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We prove that the energy levels of an arbitrary anharmonic oscillator (xzm and in any finite number
of dimensions) are determined uniquely by their Rayleigh-Schrddinger series via a (generalized) Borel
summability method. To use this method for computations, one must make an analytic continuation
which we accomplish by (a rigorously unjustified) use of Padé approximants in the case of p2 + x2 + Bxt.
The numerical results appear to be better than with the direct use of Padé approximants.

In physics, one is often faced with a divergent
[e.g. 1] (but finite order-by-order) perturbation
series; in such cases, one must decide (or prove)
what the meaning of such a series should be. The
usual answer is that the series is asymptotic,
but it is well known [2,3] that an infinite number
of analytic functions have any given asymptotic
series, so that such an answer is not entirely
satisfactory. Under certain conditions, however,
it is possible to obtain uniqueness theorems by
means of a regular summability method, such as
the Stieltjes-Padé and Borel methods. For
example, Loeffel et al. [4] have proven that the
perturbation series for the energy levels of a
one-dimensional ¥4-oscillator: p2 + x2 + gv4,
sums under the Stieltjes-Padé method to the ac-
tual levels. Their proof is not known to extend
either to multidimensional oscillators or to x2”
oscillators 1. In this note, we wish to demon-
strate that the Borel summability method 1 can
be applied to these cases.

T The reasons in these two cases are distinct. For
xzm, the perturbation coefficients grow too fast;
we avoid this problem by utilizing some weak ana-
lyticity properties on sheets after the first. For
multi-dimensional oscillators, the global analyti-
city properties of Loeffel and Martin [8] have not
been proven, We sidestep this difficulty by only
needing local analyticity properties which can be
deduced by Hilbert space methods independent of
dimension,

T Ogievski [5] noted long ago that for the exactly
solvable Dirac particle in a (non-quantized) state
field the answer is Borel summable and recently
Reeken [6], has studied Borel summability for re-
gular perturbations.

To this end, we first quote a generalized ver-
sion of Watson's theorem T11: Let D be the sec-
tor on an n-sheeted Riemann surface defined as:

0<lz| <B, largz| <a, 37 > >3m. Let Dy be
the sector: |arg z] < <A - 37 and D the sector
0< ]z] < B, }arg z] < 6. Given the formal

power series 26° a,z", suppose that:

(i) f(z) is a function regular in D with the
formal series as asymptotic series uniformly in
D:

fe) =

OMZ

anz" +RN(z) (1)

(ii) There are o, C so that:

Ian! <Con!; |RN(z), < co ML (N1 1)1 ] 2]

2)
uniformly in D and N i. Then the series Z)aoanz”
is Borel summable to f{z) in D, i.e. one has
there:

-]

f(z) = f e % F(za)da 3)
0

where:

TTTHardy [2, p. 192] proves the theorem only for A < 7,
but its generalization to an n-sheeted surface is
simple.

I We remark that the second part of eq. (2) automati-
cally implies the first part.
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o0

F(z) =§anz” o, = a,/n! (4)
This series, called the Borel transform of f{z),
being convergent for ‘z| <1/ can be continued
to a function regular in Dj. We note the obvious
fact that once f{z) is known in D, it is known in
principle throughout its domain of analyticity, if
this is bigger than D.

Suitable hypotheses allow the generalization of
this theorem to series diverging more rapidly

than n!. In the former notation, suppose now that:

la, | < co™ (mn)1 ;

dmm >x>imn, 8=A-imn

|Ry(2)] < CoN L {m(N+ D} |2|N+1 (5)

Z 1 being any integer, all other hypotheses
remammg unchanged. ’I}xe transformation z1/m
=w reduces ¢(w) f(z ) to the conditions of
Watson's theorem, so that one obtains easily:

Az) = (1/m) fwe'al/m F(za)a(l/m}-14q | zeD

0 (6)
where: ©
F(z) =%an 2"/ (mn)! 7

is convergent for [z l <1/0, defining a function
with a regular continuation to Dj. This result is
exactly the generalized Borel sum (B,m) of Le-
roy [2, p. 147].

Consider now the anharmonic oscillators de-~
fined by the Hamiltonians:

Hy, = p2 4 42 4 gy2m (8)

Simon [7] has proven for any m and pi :

(a) The functions E(m)(B) are analytic in the
domain D(e): {0 <|g| < B(e); largBr
3(m+1)7 ~ €} for any e (with B(e) > 0 dependent
on €, m, p).

(b) The perturbation series are asymptotic to
E(m)(B) uniformly in each D(e).

{(c) The c?efgicients a{™ of the perturbation
series for EV/ are 0™ (m-1)n}).

Similar results also hold for an s-dimensional
osc‘iblzlator H, +V where H, is an s-dimensional

5 s and V is a homogeneous 2m-th degree

polynomial which is everywhere positive on the
unit sphere. In addition, it has been proven by
Loeffel and Martin [8] in the one-dimensional
case:

(@) E(m)(ﬁ) are analytic in the entire cut plane
largﬁ <, and are Herglotz functions there.

By (b), (c), (d) one is allowed to apply for
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m =2, 3 the Stieltjes~Padé summability method,
which implies the determination of a unique
Stieltjes function from the asymptotic series and
the convergence of any [N, N +j] (j fixed) Padé
approximants sequence to the eigenvalues.

For m >3 the Padé are known to convergence,
but it is not known that the asymptotic series de-
termines a unique Stieltjes function: thus the
[N, N +j] may not converge to the eigenvalues (or
even to an answer independent of j!). For the
multidimensional oscillator, (d) is not known so
the Padé's are not proven to converge, let alone
to converge to the eigenvalues.

What we will show is that the Borel method is
applicable in all these cases. Given (a), one
needs only prove the estimate:

|E™g)| < e {(m- D+ 111" (9)

uniformly in D(€) for € small to conclude that
the perturbation series are (B, m~1) summable
in the sense as defined above. Before turning to
the proof of eq. (9), which is suggested by (c),
we remark that (b)-(d) imply eq. (9) in the cut
plane (thereby proving the summability by the
ordinary Borel method for m = 2) and that one
has summability in regions {‘B] < Ble),

larg 8| <7 - €}. We also note that for any m we
have the Borel transform analytic in the whole
B-plane, cut along the negative real axis from
-Ryto -}t .

We now turn to a sketch of the proof of eq. (9),
the main technical point of this note. Since the
extensions to arbitrary m and an arbitrary num-
ber o ‘f dimensions is trivial, we consider only
the x” ground state in one d1mens1on

We first recall [7, § I1.10,11] that to control
eq. (9), we need only control the remainder for
the asymptotlc series to the ground state of
H('y ‘[3! + Ile4 uniformly in

"y\ =1; largy[ <7 - €}. Let P,,(lBI)be the
prolectlon onto this ground state and let ¥ be
the unperturbed ground state normalized by #:
(¥ 5, %) =1. Then

i E;m) (B) represents the p-th level of pZ+ x2 + Bx2m
for B> 0, analytically continued in 3. We suppress
the p for convenience.

1IR_ depends on the behaviour of the perturbation co~
&1c1ents If the semi~heuristic argum (mi of Bender
and Wu (to be published) are correct, Ro
{mI&+ m/(m=1))/7L/ 2(m - )T 1L+ m/(m - 1))} m-1,
One of us (B. S.) should like to thank Dr. C. Bender
for a discussion of these results before appearence
of the preprint.

# For v com 2plex ¥, is no longer real. The normali-

zation f\If (x)dx = 1 makes ¥, (v,x) analytic iny.
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(H"(y, |8 0o, Py(| 81)¥)
E(Yy !B') = <‘I’O’P'}’( ﬁ )\I’O>

It is not hard to prove that the quotient of func-
tions flz), g(z) obeying eq. (9) (with g(0) #0 of
course!) obeys eq. (9) perhaps with o and C modi-
fied, so we need only prove a result of type eq.
(9) for the numerator and denominator of eq. (10)
separately. Since

(10)

P(B])=(-3m0) [ AR() ,
1 l/ZI:%

I A-zY

with R(\) = {H(y, |8]) - 2}-1

it is enough to control the numerator and denom-
inator of eq. (10) with P replaced with R (but uni-
formly in A with |x-3y'/2| = 4). Finally since
| &P+ (y,] 8])%, || and | ¥, | are bounded we need
only control the norms of the remainder terms,
ie. || ROVI(2 + v - K)‘l}”‘I’Ox!L or since R(})
is uniformly bounded H {x4(p2 + yxé ~ )\)'1}" ‘Ifo H
Introduce "scaled” cr/aation an9 annihilation
operators T b = 2-1/2(, 174, | 4,71 4p), a=
2-1/2(.),1/4x — iy 1/41,). Let ¥, = (n!) -1/2 X ¥, S0
¥, is normalized by (T, ¥y, =1, ie. &, is just
the y = 1 eigenfunctionTT scaled by x—»1/%x. It is
not hard to prove 11 that [[¥, | <B"*1 for some B

which can be chosen independently of ¥ with
largy| <7 - €. To obtain the required bound i

{42+ 922 - N1 8[| < D™ 1Y,
we expand X = 2-1/2 7‘1/4(a+ b) and majorize the
norm by 4% terms of the form
I af a§ a3 az(pz sy - n-1 .ajl’n(pz +yx2 - -1 \I/O ”
with each at = g or b. Using:

at, =nl/P, 15 bYy, = (n+ D2 g,

PRey2-n1e, = (V2m-n1e, ,  and
T Since vy is not real, the creation and annihilation
operators are not adjoint to each other, so we in-
dicate them a, b.
T9That is the usyal Hermite function no
Y=ok, by W\I/n‘T = 1. For y non-real, 7
J¥ 5, vdx = 1.
111t is only necessary to employ the integral relation

W, (y, %) = (ny~1/2 2771 exp (-391/2x2) x

foo(yl/‘*x vityTe Bar.

alized, for
W, () ﬂié =

1 Our proof of this bound provides an alternative proof
of the results of appendix V of ref. [T]; see footnote .
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we obtain the required bound.

While the Borel method is ideal for proving
that the perturbation series determines the eigen-
values, it differs from the Stieltjes-Padé method
in that it is not convenient for direct computations.
This is because an analytic continuation is in-
volved in the Borel method. One can try to per-
form this continuation of the Borel transform by

Come TR | &

| o

Table

1.065280 566374 99
1.065285501 92618
1.065285509194 08
1.065 285509 531 32
1.065 285 509 543 65
1.065 285 503 543 70

Table 2

Rate of convergence off{B}v’ N] (B) for 8 small.

1.324 0910737850

1.385 465009 227 7
1.3919181305501
1.3922458931894
1.3923266135762
1.3923491657479
1.392350 5188850

Comparison of f{g A1 w;_{]}e] %u]e Padé approximants

™

|

roooooo0eS
S OWW~IO U W

|
|
|

A20,20]
1.065 285 509 543

1.118 292 654 3(57)
1.164 047 156 (234)
1.204 810 31(0 603)
1.241 853 9(48 135)
1.275983 (105 974)
1.307 747 (246 301)
1.337 54(1 726 579)
1.365 66(2398 911)
1.392 3(37 481 861)

A10,10]

B
1.065 285 509 54370
1.118 292 654 35(8 5)
1.164 047 157 0(75 4)
1,204 810 324 (767 4)
1.241 854 04(6 678 2)
1.275 983 5(21 854 5)
1.307 748 5(31 549 3)
1.337 544 9(37 046 5)
1,365 669 2(83 162 3)

1.3923506536791

1.392350 (653 679 1)

Comparison for 3 intermediate,

Table 3

B f[20’ 201

1 1.39234

2 1.6071

3 1,767

4 1.897

5 2,00(5)

6 2.10(0)

7 2.18(- 2)

8 2.25(0)

9 2.31(3)
10 2.37(0)
1l 2.4(21)
12 2.4(68)
13 2.5(11)
14 2.5(57)

2.68(33879)

10,10
f[B 1

1.392350 (6)
1.607 50(9 3)
1.7694(141)
1.902(6241)
2.017 (235 0)
2.118 (543 6)
2,209 (7320)
2,292 (8867)
2.369 (463 7)
2,440 (527 3)
2,506 (383 4)
2,56(9 160 3)
2,62(7 859 3)
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means of the familiar Padé approximants, since
it is known [9] that if there is a sequence of
[N,M], N + M = «, Padé approximants free of
poles and zeroes in a region A strictly contain-
ing the origin, then this sequence converges
uniformly to a function analytic in A, which is
exactly the analytic continuation of the Taylor
series.

Let us apply these considerations to the
ground state eigenvalue E,(B) of the x4 perturbed
anharmonic ogcillator. In the notation of ref. [4]
and [7], f[N N ](,8) are the diagonal Padé approxi-
mants formed from the perturbation series
whose first 75 coefficients have been computed by
Bender and Wu [10]. Indicating the Borel trans-
form of the perturbation series by F(3), we have
investigated its diagonal Padé approximants
F{N:N](B) and found that, up to N = 10 the poles
and zeroes lie away from the real positive axis,
with the exception of the [3,3] and [7,7]. For
N >10 the computations cannot be done because
the input coefficients are only given to 12 figures
and cancellations in the determinants become
significant.

In any event, one can assume il the existence
of an infinite subsequence, formed by the dia-
gonal approximants with the exception of the
[4N-1,4N-1] ones, free of zeroes and poles in
a neighborhood of the positive real axis and
moreover that the nonuniformity of convergence
at« is sufficiently mild to justify the interchange
of the limit and the integral needed to have:

B - [ e PN NMgg aa
0
convergent as N ~ « to fAB).

1} We emphasize that unlike the results in section .II,
the assumptions made for purposes of computation
are not rigorous.
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Numerically, one finds first that the fgv’N]
appear to be monotonically increasing which is
not to be a priori expected since F is not Stieltjes
and one also finds convergence to the correct
eigenvalues more rapidly than for the usual
Padé's (compare our table 1 with table 2 of ref.

7] or look at our table 2 where more figures
[ar]e convergent for f%o’lol than f[20,20})' This
more rapid convergence {if is even more evi-
dent for intermediate 8 # (table 3) where f[g'5]

(14) compares with 7120,20} (14) in degree of pre-
cision.

It is a pleasure to thank Dr. G. Turchetti for
useful discussions, and Dr. D. Bessis for the
hospitality of the Cargése Summer School where
our collaboration was begun.

111 One possible explanation of this ﬁamd convergence
is that the logarithmic cuts off[B’ are better able
tt[)ijg]ck up the singularities of f than the poles of

# For very large (3, bothf][3N’N] andf[N’N] suffer the
same defect of going to constants while f{f) /ﬁ1/3
has a finite limit for the actual function f(f).
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