.V. All rights reserved.
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. Introduction

It is well known that atmosphere–ocean general cir-
ulation models (AOGCMs) are the standard tools for
rasping the complexity of climate system and sim-
lating its behaviour, in the past as well as in future
cenarios. In particular, they allow us to reconstruct
nd forecast the climate at large scale.

∗ Corresponding author. Tel.: +39 06 90672274;
ax: +39 06 90672660.

E-mail address: pasini@iia.cnr.it (A. Pasini).

By means of AOGCMs, we can use our theoret
description of the single main phenomena and
cesses in the climate system, put them together
system of equations and parametrisation routines
dynamically reconstruct the simplified behaviour
this complex system in a computer, that can be
as a virtual laboratory. In this context, we are abl
recognise the role of some cause–effect relations
and to relate them with the underlying causes of
major changes in the behaviour of some important
ables, like the annual global temperature (Houghton e
al., 2001).
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Nevertheless, this dynamical approach also shows
some limits in the simulations at regional and local
scales and, at a more fundamental stage, in the delicate
balance among the relative strength of feedbacks and
the various parametrisation routines, which can cru-
cially affect the results of AOGCMs.

In this framework, a non-dynamical approach,
which is able to catch non-linear relationships among
several variables in the climate system, can be use-
ful in order to perform an independent analysis of
influence/causality, to “weight” the magnitude of dif-
ferent causes on a single effect (like the temperature
variations) and to assess the relative importance of
global forcings and regional circulation patterns, even
on regional mean variables.

The simplest non-dynamical approach is surely
given by the application of a multivariate linear regres-
sion model (forcings versus temperature) in the attempt
at understanding the amount of variance explained by
the various forcings in the reconstruction of tempera-
ture records. But, as we will see, a linear model is too
simple to catch the complex non-linear behaviour of
the temperature. So, in this situation, a neural network
model could be useful, due to its characteristic features
of a multivariate non-linear regression model that can
be seen as a global correlative law-finder.

Recently, neural network models were specifically
developed and applied to particular problems in atmo-
spheric and climate sciences, namely in boundary layer
short range forecasting (Pasini and Ameli, 2003), El
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Walter and Scḧonwiese (2002)the authors’ attention
was devoted almost completely to attribution and detec-
tion of anthropogenic climate change; here, we discuss
the role of both natural and anthropogenic forcings,
together with the peculiar contributions of El Niño
southern oscillation (ENSO) and the North Atlantic
oscillation (NAO) to the temperature behaviour at
global and regional scales, by using real time series
as references. Finally, the present paper is an improve-
ment of previous analyses (Pasini et al., 2003b).

In what follows we will present the data available
in literature and in web sites (Section2) and our neural
network model (Section3). In Section4, an influence
analysis of physical–chemical forcings and ENSO on
the behaviour of annual global temperature will be per-
formed. In Section5, a regional case study, related
to the influence of global forcings and the NAO phe-
nomenon on the temperature time pattern in an English
region, will be presented. Finally, we will draw brief
conclusions and discuss about further possible work.

2. Data

At present, in both recent papers and web sites
a lot of quantitative information is available about
global/regional meteorological parameters and indices,
as well as data about physical–chemical forcings to
the climate system. Here, we deal with the following
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iño prediction (Tangang et al., 1998) and AOGCMs
ownscaling (Snell et al., 2000). Here, we adopt th
eural strategy and concentrate on two case

es in which we can analyse the influence of n
al/anthropogenic forcings and circulation pattern
he temperature behaviour at global and regional sc

At our knowledge, a similar neural approach
een followed in the past only byWalter et al. (1998
nd Walter and Scḧonwiese (2002). However, ou
resent attempt is quite different from their investi

ion, for several reasons. First of all, we develop
pply a neural network model endowed with some

ounded peculiarities, like the presence of a momen
erm in the backpropagation training rule, the appl
ion of a so-called “all frame” training, to be discuss
n Section3, and a network topology characteris
y few hidden neurons for short time series an
is. Furthermore, while inWalter et al. (1998)and
ata:

Global temperature anomalies since 1856 (f
http://www.cru.uea.ac.uk).
Central England temperatures (CET) since 1
(from http://www.badc.nerc.ac.uk/data/cet). These
monthly mean temperatures are representativ
a roughly triangular area of the United Kingd
enclosed by Preston, London and Bristol.
Solar irradiance anomalies, representative of
solar activity, since 1700 (fromHoyt and Schatte
(1993)andhttp://daac.gsfc.nasa.gov).
Stratospheric aerosol optical thickness at 550
since 1850 (fromSato et al. (1993)andhttp://www.
giss.nasa.gov/data/strataer): this series is represe
tative of the past volcanic activity in terms of t
optical properties of low stratosphere.
Global concentration of carbon dioxide (CO2) since
1860 (fromhttp://cdiac.esd.ornl.gov).

http://www.cru.uea.ac.uk/
http://www.badc.nerc.ac.uk/data/cet
http://daac.gsfc.nasa.gov/
http://www.giss.nasa.gov/data/strataer
http://www.giss.nasa.gov/data/strataer
http://cdiac.esd.ornl.gov/
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• Emissions of sulfates (SOx) at global level since
1850 (from http://www.rpi.edu/∼sternd/datasite.
html).

• Southern oscillation index (SOI), related to ENSO,
since 1866 (fromhttp://www.cru.uea.ac.uk).

• Monthly NAO index since 1821 (fromhttp://www.
cru.uea.ac.uk).

Hereafter, we will consider solar irradiance and
stratospheric optical thickness as indices of natural
forcings to the climate system, while CO2 concentra-
tion and sulfate emissions will be considered as anthro-
pogenic forcings.

In what follows, our idea is to analyse the influence
of these forcings and of the circulation patterns on the
available series of temperatures, in order to understand
which of them are the most important so to allow us
to reconstruct the temperature records at global and
regional scales. In doing so, we apply a neural net-
work model, that will be briefly described in the next
section.

3. Neural network model

A neural network development environment, char-
acterised by some original features, has been created
some years ago (Pasini and Potestà, 1995). Its models
and training facilities have been progressively applied
to short-range prognostic problems in the boundary
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al. (2003a). Finally, an early stopping method is also
used in order to prevent overfitting.

As far as the topology of our neural networks is
concerned, we stress that it is driven by the peculiar
problem we handle with. In particular, we aim at per-
forming a multivariate non-linear regression by neural
modelling in order to understand the possible influence
role of forcings and circulation patterns (inputs) in the
determination of a record of temperature at a global
or regional scale (target). Thus, in the following we
consider networks characterised by up to five inputs
and one output; furthermore, we deal with few (four
or five) hidden neurons in a single hidden layer: this
allows us to obtain a good representation of the under-
lying function without falling down into any kind of
overfitting.

Once trained, the neural network is nothing but a
function that maps input patterns to values of temper-
ature at the same time, thus representing a fully non-
linear diagnostic correlative law, which links together
a set of inputs (physical–chemical variables and circu-
lation patterns) and the values of temperature forced by
them. However, due to the non-linear nature of network
regression, a neural model would be able to exactly
mimic the target values without extracting any corre-
lation law if the correspondent inputs–target patterns
are included in the training set and a sufficiently large
number of hidden neurons were allowed. Thus, in order
to discover the physical relationship between inputs
and targets, we exclude some inputs–target pair from
t aw.
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ayer (Pasini and Potestà, 1995; Pasini et al., 200
003a; Pasini and Ameli, 2003). Recently, also a pre

iminary attempt at analysing climatic data has b
erformed by the same tool (Pasini et al., 2003b).

The neural networks considered in the present s
re feed-forward and trained by means of a backp
gation strategy. We use a generalised Widrow–
ule for updating the connection weights that is c
cterised by the presence of both gradient descen
omentum terms (Pasini and Potestà, 1995). A partic-
lar attention is paid to the form of sigmoids, wh
epresent our neural transfer functions: therein,
rguments of the exponential function are normal
ith respect to the number of connections conver

o a single neuron of the input and hidden layer, res
ively, as sketched inPasini et al. (2001). A discussion
bout this choice and its advantages, together with

ical examples of application, can be found inPasini e
he training set on which we build the correlative l
nce trained the network, we use the excluded pa
validation/test set in order to assess the mode

erformance on new cases that are unknown to
etwork.

Due to the limited statistics available (about 1
nputs–target patterns for each case study), every
erature value is estimated at a time after the exclu
f the correspondent inputs–target pattern from

raining set used for fixing the connection weig
ere, we use a facility of our tool, the so-called “

rame” training procedure: it is simply sketched
ig. 1, where our total set of patterns is divided

wo subsets. The white squares represent the elem
patterns) of our training set, while the gray squ
one single element) represents the test set. The re
ompositions of training and test sets change at
tep of an iterative procedure of training + test cyc

http://www.rpi.edu/~sternd/datasite.html
http://www.rpi.edu/~sternd/datasite.html
http://www.cru.uea.ac.uk/
http://www.cru.uea.ac.uk/
http://www.cru.uea.ac.uk/
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Fig. 1. Sketch of the iterative procedure called “all frame” training.

A “hole” in the complete set represents our test set and
moves across this total set of patterns, thus permitting
the estimation of all temperature values at the end of
the procedure.

4. An influence analysis at global scale

In this first case study at global level, we would
like to estimate the influence of natural/anthropogenic
forcings and ENSO on the behaviour of annual global
mean temperature since 1866. As already cited in Sec-
tion 2, here we consider solar irradiance and strato-
spheric optical depth as indices of natural forcings
on the climate system, while CO2 concentration and
sulfate emissions, mainly due to manmade activities,
are seen as anthropogenic forcings. Furthermore, also
data about the ENSO phenomenon are included in
this analysis, because the large amount of ocean sur-
face affected by the oscillation between warming and
cooling periods and recognised ENSO teleconnections
with other regions of the world (see, for instance,
Brönniman et al. (2004)) could contribute to deter-
mine the value of annual mean temperature over the
world.

The first preliminary aim of our investigation is to
assess the non-linearities hidden in the climate system
as represented by our data about physical–chemical
forcings, an inter-connected ocean–atmosphere circu-
lation pattern (ENSO) and temperature. For this rea-
s ork
m sis,
t fun-
d ing
t em-

perature time pattern in the following four cases, when
the models themselves are fed by data about:

(a) natural forcings only;
(b) anthropogenic forcings only;
(c) natural + anthropogenic forcings;
(d) natural + anthropogenic forcings + ENSO.

In doing so, we adopt the “all frame” training pro-
cedure previously described, for both the neural model
and the multi-linear regression. In the latter case, we
estimate each annual temperature by means of the lin-
ear combination law obtained by the regression on
the other forcings/temperature patterns of our sam-
ple. As well known, due to the use of a least-squares
method in the linear regression, our “all frame” pro-
cedure could enhance the role of outliers in this case.
For this reason, together with the classical multivari-
ate linear regression, we perform also a “robust” linear
regression endowed with distinct weights for the out-
liers themselves: anyway, the results are very similar
and we can find differences only in the fourth decimal
digit of the linear correlation coefficient.

The performance of linear and neural models in
reconstructing the global annual temperature is pre-
sented inTable 1 in terms of the linear correlation
coefficientR (observedT versus estimatedT). Note
that the error bars associated to the results of the neural
network model come from ensemble runs (10 for each
case) with different random initial weights, so that the
networks are able to widely explore the landscapes of
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on, together with the application of a neural netw
odel, we use a classical multivariate linear analy

oo. By these models, we want to achieve also our
amental goal, the cited influence analysis, by find

he best linear and non-linear reconstructions of t
he cost functions: they indicate±2 standard devia
ions.

With reference toTable 1, it is clear that the fu
on-linear method (neural networks) allows us to

er reconstruct temperature in the last three cases,
he relationship between natural forcings and tem
ture is probably characterised by a weak non-li
omponent which does not permit to overcome
inear performance. Furthermore, when anthropog

able 1
econstruction performance in terms of the linear correlation
cient R for this analysis at global scale (four case studies)

nput forcings Linear model Neural mod

atural 0.661 0.622± 0.014
nthropogenic 0.818 0.847± 0.005
atural + anthropogenic 0.828 0.852± 0.005
atural + anthropogenic + ENSO 0.844 0.877± 0.004
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forcings were taken into account, the increase in per-
formance is statistically significant (outside the error
bars). In these latter cases, a fully non-linear model
shows its usefulness in catching non-linearities hidden
in the data and in using them for exploring correlative
laws that grasp just this non-linear influence of forcings
on global temperature.

A more comprehensive analysis can be performed
by looking at the specific time evolution of recon-
structed temperature versus the observed temperature
record. Even if we do not show the graphs related to the
performance of linear correlation for lack of space, we
can say that, in the case of linear and neural models fed
by natural forcings only, a similar failure in reconstruct-
ing temperature is visible, while, in the other cases, we

can appreciate the better performance obtained by neu-
ral modelling. Furthermore, in any of these latter cases,
only a smooth trend is partially caught by the linear
model, and no sign of inter-annual variability is shown
by the reconstructed temperatures.

Now, with reference toFig. 2, we analyse in more
detail the results coming from the application of our
neural network model to this global case study.

First of all, it is clear that taking only the natural
inputs into account, we are not able to find a correlative
law that explains the behaviour of global temperature.
In particular, we find a very strong failure in the recon-
struction during the period 1900–1960 and we can note
difficulties even for the more recent warming of the last
decade. Our result can be compared with an analogous

F
n
(

ig. 2. Observed annual global temperature (black curve) vs. estima
etworks have been trained by inputs related to: (a) natural forcings o
d) natural + anthropogenic forcings + ENSO.
ted annual global temperature by neural modelling (gray curve) when the
nly; (b) anthropogenic forcings only; (c) natural + anthropogenic forcings;
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failure in reconstructing the global temperature record
by application of ensemble runs of an AOGCM driven
uniquely by observed variations of natural forcings in
the past (Houghton et al., 2001). In that dynamical anal-
ysis a peculiar failure in reconstructing the warming of
the last 40 years was found and this result (among many
others) leads to consider the anthropogenic forcings as
fundamental for reconstructing the global temperature
of this recent period. In the present analysis, because of
the nature of neural modelling (which can be defined
as a globally correlative and non-dynamical method),
our results cannot infer so precise conclusions, but sub-
stantially mean that our networks are not able to find
a valid correlative law if fed by natural inputs only.
Among the many correlative laws explored during the
training phase (each of them is erroneous), the law
finally found is simply the closer one to the target
data.

In the second application of the neural model to our
global problem, when two anthropogenic forcings are
used to feed the network, we can appreciate a very evi-
dent increase in performance. In particular, the trend
of global temperature is well recovered and some dis-
crepancies can be only found in the too smooth form of
the reconstructed temperature, which shows only weak
traces of an inter-annual variability, in the overestima-
tion of the absolute minimum and the underestimation
of a relative maximum (around 1945) of the time series.
Anyway, this result shows the need to consider the
real variations of anthropogenic forcings if we want
t hints
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Fig. 3. Fourier spectrum of our residual time series.

to say that ENSO acts as a second-order corrector to
the estimation obtained by anthropogenic and natural
forcings and leads to a better catching of inter-annual
variability. Nevertheless, we can note that, of course,
in a non-linear system we cannot separate the single
contributions to the final result.

As a partial conclusion, we can say that this anal-
ysis clearly shows a strong non-linear link between
anthropogenic forcings and the temperature record of
the period considered, so that these forcings can appear
as the main probable causes of these changes. Further-
more, the joint use of anthropogenic/natural forcings
and ENSO data leads to a very good reconstruction of
our time series, so that we can advance the hypothe-
sis that the variance not explained by our final model
could be probably due (almost completely) to a natural
variability of the climate system.

A simple way to possibly corroborate or falsify this
last conjecture is to look at the structure of the residuals
in order to understand if they appear as due to a random
process or to some hidden dynamics coming from one
or more neglected dynamical causes. As well known
by statistics (see, for instance,von Storch and Zwiers
(1999) for a general reference), a random process is
linked to a white noise spectrum in the Fourier analysis
and to an autocorrelation function (ACF) characterised
by approximately null values (except the first one). In
our case, even if such an analysis is obviously limited
by the shortness of the sample available, however, some
considerations can be done by looking atFigs. 3 and 4.
o reconstruct the annual global temperature. This
hat anthropogenic forcings can be fundamental ca
f temperature variations during the period consid
ere.

The natural further step in our analysis is the in
uction of data about both anthropogenic and na

orcings as inputs in our model. The joint use of th
inds of forcing leads to a very little increase in per
ance (within an error bars overlapping), if compa

o the previous case (anthropogenic forcings only
ny case, now the amount of variance not explaine
ur model is almost completely due to the inter-ann
ariability.

Finally, we add an input neuron to the latter n
ork topology in order to insert data about ENS
he results presented inTable 1and Fig. 2(d) show

hat we obtain a further quite consistent improvem
n performance. In a certain sense, one could be
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Fig. 4. Autocorrelation function of our residual time series.

First of all, the Fourier spectrum shows no particular
peak and periodicity. On the other hand, the spectrum
trend is almost flat, but some decrease in the amplitude
is visible when frequency increases above three cycles
per 10 years, so that a hypothesis of red or pink noise
can be alternative to that of white noise. Really, we have
not enough data to support one of these hypotheses.

Looking atFig. 4, we see that the autocorrelation
function is almost completely confined inside the lines,
which determine the limits for white noise. Further-
more, some oscillations are visible in the graph, but
these are more uncoupled than in results of previ-
ous studies (seeWalter and Scḧonwiese (2002)for an
example of ACF application to an analogous problem).

As a matter of fact, no undoubted conclusion can be
reached by the analysis of Fourier spectrum and ACF.
Here, the main difficulty is due to the shortness of our
time series of residuals. Furthermore, these methods
can allow us to discriminate between white noise and
periodic/dynamic signals, while in geophysical time
series the most frequent feature is the fingerprint of red
noise.

Thus, we choose to apply a more specific tool to
the analysis of our short record of residuals, namely
the so-called Monte Carlo singular spectrum analysis
(MCSSA): seeAllen and Smith (1996)for a specific
reference andGhil et al. (2002)for a more general
review. This method is particularly useful for the anal-
ysis of short geophysical time series and can help to
distinguish between red noise and signals of hidden

Fig. 5. MCSSA test against red noise.

dynamics. This “eigenvalues” method is quite complex
and we refer toAllen and Smith (1996)andGhil et al.
(2002)for a wide explanation of its theoretical founda-
tions. Here, we apply it to our time series of residuals
and discuss about the results shown inFig. 5.

In Fig. 5, the vertical bars represent the confidence
limits for a red noise signal “compatible” with our time
series. They are estimated running a Monte Carlo sim-
ulation, by using an AR(1) process whose parameters
are extracted from the original time series of resid-
uals: this is a usual way of acting when an a priori
knowledge of the process is unknown. Furthermore,
the SSA covariance matrix of our series is projected
onto the eigenbasis of red noise generated by the red
noise parameters cited above, thus giving the projected
eigenvalues in this new basis. InFig. 5, the black stars
properly represent these projected eigenvalues. Both
confidence limits and projected eigenvalues are plot-
ted against the dominant frequencies of the red noise
eigenbasis.

In Fig. 5, even if the great majority of black stars
lies inside the confidence limits, some points exceeding
these limits suggest the presence of components differ-
ent from red noise, so probably due to some dynamics.

In short, no undoubted conclusion can be reached
by our analysis of residuals. Besides, it is well known
how difficult is to distinguish between noise and chaotic
dynamical signals in short time series. The most power-
ful tool used here (MCSSA) shows that some dynamics
can be hidden in these residuals, so suggesting the
p the
resence of further dynamical elements that force



A. Pasini et al. / Ecological Modelling 191 (2006) 58–67 65

climate system, neglected in the present study. Never-
theless, the large amount of variance explained by our
model leads to be confident that the major elements of
the climate dynamics have been considered here and
that only dynamical elements that act at a second-order
stage have been neglected in our study.

5. An influence analysis at regional scale

In this regional case study, we want to analyse
the fundamental elements that drive the temperature
behaviour at a regional scale, with the same strategy
used in the previous section.

It is well known that a peculiar teleconnection has
been recognised between NAO and patterns of tem-
perature and precipitation in Europe, especially during
winter. For example, NAO index correlates linearly
quite well with winter temperatures: sometimes a so-
called extended winter (December–March) is consid-
ered in these studies, as well as in the present analysis.

In a previous paper (Pasini et al., 2003b), we found
that a neural model is able to estimate temperature
values at regional and local scales from data of NAO
index and its performance is better than that of linear
models. It is worthwhile to stress that this result has
been obtained simply by starting from the characteris-
tic features of correlative law-finder of a neural network
model and from data about NAO index only.

Here, instead, we follow the approach described
i ative
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Fig. 6. CET time series during extended winters (December–March).

This first very clear result shows that global forc-
ings have a very little influence on the behaviour of
temperatures in the Central England. Furthermore, it
seems quite plausible, if we consider that the extended
winter CET series inFig. 6 shows a small increasing
linear trend but no clear sign of change in time, unlike
what happens at the global temperature behaviour,
which is highly correlated with global forcings,
too.

In this situation, the next obvious step consists in
considering the influence of the NAO phenomenon
on these regional temperatures. In doing so, we build
up two networks: the first one is trained by using a
seasonal NAO index related to extended winter (built
up as the average of monthly NAO indices related to
December–March) and has a simple topology with one
input; the second one allows the merging of data about
both global forcings and NAO index and, obviously,
is endowed with five inputs. The results of these two
attempts at reconstructing the CET series are quite
similar. In particular, the values of linear correlation
coefficient (estimatedT versus observedT) are both
around 0.72–0.75.

If now we look also atFig. 7(b) and (c), we can
appreciate: (i) the good reconstruction performance of
the two neural models that use NAO data as inputs;
(ii) the similar low values of MAE in these two cases.
However, we stress that the values of linear correlation
coefficients in these successful cases of regional recon-
struction are lower than in the analogous situations of
p nced
i (as
n the previous section, in order to assess the rel
nfluences of global forcing and a regional circulat
attern like the NAO on temperatures behaviour
onsidering the case study of an air temperature re
uring extended winters (since 1860) on Central E

and, derived from the more complete CET time se
seeFig. 6).

The first attempt at reconstructing the winter C
eries has been done by use of a neural networ
y both natural and anthropogenic global forcing

nputs. The result of this reconstruction is very po
ith very low linear correlation coefficient in the an
sis of observed temperatures versus estimated
eratures and quite high values of the mean abs
rror (MAE). InFig. 7the absolute values of residu
estimated temperatures− observed temperatures) a
alues of MAE are shown for the three cases consid
ere.
revious global case study. If we consider the enha
nter-annual variability of climate at regional scale
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Fig. 7. Absolute values of residuals (neural estimations− winter CET observations) and MAE value (horizontal gray line) when networks have
been trained by inputs related to: (a) global (natural + anthropogenic) forcings; (b) NAO only; (c) global forcings + NAO.

clearly visible inFig. 6 when compared withFig. 2),
this is not a surprising result: now, at least partially, the
not explained variance can reach higher values for this
reason. Furthermore, we can suggest that the regional
influence of some other circulation pattern, like the
Arctic oscillation (AO), could be important for better
reconstructing the temperature behaviour at this lati-
tude and scale.

In summary, the present regional analysis shows
that NAO can be considered as the driving force of
temperature time pattern in Central England during
extended winters, while global forcings do not influ-
ence directly this temperature behaviour. This evidence
is very important for a correct estimation of climate in
this zone, both in past reconstructions and in predic-
tion of future scenarios. In particular, this importance
is two-fold: first of all, we expect that only regional
dynamical models that are able to correctly describe
the NAO phenomenon have a chance to give reliable
reconstructions and predictions of the climate features
in this region; secondly, statistical downscaling mod-

els have to consider NAO as a fundamental element for
the determination of a reliable climate scenario on this
zone.

6. Conclusions and perspectives

In this paper, we have presented the application of
a neural network model for the evaluation of the rela-
tive importance of global physical–chemical forcings
and circulation patterns on the behaviour of tempera-
tures at global and regional scales. This non-dynamical
approach allows us to obtain simple assessments
about the influence magnitude of different hypothetical
causes on the same effect (here, temperature changes)
in a complex system.

At global scale, as suggested also by the use of
dynamical models (AOGCMs), we are able to recon-
struct the global temperature behaviour only if we take
the anthropogenic forcings into account. Furthermore,
we are able to recognise the influence of ENSO in better
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catching the inter-annual variability of our global time
series of temperature.

At a regional scale, the recognition of the major
influence of NAO on the CET time series during
extended winters appears very important. In general,
our results can be used in order to identify the funda-
mental elements for obtaining both successful dynami-
cal regional models and reliable statistical downscaling
of AOGCMs, not only on climate reconstructions in the
past, but also on future scenarios.

As a perspective of further work, we want to stress
that our neural network modelling activity can be used
as a phenomenological tool for obtaining preliminary
assessments on the magnitude of influence of sev-
eral other possible causes of climate change at dis-
tinct scales and in other regions here not explored. For
instance, it will be certainly fruitful: (i) to consider an
extension of inputs in the neural model to other kinds of
forcing (e.g., through insertion of data about changes in
land use and deforestation) and to other circulation pat-
terns or oscillations known in the climate system; (ii)
to apply our method to other regions of the world; (iii)
to extend further our treatment to the reconstruction of
precipitation regimes.
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