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Abstract 

A class of linear stochastic differential equations in Hilbert spaces is studied, which allows to 
construct probability densities and to generate changes in the probability measure one started 
with. Related linear equations for trace-class operators are discussed. Moreover, some analogue 
of filtering theory gives rise to related non-linear stochastic differential equations in Hilbert 
spaces and in the space of trace-class operators. Finally, it is shown how all these equations 
represent a new formulation and a generalization of the theory of measurements continuous in 
time in quantum mechanics. 
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I. Introduction 

In the last few years there was an increasing interest in non-linear s tochast ic  

Schrbdinger  equations in quantum mechanics. These are stochastic differential 
equations in a Hilbert space, generalizing the linear SchriSdinger equation and having 
additional interesting properties of reproducing non-linear phenomena such as 
collapse of the wave function. 

There are essentially three ways to come to such equations. They can be postulated, 
and the consequences of such a postulate are then to be investigated, as is done by 
Gisin (1984), Di6si (1988b), Ghirardi  et al. (1990). On the other hand, similar 
equations are deduced in the framework of quantum filtering theory (Belavkin, 1988, 
1989a, b, 1990a, b; Belavkin and Staszewski, 1989) as equations for a posteriori states 

in a quan tum non-demoli t ion measurement  process. Finally, they can be deduced from 
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the formalism of continuous quantum measurements in the sense of Barchielli et al. 
(1983) through the classical stochastic representation for such a process (Di6si, 1988a; 
Holevo, 1991a, b; Barchielli and Belavkin, 1991). This last approach is related to the 
second one in the way that every continuous measurement process can be dilated to 
a quantum non-demolition measurement (Barchielli and Lupieri, 1985, 1989), the 
condition of non-demolition being nothing but the commutation relations between 
"in" and "out" processes in quantum stochastic evolutions (Gardiner and Collet, 1985; 
Barchielli, 1991). 

The resulting non-linear equations are of independent mathematical interest and 
they can be studied by using It6's stochastic calculus in Hilbert spaces. Moreover, the 
analytic power of this calculus can be used to construct a stochastic representation for 
quantum measurement processes much more general than those treated up to now, 
e.g. by means of quantum stochastic calculus. Namely, the operator coefficients of the 
basic equations are allowed to be more or less arbitrary predictable operator-valued 
processes, and the class of driving noises can be also substantially enlarged. While the 
possibility of such a kind of extensions was declared elsewhere (Belavkin, 1990a, our 
aim here is to present definite mathematical results in the study of non-linear 
stochastic Schr~bdinger equations and related notions. In this paper we restrict to the 
case of coefficients whose values are bounded operators; the case of unbounded 
operators poses additional interesting problems and will be discussed in a separate 
paper. Simple examples involving unbounded operators are treated by Gatarek and 
Gisin (1991). 

2. Some stochastic differential equations in Hiibert space 

2.1. The conservative stochastic evolution equation 

Let (t2, { ~ ,  t i> 0}, P) be a stochastic basis satisfying "usual hypotheses" (M6tivier, 
1982, Definition 1.1), i.e. the filtration { ~ ,  t ~> 0} is right continuous (~rt = Ns>t~-~), 
for every F ~ - =  V,~>o~ such that P ( F ) =  0 one has F ~ - 0  and ( f2 ,~ ,P)  is 
complete. In this probability space we shall introduce many processes which we 
assume, if not otherwise stated, to be regular right continuous (RRC) (M6tivier, 1982, 
Definition 1.5), i.e. adapted and with right continuous paths with left limits. 
Sometimes we shall have also regular left continuous (RLC) processes (adapted, with 
left continuous paths with right limits). 

In this probability space let an ~'-valued continuous martingale M and a a-finite 
adapted point process/7 on ~ x ~ + be defined, where ~ := R d x N and N is the set of 
natural numbers. We assume n:p [Mkt] -- 0 and the elements of the matrix of quadratic 
variation of M to have the form StOTkk,(S)ds, with the Ykk' being RLC processes 
(formally: dMktdMk,t = Ykk'(t)dt). We ask the compensator of / /  (or stochastic 
intensity, or dual predictable projection) to be of the form vt(dy)dt with v.(dy) RLC. 

Let us recall that v is a perdictable a-finite measure on ~ ;  the quantity 

/7(dy, dt) := lI(dy, dt) - vt(dy)dt (2.1) 
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is called a white random measure in M6tivier (1982, p. 219), or a martin#ale measure in 
Liptser and Shiryayev (1986, p. 172). Let us recall that the stochastic integral 
St0.,1S~ F~(y) f/(dy, ds) is defined and is a local martingale (Liptser and Shiryayev, 1986, 
Section 3.5) if the following condition holds (although this stochastic integral could be 
defined in more general cases): 

flf~ IF~(y)12vs(dy)ds<+°°;1 + ,F~(y)I (2.2) 

the modulus has to be substituted by the norm in the case of processes with values in 
a Hilbert space. 

Let us consider the following linear It6's stochastic differential equation (SDE) for 
a process ~kt with values in a separable complex Hilbert space ~ and with the initial 
condition ~ko = ff (~ a random unit vector in ~ ,  measurable with respect to the initial 
a-algebra ~-o): 

dqJ, = ~ LkAbt-dMk, + f Lt(y)qJt_~(dy, d t ) -  Ktd/,_dt. (2.3) 
k=l  J~ 

As usual, the differential form is a short hand notation for a stochastic integral 
equation. 

2.0.A. We take Lk,, L~(y), Kt to be RLC processes (continuity in the strong operator 
topology) with values in the space ~(.,~g) of bounded linear operators on 

(Vk e{1, . . . , r} ,  V y e ~ ) ;  in particular they are predictable processes. We also 
assume the function (t, o~, y) ~ Lt(y; co) to be strongly measurable (when R + x ~ is 
equipped with the a-algebra of predictable sets) and the integral 

Re(to) := f~ Lt(y; o))*Lt(y; co)vt(co; dy) (2.4) 

to be weakly convergent (Vt e R +, Vco e [2). 
2.0.B. We also require (Vt > 0, V~o e t2) 

k = l  k ' = l  
~)k,k,(S'~O))l'-~ IIRs(og)lltds < oo. 

(2.5) 

2.1. Proposition. Under conditions 2.0, Eq. (2.3) admits a unique (up to P-equivalence) 
solution ~bt, t ~ R +, which is an ~-valued semimartingale. 

Proof. For every ~°-valued RRC process r /and every t e R +, we have 

.< f l  ,_ .<.. ,.=, ,,,..,,2][,_,_ ,..=, ,,..,,.,,,]_,_ 
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By (2.5), this implies immediately the "global Lipschitz condition" [L1] and the 
condition for "non-explosion" I-K] of M6tivier (1982, pp. 244-245 and 252). Theorems 
34.7 and 35.2 of M6tivier (1982) give the existence of a unique solution ~kt for all t e R +, 
which is an RRC process. Then, by the definition of stochastic integrals, we have that 
~bt is a semimartingale: see M6tivier (1982), Section 26.4, Theorem 24.4 (1 °, 5°), Sections 
18, 31.14. []  

and 

It is convenient to set 

S,(co):= ~ Lk,,(co)*Tk,k(t;cO)Lk,(CO ) (2.6) 
k , k ' = l  

i 
H, := ~ (K* -- K,). 

Then, we assume 

2.2. K *  + K t  = Rt + St; 

so, we can write 

K, = in ,  + ½(R, + S,). 

The stochastic evolution equation 
conservative. 

We shall assume also that, Vt ~ • +, 

f' 
2.3.A. e s s sup  [IS~(~)llds < + oo, 

coE~ J o  

Jo 

(2.7) 

(2.8) 

(2.3) satisfying condition 2.2 will be called 

The following property may be called conservativity of the solution of Eq. (2.3). 

2.4. Theorem. Under conditions 2.0, 2.2 and 2.3, the square norm [[~t[[ 2 =: Pt of  the 
solution of Eq. (2.3) is a positive martingale with 

n:p[p,] -- n:p[ll~ll 2] - 1 (2.9) 

and satisfying the Dolbans equation 

d p , =  p,_dZ,, (2.10) 
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where Z, is a local martingale defined by 

(2.11) 

tfik,:= 2Re(~t-lLkt~t-) ,  Tt(y): = II(Lt(Y) + ])~,-I[ 2, (2.12) 

fOdll~,ll,  if I1~,11 ~ o, (2.13) 
~'  := Iv  (fixed unit vector) if IlO, ll = 0.  

Proof. By Remarks 3.9, p. 50, of M~tivier and PeUaumail (1980), it is possible to apply 
It6 formula (M6tivier, 1982, Theorem 27.2) to the function f(~kt) = I1~',1t ~ - p,; under 
assumption 2.2 we obtain Eqs. (2.10)-(2.13). 

Considered as a linear equation for Pt, (2.10) has a unique solution called the 
exponential of the semimartingale Zt (M~tivier, 1982, Theorem 29.2, Definition 29.3); 
an explicit expression for Pt is given by Eq. (29.2.3) of M6tivier (1982). 

Since Zt turns out to be a local martingale, p, is a local martingale (Liptser and 
Shiryayev, 1986, Theorem 2, p. 124) and a nonnegative local martingale is 
a supermartingale (Liptser and Shiryayev, 1986, p. 23); so, we have 
~_p[p,] <<. n:p[po] = 1. 

To establish the equality, we check the condition of Kabanov et al. (1979, Lemma 
7), ensuring that Pt is a (locally) uniformly integrable martingale. Because of II frill = 1, 
we have 

rhk,tYk,k(t)rhkt~<4 ~ ~k,k(t)(Lk,,~,_lLkt~,_)<<,41lStll, (2.14) 
k,k '=l  k ,k '=l  

( ~  - 1) 2 = (11 (Z,(y) + ~)~,_ II - II ~ , -  II )2 ~ tl L,(y)~,_ H 2. (2.15) 

Then, by conditions 2.3, we have 

esssup f l l  ~ rhk's(m)Yk'k(S;~)tfiks(09) 
~oE~? k,k, = l 

for all t > 0. This is essentially the sufficient condition of Kabanov et al. (1979). 
Going back to the existence of the stochastic integral with respect to the white 

random measure /7 in Eq. (2.11), by recalling Eq. (2.2) and that, for x/> - 1 ,  

x2/(1 + Ix l )~  (~/1 + x - 1) 2, we have that the integral in consideration converges by 
the estimate (2.15) and the condition 2.3.B. [] 

If the jump part is absent (Lt(y) = 0), then assumption 2.3.A can be essentially 
1 t relaxed by requiring only Novikov's type condition ~:p[exp~jollSsilds] < + oo 
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(Ikeda and Watanabe, 1981); there are some extensions of this condition to the general 
case (L6pingle and M6min, 1978), however, they seem not to be easily applicable to 
our problem. We mention also that without such auxiliary conditions conservative 
stochastic evolution equations may have non-conservative solutions. 

2.2. The non-linear stochastic Schr6dinger equation 

By the previous theorem, if ~ is a unit vector, then Pt is a local probability density 
and one can define the new probability measure/~, as in M6tivier (1982, Section 30.2) 
by 

VF ~r t ,  P(F):= IFe[ptlr]. (2.16) 

Next proposition says what the processes M and H become under the new law P. 

2.5. Proposition. Under the law ~0, H is a point process with compensator [t(y)vt(dy)dt 
and the process MI, defined by 

A~k,:: Mkt-- f l  ~ r~k'sTk'k(s)ds, k =  1 .... ,r, (2.17) 
k '=l  

is a continuous martin#ale with vanishing P-expectation and matrix of quadratic 
variation Sto 7k,k(s)ds. 

Proof. The two statements are essentially Theorem 1, p. 223 and Theorem 3, p. 232 of 
Liptser and Shiryayev (1986). One has only to make the computations implied by Eqs. 
(5.2) p. 222, (5.25) p. 231 and (5.26) p. 232 of Liptser and Shiryayev (1986). [] 

2.6. Remark. If under the law P the M k a r e  independent standard Wiener processes (in 
this c a s e  7 k , k ( t )  = 6k ,k)  , then under the law P the A~tk are again independent standard 
Wiener processes. This statement is related to Girsanov transformation and follows 
from the computation of the compensators of Mkt under the new law and from the 
martingale characterization of Wiener process (Liptser and Shiryayev, 1986, Theorem 
3, p. 232, Ikeda and Watanabe, 1981, Theorem 6.1, p. 74). 

Let us set 

/I(dy, dt):= II(dy, dt) - [t(y)vt(dy)dt; (2.18) 

according to the previous proposition/I is a white random measure under the law/~. 
It is interesting and useful to have an equation for the normalized vectors ~t defined 

by Eq. (2.13). 

2.7. Theorem. Under assumptions 2.0, 2.2, 2.3, the normalized process ~t, defined by 
Eq. (2.13), is a l~-semimartingale satisfying the non-linear SDE 

d~t = ~ /~kt~t-dh~kt + fr Lt(y)~t-ffl(dy, dt) - /~ t~ t -d t ,  (2.19) 
k = l  
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where E~ is the complement of the random set E, := {y: it(y) = 0} and 

t ^ Lt(y) + 
Lk, := Lk, -- xmkt'a, Lt(y ) := - -  - ! ,  (2.20) 

1 ' ^ 1 ^ 
/~, := Kt + ~ k, '=1 mk'tYk'k(t)(xmj -- Lkt) 

+ f~ [(1 -- ~ ) L t ( y )  + ½(1 -- x / ~ ) 2 ~ ] v t ( d y ) ,  (2.21) 

with rhkt and it(Y) given by Eq. (2.12). 

Proof. Let us consider the linear SDE 

d/~t =/~,_d2, ,  (2.22) 

with initial condition/~o = 1, where ~, is a local P-supermartingale defined by 

2,:=--£O,ak~=ff*ksdlg4ks+f~o,afE:(~--l)Fl(dy, ds) 

-f~o.,~fEv,(dy)ds. (2.23) 

The convergence of SE, v,(dy) follows from the fact that on the set E, we have 
1 =  [lff,-[I 2 =  [IL,(y)~,-I[ z =  (~,_[L,(y)*L,(y)~,_) and from condition 2.0.B (see 
Eq. (2.4)). 

The existence of the stochastic integral with respect to the white random measure 
n is proved exactly as the existence of the similar integral in Eq. (2.11), by recalling 
that now the compensator of 11 is given by the expression in Proposition 2.5 and that, 

for x >~ - 1, x2/(1 + x + Ixl)~(~/1 + x - 1) 2. 
As for Eq. (2.10), Eq. (2.22) has a unique solution which is a positive 

supermartingale; in particular, 

n:~[/~,] ~< Ig~[i~o] = 1. (2.24) 

Moreover, we have 

1 
= -- (mod P). (2.25) /~' p, 

To show this we use Eqs. (2.10),(2.11),(2.17),(2.18),(2.22),(2.23) and It6's product 
formula to obtain d ( p d ~ t ) = -  Se,//(dy, d t ) =  0 (mod/~). The equality E,,[i0,] = 1 
takes place if and only if P and P are equivalent on ~ .  

Let us consider now the linear SDE 

d~t = ~,- - ~ fflk,d]VIk, --  ~ fflk,t])k'k(t)fflktdt 
k = l  k , k ' =  1 

(2.26) 
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which is obtained by formal application of It6's formula to f(Pt) = x/~" Conditions 
2.3 and inequalities (2.14), (2.15) imply the "global Lipschitz condition" [LI]  and the 
condition for "non-explosion" [K] of M~tivier (1982); as in Proposition 2.1, we have 
that Eq. (2.26) has a unique solution ~t. By applying It6's formula tof(~t) = ~ ,  we see 
that ~t z satisfies the Eq. (2.22) as Pt. ^ By uniqueness,/~t = qt,̂ 2 so that 

1 (modP) (2.27) 

and, from Eq. (2.24), 

~:~[~2] ~< 1. (2.28) 

Let us re-express Eq. (2.3) by means of the new processes (2.17) and (2.18); we obtain 

d ~ , =  ~, Lk,d/,-d~-lk, + f~ Lt(y)d/t-ffl(dy, dt) 
k = 1 t ( y )  ~< r 

+ f~ Lt(Y)Ot-lI(dy'dt) 
r(y) > r 

+ I_ (it(Y) -- 1)Lt(y)~t-vt(dy)dt dl t(Y) ~ E 

Ji,~,) > ,, Lt(y)tp,_ vt(dy) dt 

+ ~ ~fik,tTk,k(t)Lkt~t-dt--Kt~t-dt, (2.29) 
k , k ' =  1 

where ~: > 1. The integrals over the domain it(Y) ~< r converge obviously due to 
assumption 2.0.B. The integrals over It(y) > r converge by assumption 2.3.B and the 
estimate 

flfi,(y)>Ls(Y )~s-vs(dy)ds2 

<..flf,..,>,v.(dy)ds£f. 
, 

<~ \ ~ -  I v'(dy)ds fo [[R'JJdssup JJ~b'[t2; 

sup,<t [[~,[[2 is a.s. finite since ~'t is RRC and hence locally bounded. 
By applying It6's product formula to ~t = qt~t, we obtain Eqs. (2.19)-(2.21). []  

One may call Eq. (2.19) the non-linear stochastic Schr6dinoer equation; it turns out 
into the usual Schr6dinger wave equation in the ease of a non-random Hamiltonian 
Ht and Lkt -~  0 ,  Lt(y)--O. In the context of "quantum filtering theory" the first 
examples of this stochastic equation appeared in Belavkin (1988). 
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2.8. Remark. As we shall see in the following sections, changes of phase in fit and ~t do 
not matter. The following replacements in Eqs. (2.3),(2.4),(2.6),(2.8) give rise to 
a stochastic change of phase in ~kt: 

Lkt --* L~t + ilkt~, L t ( y )  ~ ei f '~Y)(Lt(y)  + "a) - "~, (2.30) 

' i  
H~ --* H, + ht - ~ lk,c~k,~(t)(L~ + L'~) 

k,k '=!  

+ ~ [(e i-r'~'~ -- 1)L,(y) - (e -i~'('~ - 1)L,(y)*]v,(dJ, (2.31) 

where l~,(m), f~(y; m), he(co) s N and are such that all the assumptions on the coefficients 
of Eq. (2.3) are satisfied. About ~ ,  a suitable stochastic change of phase allows to write 
Eq. (2.19) with the following more symmetric form of the coefficients: L~(y) unchanged, 

(2.32) ft--k, = Lk, -- <L,,>,, <Lk,>t := <$,-[Lk,d),->, 

1 " 

+ ~ [L,(y)* + (1 - ~ ) ~ ]  [L,(y) + (1 - ~ ) ~ ] v , ( d y ) ,  (2.33) 

i ' 
B, := n t  + ~ k k~= (</-~"t>tyk'k(t)L~t -- L~',yk'k(t)<Lkt>t) 

, - 1  

+ ~ ( ~  - 1)(Lt(y) - Lt(y)*)v,(dy). (2.34) 

3. Equations for quantum-mechanical means 

3.1. Mixed states and quantum evolutions 

Let us recall that quantum-mechanical (normal) states are represented by statistical 
operators (positive bounded operators on ~ with trace equal to one) and that the 
linear span of statistical operators is called trace class Y'(~) ;  let us denote by 5P(~) 
the set of statistical operators. Let us use the notation <0, a> := Tr{oa}, 0 ~ Y ' (~) ,  
a~L P (~ ) .  If 0 is a statistical operator and a is self-adjoint, then <o,a> is the 
"quantum mean" of the "observable" a in the state Q. By introducing the norm 

110[11 := T r x / ~  = s u p a ~ e ) .  ,,a,,= 11<Q,a>l, Y-(~) becomes a Banach space, whose 
dual is ~ ( ~ )  (Reed and Simon, 1972, Ch. VI). 

We introduce a countable family of random vectors @a e ~ ,  @a measurable with 
respect to ~-o, with Z~%1 II~all z = 1. Then, the equation 

<Lo, a> = ~ <WlaW>, V a e ~ ( a ~ )  
B = I  

defines a random statistical operator Q: our initial state from now on. 

(3.1) 
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Let ~b~ be a solution of the linear equation (2.3) with initial condition ff~o = ffP. We 
introduce the random positive trace-class operators at by 

( a . a ) =  ~ (q6Pla~,,P), VaeLa(Jeg). (3.2) 
f l=l  

Under all the assumptions of Section 2, the quantity 

p,:= ~ I[~k~[[ 2 = (a, ,~) (3.3) 
f l=l  

is a probability density and we define a probability measure/3 by Eq. (2.16). Let us 
stress that we have changed the initial state (a pure state in Section 2 and a mixed state 
here), but that we are keeping fixed the notations: analogous quantities are denoted by 
the same symbols. 

Similarly to Eq. (2.13), by normalizing a,, we define the random states #t by 

~O't/Pt , if Pt :/: O, (3.4) 
~t :=-(S (S fixed statistical operator) if Pt = O. 

Finally, we define Ot by 

<O,,a> := Fe[<at, a>] - ~:~,[<a,,a>], Va e~(P(~); (3.5) 

0t turns out to be a statistical operator. We set also 0 := 0o -- Fe[O]. 
In this section we want to consider the evolution equations for the various families 

of trace-class operators introduced above. We start by considering 0,. 
Let us assume 

esssupflo,,~ IIHA~o)[I ds < + oz 3.1. 

(cf. assumptions 2.3). 

3.2. Proposition. Under conditions 2.0,2.2,2.3, 3.1, we have, for any a ~ ~(,,~) 

(O,,a) = (O,a) + I' ~-v[ ( a~-, ~q~s[a]) ] ds, 
30 

where 

,.~,[a] := i[H,, a] + ~ 7k,k(t)(L~,,[a, Lk,] + [L~,,, a]Lk,) 
k,k' = l 

1L 
+-~ (Lt(y)*[a, Lt(y)] + [Lt(y)*,a]Lt(y))vt(dy) 

- K ' a - -  aKt + i 7k,k(t)L*,,aLk, + ;~ Lt(y)*aL,(y)v,(dy). 
k , k ' =  1 

(3.6) 

(3.7) 
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Proof. Under the conditions introduced, -Yt is P-a.s. a weakly*-continuous bounded 
linear map of &a(~)  into itself, such that 

esssup f"  IlLa~(o)llds < + ~ ,  Vt > 0. (3.8) 
do 

We first prove Eq. (3.6) for 0 = I~)(~1, when (a,, a)  = (~,tla~k,). 
We have 

n:p[(~, I a~',)] = ~:p[(ff, I a~ , ) ] .  (3,9) 

Without loss of generality we assume a ~> 0. Using Eq. (2.19) and It6's formula for 
f (~ , )  = (¢ ,  I a~ , ) ,  we obtain 

( ~ , l a ~ , )  = (~ ' la~ ' )  + f ( ~ - I L a ~ [ a ] ~ - ) d s  
J( O, t] 

+ fto.'l k=,~ (~s-l(aLk~ + L*~a-~hksa)~s-)d~Ik~ 

+ f(o, tlfE:[llal/2(Ls(Y)+~)~s-112-11at/2~s-1121 T-~(~ (3.10) 

We show that the stochastic integrals in Eq. (3.10) are mean-square convergent. For 
the integral with respect to ~ this follows easily from assumption 2.3.A and the fact 
that [I ~,11 = 1. For the square of the integrand of the white random measure we have 
the inequality 

I l la ' /e(L, (y)  + ~ ) ~ - I I  2 _ Ila~/2~_ 112] 2 
Z,(y) 

Ilal/2(L~(Y) + ~)~-II _ ilal/2~_ II ~< 211all 

~< 2 Ila II II/'s(y)- 1/2al/2Ls(y)~s- + (is(y)-z/2 _ 1)al/2 ~s-II 2 

~< 4 Ilall2H~(y)-Xll L~(y)~_ II 2 + (?,(y)- a/2 _ 1)2]. (3.11) 

This quantity is integrable on ~ x (0, t] with respect to the compensator Ts(y)vs(dy)ds 
of H, due to assumption 2.3.B and the estimate (2.15). The stochastic integrals are thus 
square-integrable martingales and have zero expectations. The first integral in 
Eq. (3.10) converges in the mean due to (3:8). Taking the expectation of Eq. (3.10) 
we obtain (3.6). 
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If 0 is a general density operator (3.1), by assumptions 2.3 and 3.1 the dominated 
convergence theorem can be applied and one obtains 

~-v[(at, a)]  = ~v a 
1 

p=l  

= <~,a> + [ '  f.pE(a,-,.L#sEa]>]ds. [] 
30 

As we see from Eq. (3.6), the state 0t obeys a closed equation if L, es is a non-random 
operator. In the case in which Ht, Lkt, Lt(y), Yk'k(t), Vt are non-random quantities we 
have that Ot satisfies the Markovian master equation 

d 
dt Ot = La,, [~0,]; (3.12) 

the star denotes the pre-adjoint map. In the case of no time-dependence too, exp(~t)  
is a norm-continuous quantum dynamical semigroup and one can show that the generic 
generator of this kind of semigroups can be represented in the form (3.7) (Lindblad, 
1976); in other words (3.12) is the generic master equation with bounded Liouvillian 
~ , .  

Let us recall that master equations like (3.12) send pure states (one-dimensional 
projections) into mixed states. So, in the case of non-random ~et, Eq. (2.3) (or (2.19)) 
can be seen as a pure-state stochastic representation of Eq. (3.12) (Holevo, 1989, 
1991b). Indeed, simple versions of Eqs. (2.3) or (2.19) are used for numerical 
simulations of master equations (Gisin and Percival, 1992). 

3.2. Stochastic evolution equations for states 

Let us consider the analogue of Eq. (2.3) in ~--(~). We shall need also the following 
assumption: 

3.3. sup sup [ILs(y;o~)ll < 
O <~s<..<t y~,co~O 

for all t > O. 

3.4. Proposition. 
satisfies the weak-sense SDE: Va e ~(~'¢~) 

d<a,, a> = <tr,_, L#t [a] > dt + ~, <at-, L*ta + aLkt> dMkt 
k=l 

+ f (a,_, Lt(y)*aL,(y) + aLt(y) + Lt(y)*a>ffl(dy, dt). 
de 

Under the assumptions 2.0, 2.2, 2.3, 3.1, the ~--(~)-valued process at 

(3.13) 
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Moreover, Pt, oiven by (3.3), satisfies Eqs. (2.10) and (2.11)) with 

ff~kt := 2 Re(G- ,Lk t ) ,  l,(y) := (G-,(Lt(y)* + ~)(Lt(y) + ~)). (3.14) 

When also assumption 3.3. holds, at 9iven by Eq. (3.2) is the unique solution of Eq. 
(3.13) with initial condition (3.1). 

Proof. If 0 = I~'><~1, then Eq. (3.13) follows from (2.3) through application of It6's 
formula to the function f(~b,) = (~bt [ a$t) .  By linearity it follows that (3.13) holds in 
the case of initial condition O = O N -- Y.;= 1 [~bP)(~ba], N < or. For general O we shall 
obtain (3.13) by an approximation with respect to N. 

We first show that p, satisfies Eqs. (2.10),(2.11),(3.14). By setting 

N 

P~ : -  E ]]~ btp[[2, 
f l= l  

we have an equation for p~ similar to (2.10),(2.11),(3.14), were rhkt and /',(y) are 
replaced by 

N 

^N. v,-2 a= ~ P--~-- a = t l  ~, l](Lt(y) + ~)~O~-[I 2, mk, .= 2-~Re (~b~_ ILkAO~-), l~(y) := 
1 

with obvious modifications on the set {~o e [2: p~_ (oJ) = 0}. 
By setting q~ := V/~t  N, we have 

mk'sYk'k(S) mksds 1 q~_ AN - - 8  O,t] k , k ' = l  
= m k s d M k s  q~_ ^N ^N 

q~ q ~ + 2  o,tl k=X 

f<o.tl q ~ _ L  ( ~ -- 1)lq(dy, ds) + 

(3.15) 

The proof of this equation is similar to that of (2.26). As N ~ 0o, we have p~ Tp,, 

q~Tq, = x/~,  ~h~t ~ tfik,, i~ (y )~ [ , (y ) .  Moreover, the stochastic integrals in (3.15) 
converge in the mean square, while the integral with respect to ds converges in the 
mean. We shall prove this assertion only for the case of the stochastic integral with 
respect to the white random measure. Inequality (2.15) implies 

N 

(qL)2(  - 1) 2 E IIL,(y)qd-IIL 
#=1 

whence, by condition 2.0.B, the fact that Ep[p~] <~ Ee[p~] <~ 1 and the Lebesgue 
dominated convergence theorem, the assertion follows. Thus, qt satisfies Eq. (3.I5) 
with rhgt and [~(y) replaced by rfikt and ft(Y). Then, applying It6's formula to 
f(q,) = q2, we get (3.14). F rom the general theory of Dol6ans equations (Liptser and 
Shiryayev, 1986) it follows that p, is a regular process and therefore 

supps < 0o a.s. (3.16) 
s<~t 
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Passing to approximation in Eq. (3.13), we can assume a i> 0. Then, we have 

0 ~ ( a , - a S ,  a> = ~, [[x//-d~'~[[ 2 ~< Ilal[ ~ I1~[[ 2. 
fl=N+l fl=N+l 

Therefore, (a  N, a) ---, (at, a) a.s. Using similar estimates and conditions 2.0 we can 
show that 

f l  (a~_, las [a] ) ds ~ f l  (as-,  ivs [a] > ds. 

For the stochastic integral with respect to M we have to show that 

f/i k,k~= 1 IRe #=~+ 1 (a~fs-lZk's~A#s-)] 7k'k(S) 

fl=N+l 
a.s. 

By the Cauchy-Schwarz inequality, this is estimated as 

Ila~ff-II z 
k,k'= 1 fl=N+l a=N+l 

[I Lk' s¢ ~- II 7k'k(S) [1Lks~k ~- II ds 

~< [[a[[2suppr fl IlSsll ~ [[~s#-l[2ds; 
r<t fl=N+l 

the coefficient is a.s. bounded by (3.16), while the integral tends to zero as N ~ oo by 
assumption 2.0.A and the Lebesque dominated convergence theorem. 

For the stochastic intergal with respect to the white random measure we have to 
show that 

fl fR vs(dy)ds ~O a.s., (3.17) 
IFT(y) I 2 

1 + IF~(y)I 
where 

F~(y):= ~ [[[x/~(Ls(y)+ ~)~k~_[] 2 -]]x//-dff~_ll2]. 
#=N+I 

By estimates of the type (2.15) and the Cauchy-Schwarz inequality we have 

[F~(y)[ ~< ~ I[w/~Ls(y)~b~_[[[[]x/~(Ls(y)+ ~)0~-11 + [[x/~b~-[]] 
#=N+I 

~=N+ 1 fl=N+ 1 

(3.18) 
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We take a constant x > 1 and separate the integral (3.17) into two domains ~ and 9,  
where 

f l=N+l  f l=N+l  

On ~ we have by (3.18) 

[Fff(y)l 2 

1 + IF~(y)I 
IFff(y)l 2 ~ Ilall 2 ~ (~-ILAy)*Ls(y)~-) (1  + x) 2 ~, 

~t=l f l=N+l  

therefore 

IFff(y)I2 v,(dy)ds 
f l f ~  1 + IF~(y)I 

]la][2(1 + ~c)2supp' fl IIR~II ~ II~P~-ll2ds. 
r<t  f l=N+l  

By the Lebesgue dominated convergence theorem and assumption 2.0.B this tends to 
zero a.s. 

Let us set ~ := (x + 1)/(x - 1); then, on 9,  we have 

[II(L,(y) + ~)~s~-II + I1~-II] 2 
p = N + l  

~< ~2 ~ [ll(gs(y) + ~)~-II - II~s'-II] 2 ~< ~2 ~ iig,(y)~_l[2; 
f l=N+l  fl=N+ l 

therefore, by (3.18), 

IFf(y)l z 
1 + [F~(y)[ ~< IFT(y)I ~< ~llall ~ <~k~_lL~(y)*L~(y)~b~_) 

3=N+1 

and 

f l  f& [Fff(Y)[2 v~(dy)ds <~ ~llall f l  IIR~II ~ ll~'ff-ll2ds, 
1 + IF~(y)I , : ~+ ,  

which tends to zero a.s. 
About uniqueness, let us regard Eq. (3.13) as an equation for the Hilbert-Schmidt 

operators. By using the same theorems used in the proof of Proposition 2.1 for 
existence and uniqueness of the solutions of SDE's in Hilbert spaces, one sees that 
condition 3.3 is sufficient to assure such a uniqueness. [] 

3.5. Remark. As in Section 2 we have that, under the law P, the process h4, defined by 
(2.17), is a continuous martingale with the same matrix of quadratic variation as 
before and that/1, defined by (2.18), is a white random measure; now rhkt and it(Y) are 
given by Eq. (3.14). 
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3.6. Remark. Essentially with the same reasoning used for proving Eq. (2.19), one can 
prove now that the random states (3.4) satisfy the non-linear SDE 

d(~t,a> = (~t-,,~Ct[a]>dt + ~ <~t-,L*ta + aLkt -- rhkta)dl~lkt 
k = l  

+ ~ [L(y)-~(G_,(L,(y)  * + ~)a(L,(y) + ~)> - (G_,  a>] /1(dy, dt); 

(3.19) 

E~ is a set defined as in Theorem 2.7. 

4. Stochastic representation of  the continuous measurement  process 

4.1. The output process 

Starting from the SDE's and the probability measures introduced in Sections 2 and 
3, it is possible to arrive at describing measurements continuous in time in quantum 
mechanics. After a technical assumption, the first step is to describe the results of the 
measurements: only some classical process Xt is observed, which we call the output 
process. 

4.1. We assume the point process/7 to be such that the relation 

pt(dx) := ~ vddx, {j}) (4.1) 
j = l  

defines a predictable random measure on Ra\{O} such that 

fR q~(x)#t(dx) < ~,  ~o(x).- (4.2) .\(0} 1 + Ixl 2" 

Then, 

N(dx, dt) := ~ F/(dx, {j},dt) (4.3) 
j=l 

is a point process of order ~o (M6tivier, 1982, p. 218) on (Ra\{0})x ~+ with the 
compensator pt(dx)dt (under the law P). Moreover, we set 

bT(dx, dt) := N(dx, dt) - #t(dx) dt. (4.4) 

Let us consider the ~a-valued RRC process X, defined, for i = 1 . . . .  , d, by 

Xit = Xi° -4- ~o,t] { bi(s)ds + ~ l 

+ fo <,x, <. 1 x,N(dx, ds) + ~x, > 1 xiN(dx, ds)}, (4.5) 

where X~o is ~-o-measureable, alk(') and bi(') are RLC processes. 
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With respect to the law P and the filtration ~ ,  X, is a semimartinoale with triplet of 
predictable characteristics (Liptser and Shiryayev, 1986, pp. 188-191): Bi, := ~o bi(s)ds 
(predictable process of bounded variation), ~tobij(s)ds (matrix of the quadratic 
variation of the continuous part), #,(dx)dt (compensator of the jump measure), where 

bij(t) : =  ~ alk,(t)yk,k(t)ajk(t). (4.6) 
k,k '=l 

Let us introduce now the proper filtration of the semimartingale X~. By using the 
notation a{ ... } for the a-algebra generated by ..., we set 

g,:=a{X~,O<<-s<<-t}VJv, do:= V dot, (4.7) 
t~>0 

where JV is the collection of sets in f f  with P-measure zero. In what follows we 
assume that this filtration is right continuous. 

4.2. Remark. Let us denote by at(Q) the solution of Eq. (3.13) with a generic 
non-random trace-class operator 0 as initial condition. Then, the equation 

(O,~(E)[a]) = Ee[IE(at(Q),a)], VEegt,  V0e~--(W), Vae~q°(Yg), (4.8) 

defines a map-valued measure ~ with the properties: (i) VE ~ g,, ~ (E)  is a bounded 
linear operator from L#(dg) into itself and it is completely positive and normal 
(Lindblad, 1976); (ii) VQ~ 5e(df), Va ~ &o(~), a/> 0, ( O , ~ ( ' ) [ a ] )  is a-additive; (iii) 
~(f2)[~] = ~. Such a map-valued measure is called an instrument with value space 
(f2, &t) (Davies, 1976). 

Let us note that, by using a non-random state Q as initial condition in Eq. (3.13), we 
have 

(O,~(E) [~] )  =/~(E) (4,9) 

for E ~ dot. By the fact that {d°t, t >/0} is the proper filtration of the process X, we can 
say that oct describes the measuring of the quantities X~, 0 ~< s ~< t, and this 
measurement gives (in the state 6) the probability P]~, for this "output" process. 

4.3. Remark. By Remark 3.5, we have immediately that, with respect to the law 
P defined by Eqs. (2.16) and (3.3), Xt is again a semimartingale with triplet of 
predictable characteristics (Liptser and Shiryayev, 1986, Ch. 4, Section 5): 
/~. := ]'o bi(s)ds, ~ b,j(s)ds, Y4~ i,(x,j)v,(dx, {j} )dt, where b;~(t)is given by Eq. (4.6), 

bi(s) := bi(s) + ~ aik,(S)Trk(S)thks 
k,k '=l 

+ ~ fo x,([s(x, j)--1)v~(dx,{jl) ,  (4.]0) 
j = l  <lxl~< 1 

and rhkt and it are defined by Eq. (3.14). 
We introduce now the random trace-class operators O, by 

(~),,a) := Ep[(a,,a)ld~,], Va e~-q~(.,vg), (4.11) 
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and the random states 0t by 

f69t/(69t,~ ), if (69,,~) ~ 0, 
0t := IS (S fixed statistical operator) if (69t,~)= 0. 

(4.12) 

Note that (69, ~ ) = Ee [Pt 1St]; therefore, (69, ~ ) is the density of P I~, with respect to 
PI~,. Moreover, by Eqs. (3.3),(3.4),(4.11) and (4.12), for every bounded and 
gcmeasurable random variable X we have 

~-e[X(Ot, a)]  = ~-r[~Ze[p, lgt]X(Ot,  a)] = Ep[X(69t, a)]  

= ~_p[X(at, a)] = ~-p[p,X(~,, a)]  = Ep[X(~,, a) ] .  

This means that 

(0 , , a )  = Igp[(~,a) lgt] ,  Va ~Aa(~) .  (4.13) 

4.4. Remark. We take a non-random initial condition 69c5P(~), so that 
69 = ao = 690 = 00. Then, 0t is the a posteriori state for the instrument Jt  and the 
premeasurement state 69, in the sense that (Ozawa, 1985) 

(69,~(E)[a]> = ~ (0,(og),a><69, Jt(d~o)[~]>, VEcg , ,  V696SP(9~), Va ~.LP(ovf) 
JE 

(4.14) 

Indeed, by Eqs. (4.8) and (4.9), we have 

(69,Jt(E)[a]) = Ee[1E(fft,a)] = Ep[1E~-e[(at,a)lfft]] = ~-e[1E(Ot,a)] 

= Ee[lr(O,,a>~-v[P,l~,]] = Ee[Ee[1E(Ot, a>pt]gt]] 

= EP[1E(0t'a)] = fe  (0t(°9) 'a)(e '~(dm)[~])"  

The statistical operator 0(09) is the state one attributes to the quantum system at 
time t if the trajectory Xs(~o), 0 ~< s ~< t, of the output process has been observed. 
Moreover, if we consider the state 0t defined by Eq. (3.5) and we take Eqs. (4.8) and 
(4.14) for E = I2, we obtain, Va E L~°(oeg), 

< c0,, a> = fa  <0t(~o), a> <Q, ~(dog)[~]>; (4.15) 

we can read this equation by saying that 0t is a mixture of the a posteriori states 0t(~o) 
with respect to the probability measure <O, ~(do9)[1]>: 0t is called the a priori state at 
time t because it is the state we attribute to the system at time t before knowing the 
results of the measurement. 

4.2. Non-linear stochastic equation for  the a posteriori states 

We want to introduce now new assumptions in order to reach two goals. The first 
one is to obtain closed SDE's for Ot and 0 ,  The second one is to introduce (random) 
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instruments related to arbitrary time intervals and to obtain some rule for composing 
instruments related to consecutive intervals, in such a way that this composition gives 
the instrument related to the union of the time intervals. The simplest way of 
obtaining these goals is to have that {gt, t /> 0} coincide with the filtration generated 
by N and some of the components of M, that all the coefficients appearing in the 
various equations be adapted to such a filtration and that H and M reduces to 
Poisson and Wiener processes, respectively. 

4.5. We take 7k'k(t) = 6k'k. Then, Mk, k = 1,.. . ,  r, are independent standard Wiener 
processes and we denote them by Wk. 

4.6. We take v,(dy) to be a family of non-random measures. In other words,/7 is 
a Poisson point process with, eventually, a time-dependent intensity and the same 
holds for N. 

4.7. We assume the rank d' of the matrix bo(t ) to be non-random and 
time-independent (obviously we have 0 ~< d' ~< d, d' ~< r); then, we take aik(t) =- 0 for 
k > d'. Moreover, we fix Xo - 0. 

4.8. We take Hi, Lkt, Lt(y), hi(t), a~k(t) to be adapted to the filtration generated by 
the set of processes Wk, k = 1,.. . ,d',  and N. 

Under these further assumptions we have also, Va e ~ ( ~ ) ,  

(o , ,a )  = Ep[(a, ,a>lg],  (Or, a) = Ei,[(at, a ) [g ] .  (4.16) 

By the previous assumptions the g-conditional expectation of Eq. (3.13) gives 

d'  

d(ot ,a)  = (Ot-,~.~,[a])dt + ~ (Q,-,aLkt + L~ta)dW,, 
k = l  

f~ (0 , - ,  Jt(x)[a] - a)I~(dx, dt), 
+ '\{0} 

(4.17) 

where ~ t  is given by Eq. (3.7) and 

Jt(x)[a] := ~ v,(dx,{j}) . . . . .  , j=l ~ (Lt(x,J) +])a(L , (x , j )+~) .  (4.18) 

In the derivation of this result it is useful to recall the rules: 

~_p[H({(O,j)},dt)le] = v,({(O,j)})dt, 

v,(dx, {j}) N . . . . .  Y-p[Fl(dx,{j},dt)[g]= ~ [ux, clt) (4.19) 

for dx c Ra\{0}. 
Similarly to Proposition 2.5 and Remarks 2.6 and 

probability space (~2, ~, t3) the processes 
3.5, we have that in the 

lTVkt := Wkt -- f( mk~dS, k = 1, . . . ,d ' ,  
O,t] 

(4.20) 
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and N is a point process, whose 

~r(dx, dt) := N(dx, dt) - I,(x)#,(dx)dt; 

we have defined 

ink,:= 2Re(O,_,Lkt), l,(x) := (O,-,J,(x)[{]). 

(4.21) 

Finally, as in Theorem 2.7 and in Remark 3.6, we obtain the non-linear SDE for the 
a posteriori states: 

d'  

d(O, ,a )  = (O,_ ,~t[a])dt  + ~ (O,-,L*,a + a L k t -  mk, a)dl7Vkt 
k = l  

"Jr- f~ [It(x )- 1 ( 0  t - ,  Jt(x)[a]) -- (0 t - ,  a)]/V(dx, dt), 

where E, := {x • Nn\{0}: It(x) = 0} and E~ is its complement. 

(4.23) 

4.3. "'Chain rule "for the instruments 

Let us consider Eq. (4.17) as defining a (random) linear map from the trace-class (the 
initial conditions) into itself. Let us take 0 ~< s ~< t and denote by A~[0 ] the solution of 
Eq. (4.17) with initial condition A ~ [ Q ]  = 0; note that A~ = A~oA~ for  s ~< u ~< t. 

Moreover we denote by g~ the a-algebra generated by the increments of the process 
X ,  i.e. 

=" a { X , - X , ,  <~r ~, .= s ~< u ~< t} VJff ;  (4.24) 

note that go _ 4 .  

Now we can define a family of (random) instrumemts J l  on ( f2, ~7) by 

(0, J~(E) [a ] )  = IZe [ le(A~ [0], a )  [¢=], (4.25) 

0 • Y ( ~ ) ,  a • 5¢(Jt~), E • ~7, 0 ~< s ~< t. Let us note that j o  coincides with ~ ,  the 
non-random instrument previously defined. 

Let us take now 0 ~< s < u < t, E E ~ ,  F E g~'. By using the properties of conditional 
expectations we have 

Ee[le~v(A~[o] , a> ]e=] = "o = Ee[leEe[lv<At A,,[o],a)lg,,]lds] 

= £_e[l~(A=.[O],,CT(F)[a])lC] 

and this equation can be written as a "chain rule" for our family of instruments: 

(0, ~=(E n F) [a ] )  = ~ (0, J$(d~o) o JtU(F; co) [a ] ) .  (4.26) 
de 

(4.22) 
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The dynamics of the system is described by the operators 

q/(s, t):= ~s(f2), °k'(t) = q/(0, t) = Jfft2). (4.27) 

By Eq. (4.26), we have 

(O, q/(s, t ) [a])  = fo (0, J,s(dog) ° q/(u, t; ~o)[a]) (4.28) 

and, by Eq. (3.6), 

that 

oCtS(Ec~F) = J2(E)° Jt"(F), ql(s,t) = ql(s,u)o~ll(u,t), 

d 
dt <Q' ¢//(t)Ea]> = 40, °g(t) ° ~ , [ a ] > ;  

Eq. (4.31) is nothing but the master equation (3.12). 

d 
dt (O,~(t)Ea])  = ~=p[(A°Eo],~e,[a])] = (O,~°(d~o)° 5e,(co)[a]). (4.29) 

In the particular case of non-random coefficients in Eqs. (4.5) and (4.17), we obtain 
k s, ~//(s, t), 5~t are non-random maps and that Eqs. (4.26), (4.28) and (4.29) become 

(4.30) 

(4.31) 

4.4. The Markov case 

Up to now applications to concrete physical models concerned the case of no 
randomness in the various coefficients appearing in our stochastic equations. 
A conceptually interesting and promising case, which is intermediate in between the 
full generality of this paper and the case of non-random coefficients, is the Markov 
case: all the coefficients appearing in assumption 4.8 depend on e) only through Xt. 
Let us give a sketch of what can be done. 

First let us take the observable process X , ,  i = 1 . . . . .  d, introduced in Eq. (4.5), to be 
solution of the SDE 

d' 

d X .  = b~(X,_)dt + ~ a~k(Xt-)dWa, 
k = l  

+ fo<lyl<l yiIV(dy, d t )+ Ir l>,  yiN(dy, dt), (4.32) 

where bi(x),aik(X),l~(dy) (which we take time-independent) satisfy the "global 
Lipschitz" conditions for existence, uniqueness and non-explosion of M6tivier (1982), 
already used in Section 2. Then, X is a Markov process. An equivalent way to define 
X is to say that for any function f E C 2 ( ~  a) (two times continuously differentiable 
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functions) we have 

df(Xt) = K[f](Xt)dt  + - -  aik(Xt)dWkt 
i=1  k = l  OXi 

fR [ f (Y + - f (Xt)]N(dy,  dt), 
+ .\{o1 

Xt) (4.33) 

a 1 a 02f(x) K[f](x)  := ~ ~,(x) Of(x) ~ bij(x) 
i= 1 ~ + -5 i, "= 1 Oxic '~x j 

"1- d\{O} i=1 0X~-" 1 + lyl ~ #(dy), (4.34) 

:= b,(x) _ f ° yiq)(y)#(dy) + I Yi <lyl ~< ~ y) > ~ 1 + ]yl 2/~(dy). (4.35) 

Secondly, let us take Lt(y; (.o) = L(y; X,(o))), Lkt(~) --- Lk(X,(o))), Ht(og) = H (Xt(o.))), 
where the functions L(y;x),Lk(x),H(x) satisfy conditions of types 2.3,3.1 and 3.3 
uniformly in x; we take v(dy) to be time-independent. 

Now we can define "instrumental" transition probabilities on the Borel sets in ~a by 
an analogue of Eq. (4.25): 

(O,~t(BIx)[a]) := Ee[l~x,+,-x,~B-x)(A~+,[o],a)lX~ = x]; (4.36) 

no dependence on s appears because we are treating the time homogeneous case. 
Then, analogously to Eq. (4.26), we get 

(0, ~t+~(Bl x)[a]) = f~, (0, ~ ( d y l  x) o ~t(Bl y)[a]). (4.37) 

This composition law for transition probabilities corresponds to the existence of the 
analogue of the Markov semigroup. Let A e C2(Nd; £~a(~)) (two times continuously 
differentiable functions from N a into £~o(~ff)); then the relation 

(0, TtEA](x)) = [Ep[(ASs+t[O], A ( X s + t ) ) [ X s  = x ]  (4 .38 )  

defines a semigroup on Cz(Ra; ~a(~)) .  
By differentiating Eq. (4.38) with respect to time, we obtain the analogue of 

Kolmogorov equation. It is sufficient to give the generator o~ff of Tt in the case 
A(x)=f(x)a, ae~(J¢'), feCa(Na) .  By using It6's formula in computing 
d((ot,  a)f(Xt)) from Eqs. (4.17) and (4.33) and taking the conditional expectation, we 
obtain 

,~ff[a ® f ] ( x )  =f(x)£~'(x)[a] + ~ gs(x) a 
j = l  

~ Of(x) 1 ~ bji(x) O2f(x) + ask(X)(Lk(X)*a + a Lk(X)) + -sa 
j= 1 k = 1 ~ j, i= 1 OxIOxJ 

+ '\lo) j=l Oxj 1 + lYl 2a #(dy), (4.39) 
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where £P(x) and Jx(Y) are given by obvious modifications of Eqs. (3.7) and (4.18). Such 
a kind of generators and the related semigroups have been studied rigorously by 
Barchielli et al. (1993), in the case of x-independent coefficients. 

Another possibility, inside the Markov case, is to let N to be a point process with 
"space" dependent intensity/t(Xt; dy)dt. In any case X is a Markov process under the 
"reference" probability measure P, not under the final "physical" law/~. 

4.5. The classical case 

The situation we have described in this paper (a linear SDE, a related non-linear 
one and a change of measure) is very reminiscent of what happens in classical filtering 
theory (think to Zakars equation for unnormalized a posteriori densities in the case of 
diffusive processes and to its generalizations for jump processes - see Pardoux, 1991; 
Kliemann et al., 1990, and references therein). In this respect it is instructive to 
particularize some of our equations to a simple commutative case. 

For simplicity let us start by taking Ht - O, Lt(y) =- O. Then, let us assume that all 
the quantities Lk,(co) are commuting operators. This means that we can take 
o'¢t° ----- L 2 (A, d2) and represent Lkt(co ) by essentially bounded functions Lkt(2, ~o), 2 • A. 
Now in Eq. (4.17) we consider only operators a in the algebra of multiplication 
operators: this means that only the "diagonal" part of 0t matters, or, better, that it is 
enough to represent 0t(co) by an LI(A, d2)-function 0t(2, o9). 

In this case Eq. (3.13) becomes a Dol6ans equation for a (local) probability density 
in Axf2:  

dot(2, co) = 0t(2, co)Ikt(2, co) dWk,(co), 

where 

(4.40) 

Ikt(2, co) = 2 Re Lkt(,~ , 09). 

Given a non-random initial condition 

(4.41) 

? 
00(2,co) = 0(2) i> 0, JA 0(2)d2 = 1, (4.42) 

the solution of Eq. (4.40) is 

I f :  ~ l f :  ~ik~,2, co)2dsl" (4.43) 0t(2, co) = 0(2)exp k=l /ks(2, co) dWk~(co) -- ~ k=, 

Then, the probability measure/~t(d2, do ) :=  0t(2, co)d2 P(dco) is the same as the joint 
distribution of (2, Yk~, S ~< t), where Ykt is given by 

dYkt = lktdt + dWkt  (4.44) 

and the initial distribution d2 P(dw) is considered. Thus, the meaning of Eq. (3.13) is to 
describe "signal + noise" in terms of quantum states. 
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The  a pos te r ior i  s ta te  

0,(,~ 109) = Q,(,~, 09)/fA Q,(L 09)d,~ (4.45) 

is the cond i t iona l  p robab i l i t y  densi ty  of  2 with respect  to the obse rva t ion  of  Wk~ up to 

t ime t (under  the law/~t). Eq. (4.22) now gives the a pos te r ior i  mean  of  lkt, tha t  is 

mkt(09) = fa /kt(2, 09)~,(2 I 09)d2, (4.46) 

and  Eq. (4.23) for a pos te r io r i  s tates  becomes  

d '  

d~,(2109) = ~t(2l 09) ~ [/kt(2, 09) - mk,(09)] dff'k,(09), (4.47) 
k = l  

where  the lTCkt are  given by  Eq. (4.20) and  are Wiene r  processes under  the new measure  

Pt(d09) = SA/~t(d2, do)) in the t ra jec tory  space f2. We can th ink  to 2 as to a r a n d o m  

p a r a m e t e r  subject  to Bayes es t imat ion .  
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