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Abstract. We present a complete analysis ofK → 3πγ de-
cays toO (p4) in the low–energy expansion of the Standard
Model. We employ the notion of “generalized bremsstrah-
lung” to take full advantage of experimental information on
the corresponding non–radiativeK → 3π decays.

1 Introduction

The present experimental status ofK → 3πγ decays is
rather meager. So far, only the two channels with a charged
kaon in the initial state have been detected experimentally
with very low statistics [1–3]. None of the decay modes of
a neutral kaon have been seen.

This unsatisfactory experimental situation will change
soon, especially after the completion of thee+e− collider
DAΦNE in Frascati. In thisΦ–factory one expects [4] a total
yield of 7.5 · 109 KLKS pairs and 1.1 · 1010 K+K− pairs
per year. For up–to–date information on the future prospects
of kaon physics we refer to [5].

With a sufficient number of events, what can one learn
from a study of those decays? The appropriate framework
for such an investigation is chiral perturbation theory [6]
(CHPT). To lowest order in an expansion in momenta and
meson masses, the radiative decays are completely deter-
mined [7] by the non–radiative amplitudes forK → 3π. At
next–to–leading order, a full–fledged CHPT calculation of
nonleptonic weak amplitudes ofO (p4) is required (cf., e.g.,
[8]). Among other ingredients to be discussed in Sect. 2,
important components are the one–loop amplitudes with a
single vertex from the lowest–order nonleptonic weak La-
grangianL |∆S|=1

2 and tree–level amplitudes due to the cor-

responding LagrangianL |∆S|=1
4 of O (p4).

There are three main issues we want to address:

i. Bremsstrahlung completely determines the lowest–order
amplitude, but it also contributes at next–to–leading or-
der (and at higher orders as well). Is there a unique pro-
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cedure to use all the available information on the non–
radiative amplitudes toO (p4), either from experiment or
from theory? The answer is positive as shown previously
for a general radiative four–meson process [7]. Here, we
put the concept of “generalized bremsstrahlung” [7] to a
practical test.

ii. The nonleptonic weak Lagrangian ofO (p4) contains a
number of low–energy constants [9, 10] that are little
known at present. Can we expect to extract relevant in-
formation on those constants fromK → 3πγ data?

iii. More generally, can one make definite predictions for
these radiative kaon decays within the Standard Model?

The outline of the paper is as follows. In Sect. 2, we
set up the kinematics and discuss the low–energy expansion
of K → 3π andK → 3πγ amplitudes up toO (p4). We
discuss the concept of generalized bremsstrahlung that takes
full advantage of the available experimental information on
the non–radiative amplitude in the form of a fourth–order
polynomial in the momenta. In Sect. 3, we calculate the
electric tree–level amplitude ofO (p4) in terms of the ap-
propriate low–energy constants. We give a fairly complete
list of experimentally accessible radiative kaon decays that
depend on those weak constants ofO (p4). The calculation
of the electric loop amplitude is deferred to an Appendix. To
the same order in the chiral expansion, the magnetic ampli-
tude is a pure tree–level amplitude that receives both direct
(local) and reducible (nonlocal) contributions. These are put
together in Sect. 4. Numerical results for rates and spectra
of the four transitions occurring atO (p4) are collected in
Sect. 5. Some conclusions are presented in Sect. 6. All rele-
vant formulas for the one–loop amplitudes are contained in
an Appendix, recapitulating and applying the results of [7].

2 Low–energy expansion

The kinematics of the decayK(−p4) → π1(p1)π2(p2)π3(p3)
γ(k) is specified by five scalar variables which we choose
as

s = (p1 + p2)2, ν = p4(p1 − p2), ti = k·pi (i = 1, . . . , 4)(2.1)

with
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4∑
i=1

pi + k = 0,
4∑
i=1

ti = 0 .

Any three of theti together withs and ν form a set of
independent variables.

The transition amplitude can be decomposed into an elec-
tric and a magnetic part:

A(K → 3πγ) = eεµ(k)(Eµ + εµνρσM
νρσ) (2.2)

with
kµEµ = 0 , εµνρσk

µMνρσ = 0 .

To lowest order in the chiral expansion, the amplitudes
for both radiative and non–radiative transitions are generated
at tree level by the effective chiral Lagrangian ofO (p2),

L2 + L |∆S|=1
2 . (2.3)

The strong part has the well–known form [6]

L2 =
F 2

4
〈DµUD

µU† + 2BM(U +U†)〉 (2.4)

where 〈 〉 denotes the trace in three–dimensional flavour
space.F is the pion decay constant in the chiral limit (F '
Fπ = 92.4 MeV), M is the quark mass matrix andB is
related to the quark condensate. The unitary 3× 3 matrix
field U incorporates the eight pseudoscalar meson fields. In
the exponential parametrization,

U = exp(i
√

2Φ/F ) ,

Φ = Φ† =



π0√
2

+
η√
6

π+ K+

π− − π0√
2

+
η√
6

K0

K− K̄0 − 2η√
6

 , (2.5)

with KL = K0
2 = (K0 + K̄0)/

√
2 andKS = K0

1 = i(K0 −
K̄0)/

√
2 in the limit of CP conservation. For the processes

under consideration, the covariant derivativeDµU can be
restricted to

DµU = ∂µU + ieAµ[Q,U ]

with the photon fieldAµ and the quark charge matrixQ.
The weak|∆S| = 1 Lagrangian in (2.3) can be written

in the form (our notation and conventions are those of [8])

L |∆S|=1
2 = G8F

4〈λLµLµ〉
+G27F

4

(
Lµ23L

µ
11 +

2
3
Lµ21L

µ
13

)
+ h.c. , (2.6)

λ =
1
2

(λ6 − iλ7), Lµ = iU†DµU.

The coupling constantsG8, G27 in (2.6) measure the strength
of the octet and the 27–plet part, respectively, of the strange-
ness changing weak interactions. FromK → ππ decays one
finds

|G8| ' 9 · 10−6 GeV−2 , G27/G8 ' 1/18 . (2.7)

At lowest order, the magnetic amplitudeMνρσ in (2.2)
vanishes since there is noε tensor in the Lagrangian (2.3).

The electric amplitude, on the other hand, is completely
determined by the corresponding non–radiative amplitude
A(s, ν) via Low’s theorem [11]:

Eµ = A(s, ν)Σµ

+ 2
∂A(s, ν)

∂s
Λµ12 +

∂A(s, ν)
∂ν

(Λµ14− Λµ24)

+ O (k) (2.8)

with (the meson charges in units ofe are denotedqi, with∑4
i=1 qi = 0)

Σµ =
4∑
i=1

qip
µ
i

ti

Λµij = Λµji = (qitj − qjti)D
µ
ij

Dµ
ij = −Dµ

ji =
pµi
ti
− pµj

tj
. (2.9)

Since there are no terms ofO (k) at lowest order in the chi-
ral expansion, the leading–order electric amplitude is com-
pletely determined by the explicit terms in (2.8) usually
called “internal bremsstrahlung”.

At next–to–leading order,O (p4), the situation is much
more complicated. A nonleptonic weak amplitude ofO (p4)
receives in general four types of contributions [8]:

i. Tree–level amplitudes from the effective chiral Lagran-
gianL |∆S|=1

4 of O (p4) with the proper octet and 27–plet
transformation properties.

ii. One–loop amplitudes from diagrams with a single vertex
from L |∆S|=1

2 in the loop.
iii. Reducible tree–level amplitudes with a single vertex

from L |∆S|=1
2 and with a single vertex either from the

strong LagrangianL4 or from the anomalous Wess–
Zumino–Witten Lagrangian [12].

iv. Reducible one–loop amplitudes, consisting of a strong
loop diagram connected to a vertex ofL |∆S|=1

2 by a
single meson line. A typical diagram of this type con-
tains an externalK−π orK−η transition, possibly with
an additional photon (generalized “pole diagrams”). The
calculation of such diagrams is simplified by a rediago-
nalization of the kinetic and mass terms ofL2+L |∆S|=1

2
(“weak rotation” [13]).

For the decaysK → 3πγ, all four mechanisms are rele-
vant. Most of them also appear in the non–radiative ampli-
tudes. Via Low’s theorem (2.8), the non–radiative amplitude
of O (p4) will contribute to the electric part of the radiative
amplitude. Unlike at lowest order, this is however not the
whole story atO (p4). The question then is how to use in an
optimal way the amplitudeA(s, ν) of O (p4), either from the-
ory or from experiment, for calculating the radiative electric
amplitudeEµ of the same order.

In a recent paper [7], we have presented the general
theoretical framework for the treatment of radiative four–
meson amplitudes likeK → 3πγ. The essential point is the
concept of “generalized bremsstrahlung”,

Eµ = Eµ
GB + O (k) , (2.10)

whereEµ
GB is defined in terms of the non–radiative amplitude

A(s, ν) [7]:
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Eµ
GB = A(s, ν)Σµ + 2

∂A(s, ν)
∂s

Λµ12 +
∂A(s, ν)
∂ν

(Λµ14− Λµ24)

+2
∂2A(s, ν)

∂s2
(t1 + t2)Λµ12

+
1
2
∂2A(s, ν)
∂ν2

[(t1 − t2)(Λµ14− Λµ24) − t3t4Σ
µ]

+2
∂2A(s, ν)
∂s∂ν

[t2Λ
µ
14− t1Λ

µ
24] . (2.11)

Referring to [7] for a more thorough exposition, we
concentrate here on the practical advantages of general-
ized bremsstrahlung. Many of the terms in the above list of
four mechanisms appear in both the radiative and the non–
radiative amplitudes and are therefore automatically included
in Eµ

GB . This is in particular true for most of the renormal-
ization parts that are trivially carried over fromA(s, ν) to
Eµ, but also for many of the so–called reducible contribu-
tions (items iii and iv in the above list). For instance, all
the weak low–energy constantsNi [10] contributing to both
K → 3π andK → 3πγ are completely taken into account
by Eµ

GB . Therefore, only the genuine radiative low–energy
constantsN14, . . . , N17 will show up inEµ − Eµ

GB .
In the following we use the experimentalK → 3π am-

plitudes to deriveEµ
GB. If we had limited ourselves to an

analysis at the center of the Dalitz plot ofK → 3π data
[14–16] or just to linear slopes [17], there would have been
no need to extend (2.8) to (2.11). However, the quadratic
slopes are observed and theK → 3π amplitudes are written
as polynomials of second order ins andν [18–20] to fit the
experimental data. The second derivatives in (2.11) are thus
needed to take advantage of all the experimental information
available fromK → 3π. The (electric) direct emission term
Eµ −Eµ

GB is then a genuine radiative part of the amplitude
not related to the non–radiative transition.

In the numerical analysis we have used the following
parametrization of theK → 3π amplitudes [20, 21]:

A(K+ → π0π0π+)

= ac(1 + iα0 − iα′0Y )

−[bc(1 + iβ0) − b2(1 + iδ0)]Y

+cc(Y
2 +X2/3)− (dc − d2)(Y 2 −X2/3) ,

A(K+ → π+π+π−)

= 2ac(1 + iα0 + iα′0Y/2)

+[bc(1 + iβ0) + b2(1 + iδ0)]Y

+2cc(Y
2 +X2/3) + (dc + d2)(Y 2 −X2/3) ,

A(KL → π+π−π0)

= an(1 + iα0 − iα′0Y ) − bn(1 + iβ0)Y

+cn(Y 2 +X2/3)− dn(Y 2 −X2/3) ,

A(KS → π+π−π0)

= −2i[b2(1 + iδ0) − 2d2Y ]X/3 , (2.12)

with

X = 2ν/M2
π+ , Y = (s− s0)/M2

π+ , s0 =
4∑
i=1

M2
i /3. (2.13)

The numerical values forac, bc, etc. (in units of 10−8) are
given by [19, 21]:

ac = −95.39± 0.40 , an = 84.35± 0.57 ,
bc = 24.47± 0.34 , bn = −28.11± 0.49 ,
cc = 0.68± 0.17 , cn = −0.05± 0.22 ,
dc = −1.63± 0.34 , dn = 1.27± 0.45 ,
b2 = −3.91± 0.40 , d2 = 0.21± 0.51 .

(2.14)

For the phases associated with the absorptive parts in (2.12)
we use the lowest–order CHPT predictionsα0 = 0.13, α′0 =
−0.12 andβ0 = −δ0 = 0.047 [20].

The decomposition (2.12) is based on isospin symmetry.
Moreover, the numerical values in (2.14) have been obtained
by a fit [19] where for simplicity the imaginary parts were
set to zero. Present data onK → 3π are too poor1 (espe-
cially in the KS channel) both to relax the assumption of
isospin conservation and to be sensitive to the small imagi-
nary parts. As a consequence, our numerical predictions for
the generalized bremsstrahlung amplitudes inK → 3πγ are
affected by systematic errors and must be considered as pre-
liminary. A new detailed analysis should be performed when
complete and accurateK → 3π data will be available.

In the next two sections we discuss separately the electric
and the magnetic amplitudes for the various channels. To
O (p4), there are four non–vanishing transitions:

K+ → π0π0π+γ K+ → π+π+π−γ
KL → π+π−π0γ KS → π+π−π0γ .

We make the following simplifications for the calculation.
The 27–plet part of the nonleptonic weak Lagrangian is not
included in the calculation of direct emission amplitudes, i.e.
in (Eµ − Eµ

GB) andMνρσ. This is an excellent approxima-
tion in view of the∆I = 1/2 rule. Moreover, in the loop
diagrams we have only kept the dominant two–pion inter-
mediate states. Since the loop amplitudes will turn out to
be rather small anyway, this restriction is justified a poste-
riori. Finally, CP conservation will be assumed throughout
the analysis.

3 Electric amplitudes

To O (p4), the electric amplitude can be written as

Eµ = Eµ
GB +Eµ

counter+E
µ
loop,subtracted. (3.1)

Use of the generalized bremsstrahlung amplitudeEµ
GB greatly

simplifies the calculation of both the tree–level and the loop
part of (3.1). For instance, all the reducible contributions
(items iii and iv in the list of Sect. 2) to the electric ampli-
tude are automatically contained inEµ

GB. This can be shown
almost without any calculation by going back to the defini-
tion (2.11) of generalized bremsstrahlung. The only excep-
tion that needs some (tree–level) calculations are amplitudes
proportional to the strong low–energy constantL9 [6] with
an external weak transition. Although there are strong radi-
ative four–meson amplitudes proportional toL9, the explicit
calculation shows that they do not contribute toK → 3πγ
after a weak rotation.

Another consequence of using generalized bremsstrah-
lung in (3.1) is a much simpler form ofEµ

counter. All the

1 Note that we have not taken into account the very recent and accurate
results of Serpukhov-167 [22] in theK+ → π0π0π+ channel
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Table 1. Kaon decay modes to which the coupling constantsNi contribute.
For the 3π final states, only the single photon channels are listed. For the
neutral modes, the lettersL or S in brackets distinguish betweenKL and
KS in the limit of CP conservation.γ∗ denotes a lepton pair in the final
state. If a decay mode appears more than once there are different Lorentz
structures in the amplitude. The combinations withNr

i are scale dependent
compensating the scale dependence of the corresponding loop amplitude.
The other combinations are scale independent

π 2π 3π Ni

π+γ∗ π+π0γ∗ Nr
14−Nr

15
π0γ∗ (S) π0π0γ∗ (L) 2Nr

14 +Nr
15

π+γγ π+π0γγ N14−N15− 2N18
π+π−γγ (S) ”
π+π0γ π+π+π−γ N14−N15−N16−N17

π+π−γ (S) π+π0π0γ ”
π+π−π0γ (L) ”
π+π−π0γ (S) 7(Nr

14−Nr
16) + 5(Nr

15 +N17)
π+π−γ∗ (L) Nr

14−Nr
15− 3(Nr

16−N17)
π+π−γ∗ (S) Nr

14−Nr
15− 3(Nr

16 +N17)
π+π0γ∗ Nr

14 + 2Nr
15− 3(Nr

16−N17)
π+π−γ (L) π+π−π0γ (S) N29 +N31

π+π+π−γ ”
π+π0γ π+π0π0γ 3N29−N30

π+π−π0γ (S) 5N29−N30 + 2N31

π+π−π0γ (L) 6N28 + 3N29− 5N30

low–energy constants appearing in both radiative and non–
radiative amplitudes are already contained inEµ

GB. There-
fore, only the genuine radiative terms in the octet Lagrangian
of O (p4) [10]

L |∆S|=1
4 = G8F

2
∑
i

NiWi + h.c. , (3.2)

with dimensionless coupling constantsNi and octet opera-
tors Wi, contribute toEµ

counter. In particular, going through
the Lagrangian (3.2) one finds that only the four low–energy
constantsN14, . . . , N17 can occur inEµ

counter. The relevant
parts of the Lagrangian (3.2) are listed below.

With Fµν = ∂µAν − ∂νAµ the electromagnetic field
strength tensor, the explicit coupling forK+ → π0π0π+γ
is given by

− ieG8

F 2
(N14−N15−N16−N17)FµνK

+π0∂µπ0∂νπ−. (3.3)

The corresponding expression forK+ → π+π+π−γ reads

−4ieG8

F 2
(N14−N15−N16−N17)FµνK

+π−∂µπ+∂νπ−.(3.4)

The decayKL → π+π−π0γ receives a contribution from

− ieG8

F 2
(N14−N15−N16−N17)

FµνKL(∂µπ0π−
↔
∂ν π+ − 2π0∂µπ+∂νπ−) , (3.5)

andKS → π+π−π0γ from

−eG8

F 2
[7(N14−N16) + 5(N15 +N17)]

FµνKS∂
µπ0(π−∂νπ+ + π+∂νπ−) . (3.6)

In order to facilitate the comparison with other radiative
kaon decays, we list in Table 1 the combinations of low–
energy constantsNi governing the various experimentally

pb
y

x
pa pc

pd

V1 V2

Fig. 1. One–loop diagram for a four–meson transition. For the radiative
amplitude, the photon must be appended to every charged meson line and
to every vertex with at least two charged fields. For the case ofK → 3π(γ),
−pa = −p4 is the kaon momentum, the other three being the pion momenta.
The weak (strong) vertexV1 (V2) is defined in (A.1), with the appropriate
coefficients for the various diagrams given in Table 6

accessible channels. This Table is a slightly extended version
of the one appearing in [8]. As one can see from the Table,
the specific combination of coupling constantsN14−N15−
N16 − N17 occurs also in the amplitudes forK+ → π+π0γ
andKS → π+π−γ. On the other hand, 7(Nr

14−Nr
16)+5(Nr

15+
N17) is a characteristic combination2 for KS → π+π−π0γ
only.

Both combinations are not yet known phenomenologi-
cally. To get a feeling for the typical size of these couplings
one may appeal to the factorization model that predicts [10]

[N14−N15−N16−N17]FM = −kf F 2
π

2M2
V

= −7 · 10−3kf , (3.7)

[7(N14−N16) + 5(N15 +N17)]FM = 41kf
F 2
π

2M2
V

, (3.8)

where kf is a fudge factor which naive factorization sets
equal to one. Note the potentially large counterterm ampli-
tude inKS → π+π−π0γ. Table 1 also indicates that the com-
binationN14−N15−N16−N17 is scale independent while
7(Nr

14−Nr
16)+5(Nr

15+N17) is not. Consequently, the loop am-
plitudes are all finite forK+ → π0π0π+γ, K+ → π+π+π−γ
andKL → π+π−π0γ, but divergent forKS → π+π−π0γ.
This divergence is renormalized by the counterterm combi-
nation 7(N14−N16)+5(N15+N17). In the limit whereG27 is
set to zero, the two–pion loop does not contribute to theKS

decay . Since we have not included the other loop contribu-
tions that are numerically negligible, the amplitude ofO (p4)
for theKS decay is superficially scale dependent. We shall
come back in Sect. 5 to investigate numerically the effect of
this scale dependence.

Finally, the loop contributions to (3.1) have to be calcu-
lated. Once again, many contributions are already contained
in Eµ

GB. The only type of diagram that has to be calculated
explicitly is shown in Fig. 1 where a photon can be appended
to all (charged) lines and vertices. In this diagram,V1 is a
weak vertex fromL |∆S|=1

2 andV2 is a strong vertex from
L2. Of course, such diagrams without a photon contribute
also to theK → 3π amplitudes ofO (p4). In accordance
with the definition of generalized bremsstrahlung in (2.11),
the appropriate part has to be subtracted from the radiative
loop amplitude to obtainEµ

loop,subtractedin the complete am-
plitude (3.1).

2 We remind the reader thatN17 is scale independent [10]
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The calculation of the loop amplitudes is rather involved
in the radiative case. We have given in [7] a compact expres-
sion for the radiative loop amplitude with general vertices
V1, V2 of O (p2). In an Appendix, we reproduce the main
steps for arriving at the final amplitude, together with the
relevant vertices forK → 3πγ.

4 Magnetic amplitudes

The magnetic amplitude in (2.2) receives contributions from
direct and reducible diagrams [23, 24] corresponding to type
i and iii, respectively, in the classification of Sect. 2.

The direct parts (type i) are generated by the operators
W28, . . . ,W31 in (3.2). Their contribution toK+ → π0π0π+γ
is given by

− eG8

F 2
(3N29−N30)F̃µν∂

µK+∂νπ−π0π0, (4.1)

where F̃µν = εµνρσF
ρσ (ε0123 = +1). The corresponding

expression forK+ → π+π+π−γ reads

− 4eG8

F 2
(N29 +N31)F̃µν∂

µK+∂νπ+π−π− . (4.2)

The decayKL → π+π−π0γ receives a contribution from

− 2eG8

F 2
(6N28 + 3N29− 5N30)F̃µν∂

µKL∂
νπ0π−π+ , (4.3)

andKS → π+π−π0γ from

2ieG8

F 2
F̃µνKS [(5N29−N30 + 2N31)∂µπ0π−

↔
∂ν π+

−2(N29 +N31)π0∂µπ+∂νπ−] . (4.4)

Following the theoretical arguments given in [25], the cou-
pling constants in the anomalous parity sector ofO (p4) can
be estimated as

Nan
28 =

a1

8π2
, Nan

29 =
a2

32π2
,

Nan
30 =

3a3

16π2
, Nan

31 =
a4

16π2
,

(4.5)

where the dimensionless coefficientsai are expected to be
positive and of order one.

The second class of diagrams contributing to the mag-
netic amplitude are the reducible ones (type iii). These am-
plitudes are due to diagrams with a single meson line be-
tween a weak|∆S| = 1 vertex and an anomalous vertex
from the Wess–Zumino–Witten (WZW) functional [12]. For
K → 3πγ, all such diagrams have the structure shown in
Fig. 2: a weak cubic vertex and an anomalous vertex with
three mesons and a photon.

In the case ofK+ → π0π0π+γ, there is only one re-
ducible contribution atO (p4): the kaon emits a neutral and
a charged pion, where theπ+ subsequently makes an anoma-
lous transition toπ0π+γ,

K+ weak−→ π0(π+ WZW−→ π0π+γ) .

The corresponding amplitude is local because theK+ →
π0π+ vertex vanishes on–shell (remember that we are setting
G27 = 0 in direct emission amplitudes). Thus, the complete

L2
|∆ S|=1 WZW

Fig. 2. Reducible diagram contributing to the magnetic amplitude atO (p4).
A weak cubic vertex ofO (p2) and an anomalous vertex with three mesons
and a photon are connected by a single meson line

magnetic amplitude (adding the direct term generated by
(4.1)) takes the form

Mνρσ(K+ → π0π0π+γ)

=
iG8

8π2F 2
(3a2 − 6a3 − 2)kνpρ3p

σ
4 . (4.6)

There are two types of reducible diagrams contributing
to K+ → π+π+π−γ: theK+ can make a weak transition into
a realπ+ and a virtualπ0 (or η) which is then transformed
into aπ+π− pair and a photon,

K+ weak−→ π+(π0 WZW−→ π+π−γ) ,

K+ weak−→ π+(η
WZW−→ π+π−γ) .

The total magnetic amplitude is now given by

Mνρσ(K+ → π+π+π−γ)

=
iG8

2π2F 2
kνpρ3[(a2 + 2a4)pσ4

+(M2
η −M2

K)(
pσ1

s24−M2
η

+
pσ2

s14−M2
η

)] , (4.7)

with

s14 = (p1 + p4)2 = ν + t3 + (M2
K + 3M2

π − s)/2 ,

s24 = (p2 + p4)2 = −ν + t3 + (M2
K + 3M2

π − s)/2 .

ForKL → π+π−π0γ one may either contract the anoma-
lous KLKSπ

0γ vertex with the weakKSπ
+π− vertex, or

the weakKL → π+π− transition with theπ+π−π0γ WZW
vertex:

KL
WZW−→ π0γ(KS

weak−→ π+π−) ,

KL
weak−→ π+(π− WZW−→ π−π0γ) ,

KL
weak−→ π−(π+ WZW−→ π+π0γ) .

The last two diagrams give again a local amplitude for a
similar reason3 as for K+ → π0π0π+γ in (4.6). Together
with the contribution from (4.3), we arrive at the magnetic
amplitude

Mνρσ(KL → π+π−π0γ) (4.8)

=
iG8

8π2F 2
[24a1 + 3a2 − 30a3 − 2− 4(M2

K −M2
π)

s−M2
K

]kνpρ3p
σ
4 .

Finally, we turn toKS → π+π−π0γ. In this case, the
reducible diagrams have the following structure:

3 The on–shell amplitude forKL → π+π− vanishes in the limit of CP
conservation



306

Table 2. Numerical results for the decayK+ → π0π0π+γ. The photon energyEγ and the decay widths
ΓGB, ΓM are given in MeV

Eγ ΓGB
ΓGB − ΓLow

Γ

ΓE − ΓGB

Γ
ΓM BR

10–20 (1.38± 0.02) · 10−19 1.4 · 10−3 2.2 · 10−5 2.8 · 10−25 (2.60± 0.03) · 10−6

20–30 (4.29± 0.06) · 10−20 4.5 · 10−3 8.2 · 10−5 7.5 · 10−25 (8.05± 0.01) · 10−7

30–40 (1.45± 0.03) · 10−20 9.8 · 10−3 2.5 · 10−4 1.1 · 10−24 (2.72± 0.05) · 10−7

40–50 (4.48± 0.09) · 10−21 1.8 · 10−2 2.2 · 10−4 1.1 · 10−24 (8.42± 0.18) · 10−8

50–60 (1.09± 0.03) · 10−21 2.9 · 10−2 −1.0 · 10−3 6.8 · 10−25 (2.05± 0.05) · 10−8

60–70 (1.49± 0.05) · 10−22 4.3 · 10−2 −6.8 · 10−3 2.0 · 10−25 (2.81± 0.09) · 10−9

70–80 (3.48± 0.12) · 10−24 5.6 · 10−2 −1.9 · 10−2 8.9 · 10−27 (6.55± 0.23) · 10−11

10–80 (2.01± 0.03) · 10−19 3.3 · 10−3 4.5 · 10−5 4.1 · 10−24 (3.78± 0.05) · 10−6

Table 3. Numerical results for the decayK+ → π+π+π−γ

Eγ ΓGB
ΓGB − ΓLow

Γ

ΓE − ΓGB

Γ
ΓM BR

10–20 (2.32± 0.02) · 10−18 −1.7 · 10−3 −4.2 · 10−4 1.3 · 10−24 (4.36± 0.04) · 10−5

20–30 (7.63± 0.07) · 10−19 −4.8 · 10−3 −1.2 · 10−3 3.2 · 10−24 (1.43± 0.01) · 10−5

30–40 (2.62± 0.03) · 10−19 −9.2 · 10−3 −2.4 · 10−3 4.1 · 10−24 (4.93± 0.05) · 10−6

40–50 (7.66± 0.08) · 10−20 −1.5 · 10−2 −4.1 · 10−3 3.2 · 10−24 (1.44± 0.01) · 10−6

50–60 (1.43± 0.02) · 10−20 −2.1 · 10−2 −6.2 · 10−3 1.3 · 10−24 (2.69± 0.03) · 10−7

60–70 (7.23± 0.09) · 10−22 −2.8 · 10−2 −8.5 · 10−3 1.2 · 10−25 (1.36± 0.02) · 10−8

10–70 (3.44± 0.03) · 10−18 −3.4 · 10−3 −8.5 · 10−4 1.3 · 10−23 (6.46± 0.06) · 10−5

KS
weak−→ π+(π− WZW−→ π−π0γ) ,

KS
weak−→ π−(π+ WZW−→ π+π0γ) ,

KS
weak−→ π0(π0 WZW−→ π+π−γ) ,

KS
weak−→ π0(η

WZW−→ π+π−γ) .

Combined with (4.4), we obtain

Mνρσ(KS → π+π−π0γ) (4.9)

=
G8

8π2F 2
kν{(5a2 − 6a3 + 4a4 − 2)(p2 − p1)ρpσ3

+4(M2
K −M2

π)(
pρ2

s14−M2
π

− pρ1
s24−M2

π

)pσ3

+[−2a2 − 4a4 +
4(M2

K −M2
π)

s34−M2
π

+
4(M2

η −M2
K)

s34−M2
η

]pρ1p
σ
2},

where

s34 = (p3 + p4)2 = s + 2(t1 + t2) .

5 Numerical results

Our numerical results for the various channels are displayed
in Tables 2–5. The first column shows the photon energy
range. In the second column, the contribution to the decay
width generated by the generalized bremsstrahlung ampli-
tudeEGB in (2.11) is listed, together with the corresponding
errors due to the uncertainties of theK → 3π parameters in
(2.14). The next column shows the relative change of the re-
sult if only the Low amplitude (2.8) is used instead ofEGB.
In the fourth column we see the effect of adding the elec-
tric counterterms (usingkf = 1 in (3.7) and (3.8)) and the
residual pion–loop contributionsEloop,subtractedin (3.1).ΓM in
the next column denotes the contribution to the decay width

from the magnetic amplitudes (forai = 1); there is no inter-
ference between electric and magnetic amplitudes as long as
the phase space integration is performed “symmetrically”.

For the branching ratios in the last column we distin-
guish between the three channels where the leading–order
amplitude is not suppressed and the decayKS → π+π−π0γ
with a suppressed bremsstrahlung amplitude. In the first
group of transitions, the dominantO (Eγ) effect is given
by the differenceΓGB − ΓLow. This deviation from Low’s
theorem, i.e. from a pure QED prediction, could possibly
be observed in the near future. In the above channels, the
residual pion–loop contribution suffers from relatively large
theoretical uncertainties: the smallness of phase space am-
plifies isospin–breaking effects generated by the mass dif-
ferenceMπ0 −Mπ+ . However, the effect ofEloop,subtractedis
always so small that it can hardly be detected. The contri-
bution ofEcounter, evaluated within the factorization model,
is of the same order asEloop,subtracted. For K+ → π0π0π+γ
there is an almost complete destructive interference between
loops and electric counterterms, while forK+ → π+π+π−γ
we find Ecounter ' Eloop,subtracted. Finally, in theKL chan-
nel Eloop,subtracted is bigger thanEcounter for large Eγ . For
smallEγ , the two amplitudes are comparable. Probably only
large deviations from the naive expectationkf ∼ O (1) could
be observed. Also the magnetic contribution is very much
suppressed in these channels: the ratioΓM/ΓGB is typically
smaller than 10−3.

Interference effects between electric and magnetic ampli-
tudes could in principle be larger. For instance, observables
like det(p1, p2, p3, p4) (for the decays with three different pi-
ons in the final state) orν det(p1, p2, p3, p4) (in the case of
two identical particlesπ1, π2) are sensitive to such interfer-
ences. ToO (p4), the interference term

εµνρσ(EµM
∗
νρσ +E∗

µMνρσ) (5.1)

is proportional to the relatively small absorptive part of the
electric amplitude. Thus, the leading–order piece ofEµ does
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Table 4. Numerical results for the decayKL → π+π−π0γ

Eγ ΓGB
ΓGB − ΓLow

Γ

ΓE − ΓGB

Γ
ΓM BR

10–20 (1.32± 0.02) · 10−18 −4.5 · 10−3 −4.2 · 10−4 2.1 · 10−26 (1.04± 0.02) · 10−4

20–30 (4.89± 0.07) · 10−19 −1.3 · 10−2 −1.1 · 10−3 4.4 · 10−26 (3.84± 0.06) · 10−5

30–40 (1.98± 0.03) · 10−19 −2.5 · 10−2 −1.8 · 10−3 5.0 · 10−26 (1.55± 0.03) · 10−5

40–50 (7.33± 0.11) · 10−20 −4.0 · 10−2 −1.7 · 10−3 3.7 · 10−26 (5.76± 0.10) · 10−6

50–60 (2.13± 0.04) · 10−20 −5.8 · 10−2 2.5 · 10−3 1.7 · 10−26 (1.67± 0.03) · 10−6

60–70 (3.39± 0.06) · 10−21 −7.9 · 10−2 2.7 · 10−2 3.5 · 10−27 (2.67± 0.05) · 10−7

70–80 (8.04± 0.15) · 10−23 −9.9 · 10−2 2.2 · 10−1 9.5 · 10−29 (6.32± 0.13) · 10−9

10–80 (2.11± 0.03) · 10−18 −1.0 · 10−2 −6.6 · 10−4 1.7 · 10−25 (1.65± 0.03) · 10−4

Table 5. Numerical results for the decayKS → π+π−π0γ

Eγ ΓGB
ΓGB−ΓLow

Γ
ΓE ΓM BR

10–20 (1.29± 0.34) · 10−21 1.2 · 10−2 1.1 · 10−21 6.5 · 10−25 1.5 · 10−10

20–30 (5.15± 1.28) · 10−22 3.8 · 10−2 3.4 · 10−22 1.6 · 10−24 4.7 · 10−11

30–40 (2.34± 0.53) · 10−22 7.7 · 10−2 9.7 · 10−23 2.3 · 10−24 1.3 · 10−11

40–50 (9.97± 2.12) · 10−23 1.2 · 10−1 2.0 · 10−23 2.1 · 10−24 2.9 · 10−12

50–60 (3.34± 0.68) · 10−23 1.6 · 10−1 2.2 · 10−24 1.2 · 10−24 4.6 · 10−13

60–70 (6.09± 1.22) · 10−24 2.1 · 10−1 2.3 · 10−25 3.4 · 10−25 7.8 · 10−14

70–80 (1.62± 0.32) · 10−25 2.4 · 10−1 1.7 · 10−26 1.2 · 10−26 4.0 · 10−15

10–80 (2.18± 0.55) · 10−21 3.3 · 10−2 1.6 · 10−21 8.2 · 10−24 2.2 · 10−10

not contribute in (5.1). Nevertheless, the possibility of inter-
ference measurements should be kept in mind once suffi-
ciently high statistics will have been achieved.

For the three channels under consideration, the amplitude
is completely dominated by generalized bremsstrahlung. In
the last column of Tables 2–4, we therefore list the branch-
ing ratios based on generalized bremsstrahlung only, corre-
sponding toΓGB in the second column. The contributions
to the branching ratios from direct emission are completely
concealed by the present experimental uncertainties of the
K → 3π parameters.

Within those errors, our predictions are consistent with
standard bremsstrahlung and with the available experimental
results. Our theoretical branching ratio forK− → π0π0π−γ
in Table 2 forEγ > 10MeV can be compared directly with
the experimental result [1]

BR(K− → π0π0π−γ) = (7.4+5.5
−2.9) · 10−6,

Eγ > 10 MeV. (5.2)

For K+ → π+π+π−γ, Barmin et al. [2] have reported the
branching ratio

BR(K+ → π+π+π−γ) = (1.10± 0.48) · 10−4,

Eγ > 5 MeV, (5.3)

to be compared with our theoretical prediction

BR(K+ → π+π+π−γ)|theor. = (1.26± 0.01) · 10−4,

Eγ > 5 MeV, (5.4)

whereas Stamer et al. [3, 26] have found

BR(K+ → π+π+π−γ) = (1.0± 0.4) · 10−4,

Eγ > 11 MeV. (5.5)

For the decayKS → π+π−π0γ the situation is quite dif-
ferent. To lowest chiral order, the amplitude can only pro-
ceed through a∆I = 3/2 transition (via bremsstrahlung) and
is therefore suppressed by the∆I = 1/2 rule. Consequently,

the next–to–leading order contributions generated by octet
operators are becoming relatively more important4. At the
one–loop level, two–pion intermediate states do not con-
tribute. Therefore, theO (p4) part of the electric amplitude
is essentially determined by the counterterm

NKS
(µ) :=

[
7(Nr

14−Nr
16) + 5(Nr

15 +N17)
]

(µ) (5.6)

that is predicted to be large by the factorization model in
(3.8). Its rather modest scale dependence,

NKS
(µ2) = NKS

(µ1) +
3

8π2
ln(µ1/µ2) , (5.7)

is compensated by loop graphs with kaon intermediate states
which we have neglected. The uncertainty induced by this
scale dependence,

NKS
(0.5 GeV)−NKS

(1 GeV)
NFM
KS

' 0.09 , (5.8)

with NFM
KS

given by (3.8) forkf = 1, is certainly smaller
than the intrinsic uncertainty of the factorization hypothesis.

The corresponding numerical results are displayed in Ta-
ble 5. The numbers forΓE are obtained from the sum ofEGB
(using the central values of the input parametersb2 andd2
in (2.14)) and the aforementionedO (p4) counterterm ampli-
tude. Note that the interference is destructive and especially
pronounced at large values ofEγ . The contribution of the
magnetic amplitude is again shown forai = 1. For this chan-
nel we list the total branching ratio BR = (ΓE+ΓM)/Γtot(KS)
for the various photon energy bins. We do not give errors
for these branching ratios because, unlike for the other three
channels, the direct emission amplitude matters with un-
known theoretical uncertainties (factorization model).

Remembering the projected DAΦNE yield of 7.5 ×
109KLKS pairs per year, theKS → π+π−π0γ decay rate
is still too small for the coming generation of kaon exper-
iments. With an additional improvement of statistics, some

4 A similar phenomenon occurs in theK+ → π+π0γ decay [24, 27]
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information might be achieved via time–interference mea-
surements [28] (KL,S → π+π−π0γ) similar to those recently
performed in the non–radiative case [29, 30]. Then interfer-
ence effects between electric and magnetic amplitudes could
in principle be measured since a term like

εµνρσ(EµM
∗
νρσ − E∗

µMνρσ) (5.9)

is generated. In contrast to (5.1), this term is proportional to
the leading–order piece ofEµ. We stress that even fixed–
target experiments, through regeneration, can perform time–
interference measurements and in this case a larger statistics
is expected. Thus, theKS → π+π−π0γ decay mode may still
turn out to be a valuable probe for kaon physics parameters
that is not drowned by bremsstrahlung.

6 Conclusions

Anticipating substantial improvements in the statistics of
K → 3πγ decays in the near future, we have performed
a comprehensive and complete analysis of these decays to
O (p4) in the low–energy expansion of the Standard Model.
To lowest order,O (p2), the decay amplitudes are determined
by the corresponding non–radiative amplitudes via Low’s
theorem (bremsstrahlung). At next–to–leading order, there
are different contributions to both electric and magnetic parts
of the amplitudes: loops and tree–level (counterterm) ampli-
tudes, reducible and irreducible contributions.

A major aspect of our analysis is the concept of “gener-
alized bremsstrahlung” that transfers the available theoreti-
cal or experimental information onK → 3π decays to the
corresponding radiative amplitudes in an optimal way at the
level of O (p4). For the numerical analysis, we have used the
factorization hypothesis to estimate the relevant low–energy
constants.

Returning to the three issues addressed in the introduc-
tion, we may summarize our findings as follows:

i. In all three channels where the leading–order amplitudes
are not suppressed (K+ → π0π0π+γ, K+ → π+π+π−γ,
KL → π+π−π0γ), generalized bremsstrahlung com-
pletely dominates the amplitudes toO (p4). The dif-
ferences to the QED prediction (standard or internal
bremsstrahlung) could be experimentally observed in the
forthcoming round of kaon experiments, at least from the
statistical point of view.

ii. For the same channels, it will hardly be possible to ex-
tract the appropriate combinations of low–energy con-
stants from experiment in the near future. This conclu-
sion hinges, of course, on the assumption that the factor-
ization estimates are not off by an order–of–magnitude
in amplitude. In contrast, the counterterm amplitude is
important forKS → π+π−π0γ, especially if the rather
large factorization estimate is reliable. However, for this
decay mode the branching ratio is probably too small to
be detected soon.

iii. As a general conclusion, the Standard Model allows for
quite definite predictions for radiative kaon decays into
three pions. Especially forK+ → π0π0π+γ, K+ →
π+π+π−γ andKL → π+π−π0γ, the accuracy of these

predictions is at the moment only limited by the preci-
sion with which the parameters of the non–radiative de-
cay amplitudes are known. ForKS → π+π−π0γ, there
is some theoretical uncertainty related to the relevant
low–energy constants.

As soon as more accurate data will lead to better preci-
sion for theK → 3π parameters, the predictions of the radi-
ative amplitudes can be improved accordingly. Although we
have only considered total rates and photon energy spectra
in this analysis, the investigation of more subtle effects like
the interference between electric and magnetic amplitudes
may then become feasible.

Acknowledgements.One of us (G. D’A.) wants to thank F. Sannino for
discussions.

Appendix: Loop amplitudes

In this Appendix, we collect the main results of [7] for the
calculation of loop amplitudes corresponding to the diagram
in Fig. 1.

First, we calculate the loop amplitude for the non–
radiative processK → 3π. In our case,−pa = −p4 is the
kaon momentum andV1, V2 are nonleptonic weak and strong
vertices, respectively. The pion momenta are generically de-
notedpb, pc, pd.

We characterize the verticesV1, V2 in momentum space
by constantsai, bi:

V1 = a0 + a1pa ·pb + a2pa ·x + a3(x2 −M2
x)

+a4(y2 −M2
y ) + a5(p2

a −M2
a) + a6(p2

b −M2
b ) ,

V2 = b0 + b1pc ·pd + b2pc ·x + b3(x2 −M2
x)

+b4(y2 −M2
y ) + b5(p2

c −M2
c ) + b6(p2

d −M2
d) . (A.1)

With P = pc+pd, the non–radiative loop amplitude of Fig. 1
can be represented in the following form (all external lines
are on–shell):

F (P ) = A(Mx)[a1b4pa ·pb + a4b1pc ·pd
+a4b4(P 2 +M2

x −M2
y ) + a0b4 + a4b0]

+A(My)[a1b3pa ·pb + a2b3pa ·P + a3b1pc ·pd
+a3b2pc ·P + a3b3(P 2 −M2

x +M2
y ) + a0b3 + a3b0]

+B(P 2,Mx,My)[a0b0 + a0b1pc ·pd
+a1b0pa ·pb + a1b1pa ·pbpc ·pd]

+B1(P 2,Mx,My)[a0b2pc ·P + a2b0pa ·P
+a1b2pa ·pbpc ·P + a2b1pc ·pdpa ·P ]

+a2b2[pa ·pcB20(P 2,Mx,My)

+pa ·Ppc ·PB22(P 2,Mx,My)] . (A.2)

The various functions in (A.2) are as defined conventionally
(in d dimensions):

A(M )

=
1
i

∫
ddx

(2π)d
1

x2 −M2
,

(B,B1Pµ, gµνB20 + PµPνB22)

=
1
i

∫
ddx

(2π)d
(1, xµ, xµxν)

(x2 −M2
x)[(x− P )2 −M2

y ]
. (A.3)
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Table 6. Coefficients of the verticesV1, V2 defined in (A.1) for the various
loop diagrams. Only the relevant on–shell coefficients are listed

K(−pa) → π(pb)+
π(x)π(y) → π(pc)π(pd) a0 a1 a2 b0 b1 b2

K+ → π++
π+π− → π+π− −2M2

K −2 −2 2M2
π 2 −2

K+ → π++
π+π− → π0π0 −2M2

K −2 −2 M2
π 2 0

K+ → π++
π0π0 → π+π− −M2

K −2 0 M2
π 2 0

K+ → π−+
π+π+ → π+π+ 0 2 0 0 −2 0
K+ → π0+

π+π0 → π+π0 −M2
K 0 −2 M2

π 0 −2
K0 → π++

π0π− → π0π− M2
K/
√

2 0
√

2 M2
π 0 −2

K0 → π−+
π0π+ → π0π+ M2

K/
√

2 0
√

2 M2
π 0 −2

K0 → π0+
π+π− → π+π− M2

K/
√

2
√

2 0 2M2
π 2 −2

We have chosen to expressF (P ) in terms of the scalar
products

pa ·pb, pc ·pd, P 2, pa ·P, pc ·P, pa ·pc (A.4)

instead of using kinematical relations to express all scalar
products in terms of the two independent scalar variables
s, ν. Note that the analytically non–trivial part of (A.2),
involving the variousB functions, contains only the on–
shell couplingsa0, a1, a2, b0, b1, b2. The off–shell couplings
a3, a4, b3, b4 appear only together with the divergent con-
stantsA(M ). Since these terms are polynomials in the mo-
menta of at most degree two, they will enter in the radi-
ative amplitude only through internal bremsstrahlung and
will therefore eventually be absorbed inEµ

GB. The on–shell
coefficients for the various channels are listed in Table 6.

We now turn to the radiative loop amplitude and decom-
pose it into two parts:

Eµ
loop = Gµ +Hµ. (A.5)

The amplitudeGµ can be expressed through derivatives of
the non–radiative loop amplitudeF in (A.2) with respect
to the various scalar products (A.4). In some of the follow-
ing terms, the momentumP has to be replaced byP + k,
leaving all scalar products unchanged that do not containP
explicitly:

Gµ = F (P )Σµ +
F (P + k) − F (P )

k ·P Λµcd

+
∂F

∂(pa ·pb) (P )Λµab +
∂F

∂(pa ·P )
(P )ΛµaP

+
∂F

∂(pc ·pd)
(P + k)Λµcd +

∂F

∂(pc ·P )
(P + k)ΛµcP

+

[
qatc

∂F

∂(pa ·pc) (P ) − qcta
∂F

∂(pa ·pc) (P + k)

]
Dµ
ac

−1
2

(qc + qd)tatc

[
∂2F

∂(pa ·P )∂(pc ·P )
(P )Dµ

aP

− ∂2F

∂(pa ·P )∂(pc ·P )
(P + k)Dµ

cP

]
. (A.6)

We have used the definitions (2.9). WhenP appears as an
index (e.g., inΛµaP or Dµ

cP ), the corresponding momentum
and charge in (2.9) areP andqc + qd, respectively.

The second partHµ of the loop amplitude (A.5) cannot
be expressed in terms ofF or derivatives thereof. For the
relevant case of equal loop masses (Mx = My = Mπ =: M ),
Hµ takes on the following compact form:

Hµ = a2(tbp
µ
a − tap

µ
b ){(qx − qy)(2b0 + 2b1pc ·pd + b2pc ·P )

×C̃20(P 2,−k ·P ) + b2(qx + qy)

×[−2pc ·PC̃31(P 2,−k ·P ) + 2tcC̃32(P 2,−k ·P )

−pc ·PC̃20(P 2,−k ·P )]} + b2(tdp
µ
c − tcp

µ
d ){(qx − qy)

×[2a0 + 2a1pa ·pb + a2(pa ·P + ta)]

×C̃20((P + k)2, k ·P ) + a2(qx + qy)[−2(pa ·P + ta)

×C̃31((P + k)2, k ·P ) − 2taC̃32((P + k)2, k ·P )

−(pa ·P + ta)C̃20((P + k)2, k ·P )]} . (A.7)

The functionsC̃ij are defined as

C̃ij(u, v) =
Cij(u, v) − Cij(u, 0)

v
(A.8)

in terms of the three–propagator one–loop functionsCij(p2,
k ·p) for k2 = 0:

1
i

∫
ddx

(2π)d
{xµxν , xµxνxρ}

(x2 −M2)[(x + p)2 −M2][(x + k)2 −M2]

= {C20(p2, k ·p)gµν + . . . ,

C31(p2, k ·p)(pµgνρ + pνgµρ + pρgµν)

+C32(p2, k ·p)(kµgνρ + kνgµρ + kρgµν) + . . .}. (A.9)

We recall the following observations from [7]:

i. The amplitudesGµ in (A.6) andHµ in (A.7) are sepa-
rately gauge invariant.

ii. The amplitudeHµ is finite and at least ofO (k). It only
contains the on–shell couplingsa0, a1, a2, b0, b1, b2 de-
fined in (A.1) and the chargesqx, qy of the particles in
the loop.

iii. The generalized bremsstrahlung part of the loop ampli-
tude is contained inGµ. Denoting byEµ

GB(loop) the re-
sult obtained by inserting forA(s, ν) the on–shell loop
amplitude (A.2) in (2.11), the difference

∆µ = Gµ − Eµ
GB(loop) (A.10)

is at least ofO (k). Moreover, by construction ofEµ
GB all

the divergences in∆µ are renormalized by counterterms
with an explicit field strength tensor. Finally,∆µ is finite
for a2b2 = 0.

Putting everything together, the subtracted loop ampli-
tudeEµ

loop,subtractedin (3.1) is given by

Eµ
loop,subtracted=

∑
loops

(∆µ +Hµ) . (A.11)

The sum extends over the various configurations listed in
Table 6.
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