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Abstract: The theory of high-energy hadron-nucleus collisions is discussed by means
of the multiple-diffraction theory. Effects of the Coulomb field are accounted for
in elastic scattering by light and heavy nuclei. Inelastic scattering is treated by
means of the shadowed single collision approximation at small momentum trans-
fer and the corresponding multiple collision expansion at large momentum trans-
fers. The theory is compared with the measurements of Bellettini et al. on pro-
ton-nucleus scattering at 20 GeV/c by finding density distributions for the nuclei
which provide least-squares fits to the data. The nucleon densities found are
closely comparable in dimensions to the known charge densities. The predicted
sums of the angular distributions of elastic and inelastic scattering reproduce the
experimental angular distributions fairly closely.

1. INTRODUCTION

An increasing number of experiments has been undertaken in recent
years to study the scattering or production of high-energy particles in nu-
clei. The electron scattering experiments, which are among the earliest
of these, furnish an accurate determination of the nuclear charge distribu-
tion. The use of protons or pions as projectiles in high-energy nuclear
scattering experiments has, on the other hand, hardly been more than be-
gun. We shall try to show in the present paper that such experiments can
furnish a determination of the density distributions of nucleons comparable
in accuracy with the known charge distributions.

High-energy data on hadron scattering and production processes in nu-
clei are conveniently analyzed by means of the multiple diffraction theory
of Glauber [1,2]. The application of the multiple diffraction theory to data
on unstable particle production, for example, makes it possible to evaluate
the unstable particle-nucleon cross section [3]. But such applications of the
theory require knowledge of the nucleon density distributions in nuclei, and
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present uncertainties regarding those distributions lead to large uncertain-
ties in the inferred cross sections. It would be of great help to various
areas of elementary particle physics, therefore, if these densities could be
established more accurately.

We shall illustrate the application of the multiple diffraction theory by
analyzing the data of Bellettini et al. [4] on the scattering of 20 GeV/c pro-
tons by nuclei. Since the proton-nucleon scattering amplitude is fairly well
known at this energy, the ability of the theory to fit the nuclear cross-sec-
tion data furnishes, in some measure, a test of the accuracy of the theory.
Besides checking the theory, an accurate fit furnishes, as we shall show, a
determination of the nucleon density function. Several papers [5] containing
interpretations of the data of ref. [4] have, in fact, already been published
and indicate quite a fair degree of agreement between theory and experi-
ment. We propose in the present paper to base our analysis on a consider-
ably more detailed and extensive application of the underlying theory.

In the experiment of Bellettini et al. [4] the angular distributions of pro-
tons scattered by the nuclei 6Li, r7Li, 9Be, C, Al, Cu, Pb and U have
been measured in the range from about 2 to 20 mrad. The experimental en-
ergy resolution (x 50 MeV) was sufficient for rejecting events in which pion
production took place but far from sufficient for isolating elastic scattering.
The measured angular distribution represents instead the summed differ-
ential cross sections of elastic and inelastic scattering.

In sect. 2 we shall first briefly review the basic expressions of the mul-
tiple diffraction approximation. We then give explicitly the formulae used
in the calculations for both elastic and inelastic scattering, discussing the
approximations which are involved in their derivation. Coulomb scattering,
which contributes significantly at the smallest angles, has been taken fully
into account. In sect. 3 we present the results of the computations and the
fits to the data.

2. THE DIFFRACTION APPROXIMATION

We begin by considering the general form taken by the elastic scattering
amplitude for proton-nucleon collision in the diffraction approximation,
when spin effects are neglected [1,2]. If the initial and final momenta of the
incident particle are #k and #k', the scattering amplitude may be written
as

Fk- iy = 2 [ KDY brg) a2y (v

where b is the impact vector which lies in the plane perpendicular to k.
The integration over d2b is carried out in this plane.

The amplitude f given by eq. (1) is the Fourier transform of the profile
function I'(b) which may be expressed in terms of the phase-shift function
x(b) as T(b) = 1- eiX(P), The profile function can be derived from f by
means of the inverse transform
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r) =57 fe T P r@radq .

When I'(b) depends only upon the magnitude of b, the integration over the
azimuthal angle gives the Bessel function J5 and we have

flk=k) =ik [ Jy(|k - k'|BT(b)bdb .
o]

By comparing this relation with the familiar partial wave expansion of the
scattering amplitude, the following correspondence is found to hold:
I+3 — kb and 257 — x(b), where 87 is the conventional phase shift of the /th
partial wave.

The proton-proton scattering amplitude at high energy and small angles
can be written, neglecting Coulomb effects for the moment, as

102 2
£@) = FO)e 2T

where 7(0) = ({+a)ko/4m and o is the total cross section. The phase of the
scattering amplitude, which has thus far been measured only in the forward
direction, is thereby assumed to be constant. Since, according to ref. [6],
the proton-proton and proton-neutron amplitudes do not differ significantly
at 20 GeV, we shall assume that they are equal.

For the parameters occurring in the amplitude we have used the values,
o =39.0 mb, 82 = 10.0 (GeV/c)~2 and o = -0.22 which have been derived
from ref. [7] and more recent data [8].

2.1. Proton-nucleus collisions

The scattering amplitude for a proton-nucleus collision, if we neglect
the effect of the c.m. motion which will be discussed later, may be written
as

. . A
Fp(8) =5 [ &' bw;?{rj})r(b,sl...sA)wi<{rj}ﬂ?jd3rjd2b, &)

where Y5 and Y4 are the initial and final state wave functions of the nucleus
and 4 = k- k'. The positions of the A nucleons which make up the target
nucleus are defined by the vectors r;, j=1,...,4, and we call §; the pro-
jections of these vectors on the plane perpendicular to k over which the
impact vector b is integrated.

In the diffraction approximation the profile function I'(b, s1... s4) is
written as

5

ooibysysp e

F(b,sl...sA)

A
=1 -TJ]- [1-Tj(b-sj)] .
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It is assumed in other words that the overall phase-shift function
X(b,s1...s4) is the sum of the phase-shift functions x; for collisions with
the individual nucleons. Eq. (2) is the basic expression which is used for
the calculation of elastic and inelastic scattering of protons by nuclei.

We assume for the present analysis that the ground state of the nucleus
can be described by means of the independent particle model, i.e. we neg-
lect all position correlations of the nucleons and write Y4 as a product wave
function. Introducing the single particle densities pj(yj) we then have

A
|Wi(ry...rp)l? =TI]' pi(rj) ,
where we use the normalization condition
Jojrpdr=1.
The form factor of the single particle density pj(rj) is defined as
sj@) = [T oy ady; .

The overall density distribution of the nucleus, as given by the sum of the
single particle densities, is indicated by p(#) and S(g) will be the corre-
sponding nuclear form factor. The normalization of the nuclear density
distribution is then

Jondr=4,

so that S(0) = A.

In the present calculations we shall use, for the nuclear density, the
same models as have been widely employed in the analysis of high-energy
electron scattering experiments [9]. For the light elements (Li, Be and C)
we use the density which corresponds to the harmonic oscillator potential
well. The single particle densities pg(#) and pp(r) for the s- and p-shell
are given by

1 -rz/ag 9 2 -rz/ag
pg(?) =— 3¢ s pp(r) =—gr e ,
T2 ayg 3r:ag
where a, is the radial parameter. The corresponding form factors are

2 _}Iaz 2

-,l_a2 q
T and sye) = (1-je2ade 1O

Sg(a) = e

The total nuclear density is

72 '7’2/“3
(1+655) e ,
8]

p(7) = 34

2 3
T2 0g

where & = 1(A-4).
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The rms rladius of the harmonic oscillator well density distribution is
given by (#2)1 = ao(% -4/A)7 and its overall form factor is
1,2 2
] “alo9q
Slg) = A(1 - Z“ng) e

For the nuclei Al, Cu, Pb and U we use the Woods-Saxon density
¥=c -1
p(r):po[exp( = >+1] ,

where pg is the normalization constant, ¢ is the 'half-density' radius and
the parameter 7 is related to the 'surface thickness' £ by £ = 47 1n3 = 4.407.
Approximate expressions for pg and for the rms radius of this density have
been given by Elton [10].

2.2. Elastic nuclear scatteving

By using eq. (2) and the factorization assumptions of the preceding sec-
tion we find that the elastic scattering amplitude of a nucleus in absence of
Coulomb forces is given by [1, 2]

ik ;A b A
F(a) =5 [ 777 {1 -qj[l' [ pjr)T(b-s j) drjl} d®

o A ’
-5 /P - Tj [1- oo [ TP [@)sia2a} a2, (3)

where I'(b) and f(g) are the profile function and scattering amplitude, re-
spectively, for proton-nucleon collisions as discussed in sect. 2.

For the harmonic oscillator density and 4 < A < 16, eq. (3) leads to the
amplitude
ik I o A-b

4
FN(A) =5,

{1-[1- 35 [ 9P f@)s5(a)a2a]

x[1-50z [ TP fgsy(@aa* a2 .

As a consequence of the gaussian form taken by f(g), the integrations over
the g-variables can be performed analytically and the result written in the
form

F(a) = ik [ J(ab) f1-[1- (1- ) G(8)] *[1- (1- i) (B " }oas . (a)
(o]

The explicit expressions for Gg(b) and Gp(b) are given in the appendix.
By introducing a suitable nuclear phase-shift function x-N(b), eqgs. (3) and
(4) can be written in the form

FN(8) =ik | Jdo(ab)[1- eiXN(b)] bdb . (5)
(o]
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When A is large it is not difficult to show [1, 2] that the effective nuclear
phase-shift function is accurately approximated by

g0 = = o= )87 = - o [T fg)si@a2a, (@)

as long as nucleon position correlations are negligible. We shall refer to
this approximation, which we have used for the nuclei Al, Cu, Pb and U as
the large-A approximation. For the light elements on the other hand, our
elastic scattering calculations have been based on eq. (4). The total cross
section for proton-nucleus scattering has been calculated from the imagi-
nary part of the forward scattering amplitude by means of the optical theo-
rem.

If the nuclear radius is sufficiently large compared to the range of nu-
clear forces the form factor S(g) will be quite sharply peaked near the for-
ward direction, ¢ = 0. The integral given by eq. (6) will then be propor-
tional to f(0), and the corresponding expression for the elastic scaitering
amplitude (5) will reduce to

Fy(A) = it [ Jy(an)[1-BT/RIOTO) gy )
o]

where the thickness function T'(0) is defined by 7'(b) = fp(b+ Izz) dz, k be-
ing the unit vector along the direction of k. It is the expression (7) which is
most frequently identified with the nuclear optical model. Since the nuclear
radius is not in fact very much larger than the force range, particularly
for the lighter nuclei, we have based our calculations on eqs. (4) and (6) in-
stead.

2.3. Effects of the Coulombd intevaction

We now consider the way in which the Coulomb interaction influences the
elastic scattering. The Coulomb phase-shift function for a nuclear charge
distribution may be defined in the diffraction approximation by introducing
an (arbitrarily large) atomic screening radius Rg, beyond which the field
is assumed to vanish. (The value of this screening radius, as we shall see,
does not influence the cross section.) The overall phase shift produced by
the screened Coulomb field of a nucleus of atomic number Z, is then the
sum of two terms which we call X¢(b) and Xgep. These phases are given

by [11]

2Z€2 b .
Xc(0) == —[logd [ T(b)2mb db'+ [ Tc(b7)logd' 2nb' db']
o b
and
27¢2
Xser = = “jy— 108 2Rgey)

where v is the incident particle velocity and T.(b) is the thickness function
corresponding to the nuclear charge distribution p¢(¥), normalized to

fpc(r)d31f = 1.
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In the limit of a point-like charge distribution the phase X(b) tends to
the value

22¢2
Xpt(d) = =3 logb ,

which is just the expression for the Coulomb phase of a point charge given
by the diffraction approximation [1]. This Coulomb phase function corre-
sponds to the conventional Coulomb phase shift §; which, in the limit of
large I, can be written as

Z€2
nv
The elastic scattering amplitude due to both the nuclear interaction and

the screened Coulomb field is obtained by adding together the correspond-
ing phase functions [12],

6; = log (Z+3) -

Fe(8) = ik [ Jo(ab) {1 - e NGBl Xserly pqp
(o]

It is convenient to separate from this amplitude the expression for scatter-
ing by a point charge. We can do that by adding and subtracting the quantity
1- exp[iXpt(b) +iXgep] in the integrand. After a rearrangement of the terms

we then find [11] for A > Rl

o Xser For(8) = Fo(&) +ik [ Jy(A0) {eiXpt(b) . ei[XN(b)+Xc(b)]} bdb ,  (8)
0

where F¢(A) is the Coulomb scattering amplitude for a point nucleus and is
given by

9 .
F.(8) = - 2Ze“k oi¥c ’
2
nvaA
where
27¢2
Pc =" %5 [C +1og (A/2k)]

and C is the Euler constant (C = 0.577).

The phase factor, which multiplies Fg1(A) in eq. (8) is the only result of
the calculation which depends on the screening radius Rgep. It remains un-
observed, of course, in all measurements of nuclear scattering intensities.

For the heavier nuclei, A > 1, the phase-shift function x§(b) which oc-
curs in eq. (8) can be taken from the approximation given by eq. (6). When
A is not large, on the other hand, the expression used for xN(b) must cor-
respond to the one implicit in eq. (3). For light nuclei, in other words, the
combined nuclear and Coulomb scattering is given for A > R;}:r by
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e}

e~ scr Fe1(8) = Fe(d) +ik S/ Jolad) {eixpt(b)
o

. A -G -
- () Tﬂpﬁgfe 19D fgsiadat a2 . (9)

For the harmonic-oscillator-density model of the light nuclei the values of
the g-integrals in this expression are given in eq. {4) and the appendix.

2.4. Correclion for the center-of-mass corvelation
It has been shown [2] that, when momentum and energy conservation is
taken fully into account, the amplitude Fgj(A) takes the form

Fela) = f id-b *(r )T IPRY 1%.,. A.ds .a2p
(& =5 fe TP uiirhTb,s1. s il j)(zlj ])le 7;d% .
(10)

This expression differs from eq. (2) only by the presence of the delta func-
tion in the integrand which expresses a constraint on the nuclear c.m. We
now consider the effect of that constraint on the elastic scattering. If the
densities are of gaussian form, the correct nuclear scattering amplitude
Fe1(A), i.e. the one which follows from eq. (10) can be written as

Fop(A) = R(A) Fgy(A) . (11)

In this expression Fg1(A) is the approximate amplitude we have discussed
in the previous sections, and the correction factor is given by [13]

R(8) = £72/6A B2

(12)
Similarly, for the harmonic oscillator density [13, 14], the correction fac-
tor is R(A) = exp (a%A2/4A).

No simple analytic correction factor, can be found, however, for much
more general forms of the density function. Fortunately we are able to de-
scribe the light nuclei, for which the correction is significant by means of
the harmonic oscillator density. For the heavier nuclei the corrections
given by eq. (12) are presumably only approximate but it remains satisfac-
tory to estimate them in this way since they are numerically quite small.

2.5. Inelastic scatleving

We are interested here not in the intensity of a specific inelastic pro-
cess but rather in the total intensity of inelastic scattering. What is meas-
ured in the experiment of Bellettini et al. [4] is essentially the quantity
EfIFﬁ(A) }2, where the sum extends over all final nuclear states, in which
no particle production takes place. Included in the sum, of course, is the
state f = i which represents elastic scattering. The use, in evaluating this
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sum, of the completeness property for the set of final states of the nuclear
system leads to an expression for the sum which contains only the ground
state wave function [1]. If we then subtract the elastic differential cross
section, we obtain the total inelastic intensity which can be written as

2 ] . i X A
Z P - () S P T3 11 M5(6) - 345 (6) + 25( 6, 5]
#1i

A
~TT; [(1- My(B))(1- M(5))] { 0 a2,  (13)
1

where we have used the notation
Mj(b) = [ o) T(b - s )d7;

for an integral of a type already considered in sect. 2.2, and we have de-
fined

Qj(b’ b') = fpj(r]-)l“(b- Sj)l"*(b' —S].)dzyj .

The cross section given by eq. (13) is best evaluated by making certain
further approximations. It is worth noting first that the functions M;(b) and
Qj(b, b') are in general a good deal smaller than unity in magnitude. If we
call the interaction range a and the nuclear radius R, then the functions M;
and €; are typically not larger in magnitude than az/Rz. For the larger nu-
clei these functions assume numerical significance only when their effects
are summed over many nucleons. Another property of the functions Qj
worth noting is their short-range character. Unlike the functions M;(b) which
vanish only for & R R +a, the functions (b, b') vanish unless the impact
vectors b and b' are within about two interaction ranges of one another,
Ib-b'| % 2a.

For sufficiently large values of the momentum transfer A it is clear that
the integrand of eq. (13) will oscillate rapidly unless the impact véctors b
and b' have nearly the same component along 4. In particular for A > R1
it becomes possible to approximate the integral in eq. (13) by dropping from
the integrand some terms of order a2/R2, provided we are careful to re-
tain all of the terms which can lead to effects of order AaZ/Rz. With such
an approximation eq. (13) can be simptified to the form,

2 . ap-pnA
T mg@ = @) o AN - s - a0y
#i

A
X ]?j[1+9j(b,b')]-1 d2pd2p .
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Since the functions M; and §; are small in magnitude it is correct for4 > 1
and fairly accurate even for A as small as 6 to replace the A-fold products
by exponential functions. We have then [2] for A > R~1

2 y . - t 7 - * t 3
|Fy(a) |2 = %) fe“l (b-b") A[xN(b)-XN(D )][eﬂ(b,b )_ 162 a2,
f+i (14)
in which we have written

A
b, b") = 27; b, b)
1

and, according to eq. (6),

A
ixn(b) = - ZI) j Mj(b) .

Some further insight into the distribution of inelastic scattering for
large A can be obtained by assuming at this point that the nuclear radius is
a good deal larger than the force range. In that case, by exploiting the
short-ranged character of the functions I'(b) and (b, b') in comparison
with the long-ranged character of the functions p(7)} and xN(b), we can re-
duce the differential cross section for inelastic scattering to the form [2]

2 . iA-b-0T(B)
F (A) 2 = le_ el
(21 ‘ fi ‘ (27T> f

X -

exp [Zli—z@ fe—iq'b 17 (a) |2d2q} - 1‘ d%» d2B , (15)

In which 7(B) is again the thickness function defined in sect. 2.2. This ex-
pression for the inelastic cross section is most easily evaluated by expand-
ing the exponential function within the curly brackets. The resulting series,
which takes the form of a species of multiple scattering expansion [1,2], is
given by

Z |y 22Ny @) 2 [ () 2 | - q)\z% o, (s
#1

where the dimensionless coefficients Nj, are defined as

Ny = T O o)™ a2 . (17)
Since each term of the expansion takes the attenuation of the incident beam
explicitly into account, the processes described have been referred to as
shadowed multiple scattering [11].

Since the attenuation of nucleons travelling centrally through even me-
dium~weight nuclei is quite appreciable, the principal contributions to the
integrals N, come from the surface regions of these nuclei. Measurements
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of the inelastic scattering for A > R™1 therefore tend to determine nuclear
surface parameters, and of these principally the surface thickness [2].

When the nucleon-nucleon scattering amplitude is given by the Gaussian
parametrization introduced in sect. 2, the multiple scattering integrals are
easily evaluated and the series (16) is found to take the form

"
=
e
"o
|
2

Z | Fe(a)|? Ly, &1 a3/ (18)

f#i n=1"
in which the expansion parameter € is given by

_1:a? o

T 167 BZ :
It is worth noting that the angular distributions contributed by the succes-
sively higher orders of multiple scattering decrease more and more slowly
with increasing momentum transfer. Since for 20 GeV/c incident protons
the parameter € has the value 0.21, the series (18) converges fairly rapidly
for small values of A. For large A, however, it is evident that the series
will converge somewhat more slowly. Far enough from the forward direc-
tion, in fact, the angular distribution will be dominated by double, then
triple, then quadruple scattering, etc.

Since the radii of the lighter nuclei are not in fact many times larger
than the interaction range it is more accurate to calculate their cross sec-
tions by means of eq. (14) than by means of eqs. (16) or (18). The use of
eq. (14), however, is practical only if the integrations which are required
in order to obtain the functions XpN(b) and Q(b, b') can be carried out anal-
ytically. For the case of the harmonic oscillator-well density functions the
integrals can indeed be evaluated in closed form. The resulting functions
xnN(b) and (b, b') are listed in the appendix.

Direct numerical computation shows that for 6Li the cross section given
by eq. (18) is about 20% lower than that given by eq. (14). For Al, on the
other hand, the difference of the cross sections is only about 3%. We have
therefore used eq. (14) to describe the large-angle inelastic scattering by
the nuclei lighter than Al, and eq. (18) to describe the scattering by Al, Cu,
Pb and U.

We turn next to the description of the inelastic scattering in the region
of small momentum transfers, A< R-1. This is, of course, the region in
which the contribution of the elastic scattering to the intensity observed is
vastly greater than the contribution of the inelastic scattering. It is not
necessary, therefore, to attempt to describe the inelastic scattering as ac-
curately at small angles as we have at large angles where it contributes
nearly all of the observed intensity.

We have already noted in connegtion with eq. (18) that as A becomes
small, shadowed single collision processes tend to make up nearly all of
the inelastic scattering. We can evidently approximate the inelastic scat-
tering at small angles, therefore, by returning to eq. (13) and extracting
the shadowed single collision term from it. Since we are no longer as-
suming A > R~1 it is not possible to neglect all of the terms of order
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czz/R2 in the integrand which were neglected earlier. On the other hand
many terms may be dropped since they represent second- or higher-order
multiple scattering. If we assume that all of the partial density functions
pj(rj) are similar in shape and that A > 1, then we find the single collision
cross section

2 A b-b) i ke
E_ |Fﬁ(A)|2=<-2k7> [e'4 (b-b) i[xn(b)-xn(b')]

X {&(b, b') - }1 XN(B)XN (b} 26 d20' . (19)

When the nuclear radius is quite large compared to the interaction range
this expression can be reduced to the form [11]

D F@) 2 = ) 2 vy - 5 S !4 B AIND) g2, 127 (20

f#i

The inelastic scattering, in other words, is a good deal smaller near the
forward direction than that due to Nj free nucleons. As A increases beyond
the diffraction cone A ~ R™ 1, however, the integral within the curly brack-
ets goes to zero and the inelast1c intensity then agrees, as it should, with
the first term of the series (16).

If the nucleons were weak scatterers, of course, double and triple scat-
tering would never occur. The expression (20), which should represent the
inelastic scattering guite accurately in that case, reduces to the form

Dor 2= @) 2alt-L 2@y, o-o),
f£i A2

which is the familiar result of the impulse approximation [15].

In our numerical calculations we have evaluated the inelastic scattering
by correcting the large-momentum transfer formulas so that their single
collision term is made accurate for all A. We have, in effect, treated the
second term in the curly brackets of eq. (20) as a correction to eq. (14) for
the lighter nuclei and to eq. (18) for the heavier nuclei.

3. RESULTS OF THE CALCULATIONS

Since we have assumed the proton-nucleon scattering amplitude to be
known, the only quantities which can be determined by fitting the experi-
mental data are the parameters of the nuclear density distribution. For the
light nuclei, Li, Be and C, there is, in the model based on the harmonic
oscillator dens1ty functlons only one parameter to be found, a, or equiva-
lently the rms radius (r2 )’ For Al, Cu, Pb and U, on the other hand, the
use of the Woods-Saxon model for the density function means that the two
parameters ¢ and £ must be determined.

We have evaluated the angular distributions of elastic scattering numer-
ically by using egs. (8), (9), (11) and (12), and by assuming in the Coulomb
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calculations that the nuclear charge distribution has the same shape as the
nuclear density distribution. The elastic angular distributions were added
to the inelastic ones calculated by means of the formulas noted in sect. 2.5
and the sums compared with the total scattered intensities measured by
Bellettini et al. [4]. A least-squares fit to the experimental data for each
nucleus was found by varying the appropriate density parameters.

The calculated angular distributions for summed scattering which repre-
sent the best fits are shown together with the measured distributions for the
eight nuclei used in the experiment in figs. 1-8. The calculated distribu-
tions of elastic and inelastic scattering, which are also presented separate-
ly in these graphs, show how completely the measured intensities are dom-
inated by elastic collisions at small angles and inelastic ones at large angles.

T 1T 7 Z*FT“T
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2
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Fig. 1. The experimental data of ref. [4] on the scattering of 19.3 GeV/c protons by
611 are shown together with the result of the best fit. Elastic and inelastic contribu-
tions are shown separately.
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Fig. 2. The experimental data of ref. [4] on the scattering of 19.3 GeV/ ¢ protons by
TLi are shown together with the result of the best fit. Elastic and inelastic contribu-
tions are shown separately.

The calculated distributions do indeed follow the behavior of the meas-
ured distributions quite well for all eight nuclei. The minimum x2 values
which we have obtained are satisfactory and in several cases quite good.
The minimum x2 value is 116 for 6Li, 96 for 7Li, 72 for 9Be and 30 for C,
the number of degrees of freedom being 14. For Al the minimum of x4 is
52, which is reduced to 23 if the contribution of the smallest angle data
point is excluded. For Cu the minimum of x2 is 15. For Pb the minimum of
x2 is around 400 and for U is larger.

To discuss our results in greater detail let us begin with the light nu-
clei. For these we have studied the effect of using several of the approxi-
mation methods discussed earlier. For 6Li, for example we find that if we
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Fig. 3. The experimental data of ref. [4] on the scattering of 19.3 GeV/c protons by
Be are shown together with the result of the best fit. Elastic and inelastic contribu-
tions are shown separately.

use the large-A approximation for the elastic scattering, i.e. eqs. (6) and
(8), and the short-range approximation for the inelastic scattering, i.e. eq.
(18) the fit is quite poor (the minimum of x2 is about 260). When the more
accurate expression (14) is used to fit the 6Li data, the minimum of xz de-
creases to 168 and the scattering in the inelastic region is reasonably well
reproduced. A further improvement is obtained by using eq. (9) which is
the Coulomb generalization of eq. (4) instead of eqs. (6) and (8) to calculate
the elastic scattering. Returning in this way to the formulas accurate for
small values of A reduces the minimum value of x2 to 116. We have ob-
served similar behavior in the calculations for the case of 7Li.

For Be and C a slight improvement in the description of the inelastic
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Fig. 4. The experimental data of ref. [4] on the scattering of 21.5 GeV/ ¢ protons by

C are shown together with the result of the best fit. Elastic and inelastic contribu-
tions are shown separately.

region is obtained by using eq. (14) instead of eq. (18) but there is no sub-
stantial difference between the results given by eqs. (4) and (6).

We have listed in table 1 the values of the parameters we have found for
the nucleon densities in the light nuclei. The errors assigned to the radial
parameters are derived from the criterion x2 < sznin + 1. For the light nu-
clei other than carbon we have indicated the errors in parentheses since
for these cases the Xj i values obtained are relatively large. Such errors
lack true statistical significance and are only intended to be suggestive. We
have also listed for comparison in table 1 the values of the rms radius of
the charge distribution found in electron scattering experiments. Our de-
terminations of the rms radius of the nuclear density are seen to corre-
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Fig. 5. The experimental data of ref. [4] on the scattering of 19.3 GeV/c protons by
Al are shown together with the result of the best fit. Elastic and inelastic contribu-

tions are shown separately.

spond rather closely to the values obtained for the rms radius of the charge
distribution.

In table 2 we have listed the values of the parameters ¢ and ! of the
Woods-Saxon model which we have found for Al, Cu, Pb and U, together
with the results obtained from electromagnetic interactions, i.e. electron
scattering and muonic X-ray experiments. In particular for Al and Cu we
have obtained excellent fits to the measured angular distributions. For
these nuclei furthermore the density parameters we have found correspond
rather well to the ones found from electron scattering data. The errors
given in table 2 have been derived from the same criterion we have used
for table 1.
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Fig. 6. The experimental data of ref. [4] on the scattering of 19.3 GeV/ ¢ protons by
Cu are shown together with the result of the best fit. Elastic and inelastic contribu-
tions are shown separately.

For lead our fit is not truly quantitative in the sense that the minimum
x2 value is quite large. The main contribution to the x2 comes from the
small-angle data points which have been given a very small statistical er-
ror in the experimental data. A computed angular distribution which fol-
lows the Pb data more closely away from the forward direction than the one
for minimum x2 corresponds to a value of the half-density radius ¢, which
is very similar to the one found from electromagnetic interactions. In or-
der to reproduce the experimental data, ‘however, a rather large value of
the surface thickness parameter is required, as already observed by Gold-
haber and Joachain [5].

For uranium fewer data points are available and our fit to them is
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Fig. 7. The experimental data of ref. [4] on the scattering of 19.3 GeV/c protons by
Pb are shown together with the result of the fit represented by the solid line. Elastic
and inelastic contributions are shown separately.

somewhat poorer as well. It does not seem possible, in particular, to fit
the data points accurately in the region of the first diffraction minimum and
of the subsequent maximum. The reason could be related perhaps to an in-
adequacy of the nuclear model which we have assumed. The uranium nu-
cleus is known to be strongly deformed, a property which is not repre-
sented by the spherically symmetric density function we have used. The
values for the parameters c and f given for U in table 2 are only intended
to be suggestive.

By using the values of the nuclear density parameters which we have
found from the fits to the angular distributions, we can calculate the corre-
sponding total cross sections for the various nuclei. In table 3 we have
listed the calculated values of the total cross section and the experimental
ones as given by Bellettini et al. [4]. The errors assigned to the calculated
cross sections are those that correspond to the uncertainties of the density
parameters. It is worth noting that the total cross sections given in ref. [4]
are not fully determined by experimental means. In fact they are obtained
by means of transmission measurements which require an extrapolation to
the forward direction that is somewhat dependent on the behaviour assumed



154 R.J.GLAUBER and G.MATTHIAE
‘o'l. — -+
| | l E
[ - 1
3 Z ; u
@ .|
S ° 19.3 GeV/c protons
N\ <19
£10 —
i l% 3
sr \ c=6.7fm b
3r5 ‘1 \ t=32Fm 7
2 } } — — Elastic
167 ---Inelastic |
] 3
s B
4 —
| \i i
16" - \:—r'\ ]
IE [) E
of AN 3
s ‘(\ B
- 4 .
\
Al \ ]
k] I \ "}—'}\Q ]
e N -
s \\/ ~ “FJ\_L 3
o+ \ \}\f\ ]
i \ t~<
2+ \ -
10" s l L l s \ 1 s l
4] S 10 15 \?(mrad) 20

Fig. 8. The experimental data of ref. [4] on the scattering of 19.3 GeV/c protons by
U are shown together with the result of the fit represented by the solid line. Elastic
and inelastic contributions are shown separately.

for the scattering amplitude at small angles. In ref. [4] the Coulomb contri-
bution to the differential cross section at the small angles was subtracted
by assuming the nuclear amplitude to be purely imaginary.

Table 3 shows that the agreement is close for only two or three nuclei.
For the Li isotopes and the heavy elements, the total cross sections given
in ref. {4] are consistently larger than the predicted ones. We note that if
we were to try to determine the nuclear radii from the total cross section
values of ref. [4], we would obtain, for lead, for example, a radius about
10% larger than the one given in table 2. Such a large value for the radius,
however, would be inconsistent with the experimentally observed angular
distribution. It seems then possible that the discrepancies appearing in ta-
ble 3 could be ascribed to the inadequacy of the extrapolation procedure
used in ref. [4] for deriving the total cross sections from the data.

A number of our results have indicated that the diffraction approxima-
tion is able to furnish a fairly accurate description of the high-energy scat-
tering of protons by nuclei. If sufficiently accurate versions of the approxi-
mation are used, then the angular distributions can be fitted quite well.
Such results lend considerable support the procedure of deriving unstable
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Table 1
a, rms radius rms radius
from the present analysis from electron scattering
(fm) (fm)
61,1 2.41 £ 0.072)
Li 1.86 (£ 0.03) 2.52 (£ 0.04) 554 £ 0.05b)
.y 2.33 £0.062)
Li 1.76 (+ 0.03) 2.44 (£ 0.04) 239 % 0.03 )
2.60 0,209
9Be 1.78 (+ 0.05) 2.55 (+ 0.07) 2.20 £ 0.20©)
2.63 % 0.10 9
2.50 = 0.159)
12¢ 1.60 £ 0.03 2.35 £0.04 2.42 £0,10°)
2.40 + 0,02 8)
a) Ref. [16]. Data at low-momentum transfer fitted with the harmonic oscillator
model.
b) Ref. [17]. Fit with a phenomenological expression for the form factor.
c) Ref. [17]). Harmonic-oscillator model with electric quadrupole contribution.
d) Ref. [18]. Model-independent value.
e) Ref. [19]. Harmonic-oscillator model.
f) Ref. [19]. Average of several models.
2) Ref. [20].
Table 2
1 1
¢ (fm) ¢/A7 (fm) ¢ (fm) ¢ (fm) ¢/A3 (fm) ¢ (fm)
from the present analysis from electromagnetic interactions
3.06 1.02 2.59)
.00 £ 0, 00 = 0. 29 %0, ;
Al 3.00+0.06 1.00%0.02 2.29 +0.07 3.07 £0.09 1.02 £0.03 2.28 +0.119)
Cu 4.08 £0.04 1.02 +0.01 2.21 £0.07 4.26 1.06 2.54)
6.5 1.1 2.30
Pb ~ 6.4 ~1.08 =28 6.47 £0.03 1.091 £ 0.005 2.30 £ 0.03 d)
6.67 £ 0.09 1.125 £ 0.015 2.21 +0.25€)
U (=6.7) (~1.08) (®3.2)  7.15%0.03 1.153+0.005 1.46 +0.12 f)

a) Values obtained by interpolating with the empirical formula of ref. [21].

b) From electron scattering (ref. [22]).
c) From electron scattering (ref. [19]).
d) From electron scattering (ref. [23]).
e) From muonic X-ray (ref. [24]).

f) From muonic X-ray data analysed with a modified Woods-Saxon model which
takes into account the nuclear deformation (ref. [25]).
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Table 3
Ty(b)

Calculated Experimental
611 0.203 (+ 0.001) 0.232 * 0.005
TLi 0.229 (+ 0.001) 0.250 + 0.005
9Be 0.278 (% 0.004) 0.278 £ 0.004
C 0.333 £ 0,003 0.335  0.005
Al 0.658 + 0,010 0.687 £ 0,010

Cu 1.23 +0.01 1.36 +0.02

Ph ~ 3.09 3.29 +0.10

U (= 3.5)

particle~nucleon total cross sections, by applying the diffraction approxi-
mation to production experiments.

We have also found fairly close agreement between the parameters of
the nucleon density distribution, as derived from strong interaction data,
and the corresponding parameters of the nuclear charge distribution ob-
tained from electromagnetic interactions. Our results indicate therefore
that the neutron distribution in the nucleus cannot be very different in size
from the proton distribution.

APPENDIX

For the harmonic oscillator model we have used the following expres-
sions:

B
o 2
G.(b) = e &
s 8777/2 ’
,
g g b 42
B = [1- -——}e y
Gp() 87,?2 6y2 4,},2 ’
where
y2 =142 +182
-
Af(O)[ D b ] 42
by =20 11 -2 (1-25) e 4%
O =gz 175z (0 o)
2 2
A|f0)|2 " 52 42 D B2
b, by =T 45% o 4 [1- -_],
’ 4k232772 .,72 4,72
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D[

D=, n2 = 1(a2+82) , B=1(b+b"), B =b-b'.
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