
Double pendulum and θ-divisor

V. Z. Enolskii, M. Pronine, and P. H. Richter

Abstract. The equations of motion of integrable systems involv-
ing hyperelliptic Riemann surfaces of genus 2 and one relevant
degree of freedom are integrated in the framework of the Jacobi
inversion problem, using a reduction to the θ-divisor on the Jacobi
variety, i. e., to the set of zeros of the θ-function. Explicit solutions
are given in terms of Kleinian σ-functions and their derivatives.
The procedure is applied to the planar double pendulum without
gravity, but it is worked out for any Abelian integral of first or
second kind.

1. Introduction

Modern investigations in the area of completely integrable mechan-
ical systems with f degrees of freedom have accumulated an impressive
number of solutions in cases where the spectral variety is represented
by an algebraic curve of genus g = f , see [9] for a review. Examples
are the Jacobi problem of geodesic flows on ellipsoids, the Neumann
problem of motion on an n-dimensional sphere in the presence of a qua-
dratic potential, the Kovalevskaya problem of rigid body motion, and
the periodic Toda problem. In all these cases, the same hyperelliptic
curve carries the motion of all f independent coordinates.

A priori, the requirement f = g seems arbitrary, and indeed, it is
easy to conceive of systems where f < g. Motion of a particle in a
polynomial potential of degree higher than 4 is an obvious example
[23, 11]. The non-trivial part of the motion of a double pendulum
without gravity belongs to this class (f = 1, g = 2), and so does
a symmetric rigid body (Lagrange case) in a Cardan frame of finite
moment of inertia (f = 1, g = 3).
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University for the hospitality in November-December 2000 and September 2001.

1



2 V. Z. ENOLSKII, M. PRONINE, AND P. H. RICHTER

The integration of such systems leads to the Jacobi inversion prob-
lem on the θ-divisor in the Jacobi variety J(V ), i. e., on the set of zeros
of the fundamental θ-function. It is classically known [8] that the inte-
gration of such systems can be executed in terms of appropriate deriva-
tives of θ-functions (see also [4], where the corresponding divisors are
called divisors with deficiency). Traditionally the theory of completely
integrable systems [27] considers the complement of the θ-divisor as
the natural domain for the finite-gap solutions, but the idea that the
θ-divisor can also serve as a carrier of integrability attracts now more
and more attention, see e.g. [2, 26, 1, 18, 17]. Nevertheless, to the
best knowledge of the authors there have been no attempts to use the
θ-divisor for explicit calculations of the dynamics of systems associated
with deficient divisors. We shall do that in this paper.

Namely, we present here the results of an investigation which was
motivated by the double pendulum problem but applies to the general
case of systems with f = 1 where an Abelian integral of first or second
kind on a hyperelliptic curve V of genus 2 is to be inverted. The
double pendulum has served as a key example of non-integrable, chaotic
motion [24, 25], but this is not the issue here. Our aim is to understand
the integrable limit of high energy, or vanishing gravity. We found
it intriguing that a simply defined integrable system seemed to defy
attempts to analytically integrate it. We show that solutions can be
found by reducing the Jacobi inversion problem to the θ-divisor. We
use the fact (contained in Riemann’s vanishing theorem) that the Abel
map, plus an appropriate constant shift, takes the curve V uniformly
to the θ-divisor, and that this relationship can be inverted. We give a
detailed recipe how this is done.

Admittedly, the procedure is not very apt for practical purposes.
Direct numerical integration of the equations of motion is certainly a
faster way to obtain the time course of the motion. But the point
of our investigation is (i) to show that an analytic integration of this
integrable system is possible, and (ii) to elucidate its nature.

We shall also demonstrate that the Klein-Weierstrass realization of
hyperelliptic functions (see [3, 4] and also [5, 6]) represents a conve-
nient and effective framework to integrate dynamical systems associ-
ated with deficient divisors.

The paper is organized as follows. In Section 2 we recall the dy-
namical equations of the gravity free planar double pendulum and show
that time as a function of the relevant coordinate is an Abelian integral
of the second kind on a curve of genus 2. This part is elementary. Sec-
tion 3 reviews the Jacobi inversion problem, the use of θ-functions, and
the nature of the θ-divisor. For integrals of the first kind, the solutions
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of the inversion problem are given explicitly in terms of σ-functions
and their derivatives. Most of this is classical material and well known
in the community of soliton researchers [3, 12, 9], but a restriction of
the Jacobi inversion to the theta divisor has not been applied before.
Section 4 contains the relevant material for integrals of the second kind,
necessary to complete the analysis of the double pendulum. Finally, in
Section 5, we comment on generalizations to higher genera g.

Readers who wish to have pictorial representations of the behavior
of θ-functions should visit the electronic version of this journal. There
we show a color-coded “surface of a unit cell” of the universal covering
of the Jacobi variety, and thereby provide an illustration of how the
θ-divisor “looks like”. We also provide a Maple .mws file where the
procedure described in this article is worked out in all computational
detail.

2. Double pendulum without gravity

Figure 1 shows a planar double pendulum with a space-fixed axis A1

and the second axis A2 fixed in the first body; let their distance be a.
It is assumed that the center of gravity of the first body C1 lies on the
line connecting A1 and A2, a distance s1 from A1 (when C1 is above A1,
s1 is taken as negative). The angular position ϕ1 of the first pendulum
is measured from a fixed direction. Together with the relative angle ϕ2

between the lines A1A2 and A2C2, it defines the configuration of the
system, (ϕ1, ϕ2) ∈ T 2. In the usual exposition of the double pendulum
problem [19], gravity is assumed to act in the direction ϕ1 = 0. The
dynamics is then non-integrable except in two limiting cases: small
harmonic oscillations at very low energy, and motion with conserved
angular momentum in the absence of gravity. The latter limit applies
when the total energy is very large compared to the gravitational po-
tential, or when the motion takes place in a plane perpendicular to the
field of gravity. The chaotic motion in the general case of intermediate
energies has been analyzed in great detail. It provides a beautiful ex-
ample for the transition to global chaos via the break-up of a golden
KAM torus [24, 25, 22, 20]. Mathematical proof for the existence of
chaos was given in terms of the application of Melnikov’s method [10].

Hence, the chaotic nature of the double pendulum is fairly well
understood. The same is true for the low energy integrable limit [15].
What has been missing so far is the analytic treatment of the integrable
limit at high energy, or vanishing gravity.

2.1. The integrable limit of zero gravity. When gravity is
absent, the angle ϕ1 is a cyclic variable and the system is trivially
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Figure 1. Planar double pendulum. The first pendu-
lum swings around a fixed axis A1 and carries the axis
A2 of the second body. The centers of gravity C1 and C2

are distances s1 and s2 apart from the axes; the distance
between A1 and A2 is a. The configuration is determined
by the two angles ϕ1 and ϕ2.

integrable. It is an elementary exercise to show that the Lagrangian
is [25, 20]

L =1
2
(Θ1 + m2a

2) ϕ̇2
1 + 1

2
Θ2 (ϕ̇1 + ϕ̇2)

2

+ m2s2a ϕ̇1(ϕ̇1 + ϕ̇2) cos ϕ2,
(1)

where Θ1, Θ2 are the moments of inertia of the two bodies with respect
to the respective suspension points, and m2 is the mass of the second
pendulum. Scaling energies with Θ2, all possible double pendulums are
described by the two parameters

(2) A :=
Θ1 + m2a

2

Θ2

, α :=
m2s2a

Θ2

.

For the standard textbook case [19] with equal point masses at massless
rods of equal lengths, the values are A = 2 and α = 1. In general, the
positivity of the moments of inertia implies A > α2.

With the scaled Lagrangian

(3) L = 1
2
Aϕ̇2

1 + 1
2
(ϕ̇1 + ϕ̇2)

2 + αϕ̇1(ϕ̇1 + ϕ̇2) cos ϕ2,
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the angular momenta are

p1 = (A + 1 + 2α cos ϕ2) ϕ̇1 + (1 + α cos ϕ2) ϕ̇2,

p2 = (1 + α cos ϕ2) ϕ̇1 + ϕ̇2,
(4)

and the Hamiltonian becomes

(5) H =
1

2

p2
1 − 2Q(cos ϕ2) p1p2 + P1(cos ϕ2) p2

2

P2(cos ϕ2)
,

where

(6) Q(x) = 1 + αx, P1(x) = A + 1 + 2αx, P2(x) = A− α2x2.

Energy and total angular momentum are first integrals, H =: h, p1 =: l,
hence for fixed h, l the motion is restricted to a Liouville torus Th,l.

The equations of motion are easily derived with the canonical for-
malism. Their integration conveniently starts with ϕ̇2 = ϕ̇2(ϕ2, p2; l)
where p2 is then replaced with the solution of (5) for p2(ϕ2, l, h). The
result is

(7) t =

∫ ϕ2

0

dϕ2

ϕ̇2

=

∫ ϕ2

0

P2(cos ϕ2)
dϕ2

w
,

where

(8) w2 = P2(cos ϕ2)[2hP1(cos ϕ2)− l2].

This gives time t as a function of ϕ2. The complete integral over a
cycle of ϕ2 gives the period T2.

The angle ϕ1 can also be obtained as a function of ϕ2, after dividing
the two equations for ϕ̇1 and ϕ̇2:

(9) ϕ1 = −
∫ ϕ2

0

Q(cos ϕ2)

P1(cos ϕ2)
dϕ2 + l

∫ ϕ2

0

P2(cos ϕ2)

P1(cos ϕ2)

dϕ2

w
.

The complete integral over a cycle of ϕ2 gives ∆ϕ1 =: 2πW , where W
is the winding number of the orbit on Th,l.

The above integrals can also be derived with action angle variables
(φ1, φ2, I1, I2). The actions are defined as

(10) Ii =
1

2π

∮
γi

(p1dϕ1 + p2dϕ2) (i = 1, 2),

where γi are two fundamental paths on Th,l. We choose γ1 : dϕ2 = 0
and γ2 : dϕ1 = 0. The first action I1 is then simply p1 = l, the second
is the complete integral

(11) 2πI2 = l

∮
γ2

Q(cos ϕ2)

P1(cos ϕ2)
dϕ2 +

∮
γ2

w

P1(cos ϕ2)
dϕ2.
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With l = I1 this is an implicit representation of the new Hamiltonian
h = h(I1, I2). We then require that the transformation (ϕ1, ϕ2, p1, p2) →
(φ1, φ2, I1, I2) be canonical; this fixes the angle variables associated with
the new momenta I1, I2. The corresponding generating function that
achieves this is

(12) F (ϕ1, ϕ2, I1, I2) = I1ϕ1 +

∫ ϕ2

0

p2(ϕ2, I1, I2)dϕ2.

From there, the new angles are obtained as

φ1 =
∂F

∂I1

= ϕ1 +

∫ ϕ2

0

∂p2

∂I1

dϕ2 = Ω1t,(13)

φ2 =
∂F

∂I2

=

∫ ϕ2

0

∂p2

∂I2

dϕ2 = Ω2t.(14)

The constant frequencies Ωi are given as Ωi = ∂h/∂Ii. For Ω2 ≡ 2π/T2

the identity

(15) T2 = 2π
∂I2

∂h

∣∣∣∣
I1

gives the complete form of the integral (7). To get the first period Ω1,
we use the relation

(16) W =
∆ϕ1

2π
=

Ω1

Ω2

= − ∂I2

∂I1

∣∣∣∣
h

and obtain for ∆ϕ1 the complete form of the integral (9).

2.2. The hyperelliptic nature of the problem. Let us now in-
troduce the more convenient coordinate x := cos ϕ2, dx = −

√
1− x2 dϕ2,

and the polynomial of degree 5

(17) P5(x) = 4
(
1−x2

)( A

α2
−x2

)(
x− l2

4αh
+

A + 1

2α

)
=: 4

5∏
i=1

(x− ei),

which defines the hyperelliptic curve V (z) of genus 2

(18) V := {z = (x, y) ∈ C2 : y2 = P5(x)}.
Its branch points (ek, 0) all lie on the real x-axis; we call them ek for
short and arrange them in the order e1 ≤ e2 ≤ . . . ≤ e5 < e6 := ∞.
Two of them are±1; they are the boundaries of the physically accessible
range x2 ≡ cos2 ϕ2 ≤ 1. Two other roots of P5(x) are ±

√
A/α; they

only depend on the parameters of the double pendulum and lie outside
the physical range. The root

(19) r :=
l2

4αh
− A + 1

2α
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depends on the angular momentum; its collisions with the fixed roots
indicate bifurcations in the set of Liouville tori. At the maximum
possible value of l2, l2max := 2h(A + 1 + 2α), we have r = 1. With
decreasing l2, the root r moves towards the point −1 and reaches it
at l2sep := 2h(A + 1− 2α). This marks the bifurcation from oscillatory
to rotational behavior of the angle ϕ2. There is another collision of

roots when r = −
√

A/α; this happens at l2 = l2res := 2h
(√

A − 1
)2

inside the rotational regime, but it does not involve a critical Liouville
torus. Instead, it marks the resonance W = 0 between the two angular
motions (Ω1 = 0). Finally, at l2 = 0 we have r = −(A + 1)/2α.
Summing up, there are three regimes with physical motion:

e1 = −
√

A

α
, e2 = −1, e3 = r, (l2sep < l2 < l2max);

e1 = −
√

A

α
, e2 = r, e3 = −1, (l2res < l2 < l2sep);(20)

e1 = r, e2 = −
√

A

α
, e3 = −1, (0 < l2 < l2res).

The roots e4 = 1 and e5 =
√

A/α are always the same. Writing the
polynomial P5(x) as

∑5
k=0 λkx

k, we have the coefficients

λ5 = 4 λ4 =
2

α

(
A + 1− l2

2h

)
,

λ1 =
4A

α2
, λ0 =

λ4 A

α2
,(21)

λ3 = −(λ1 + λ5), λ2 = −(λ0 + λ4).

The Riemann surface of the curve V shall now be equipped with
the homology basis (a1, a2; b1, b2) ∈ H1(V, Z) shown in Figure 2. The
physical motion takes place in the range e3 ≤ x ≤ e4 which means that
a2 is the cycle of interest. As e4 = 1 corresponds to the angle ϕ2 = 0,
we choose this point as the starting point of integration. Let us collect
the relevant integrals:

t =

∫ x

e4

(A− α2x2)
dx

y
(time)(22)

T2 =

∮
a2

(A− α2x2)
dx

y
(period)(23)

2πW = −c + l

∮
a2

A− α2x2

A + 1 + 2αx

dx

y
(winding number)(24)

2πI2 = −2πWl ± 2hT2 (action)(25)
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Figure 2. Homology basis on the Riemann surface of
the curve V (z) with real branch points e1 < e2 < . . . <
e6 = ∞ (upper sheet). The cuts are drawn from e2i−1 to
e2i, i = 1, 2, 3. The b–cycles are completed on the lower
sheet (dotted lines).

The constant c is determined with the theorem of residues:

(26) c = 2

∫ 1

−1

1 + αx

A + 1 + 2αx

dx√
1− x2

= π
(
1− A− 1√

(A + 1)2 − 4α2

)
.

The difficult part of the problem is the inversion of the Abelian
integral (22). In integrable systems where it has been solved (see, e. g.,
[9]), the number f of degrees of freedom coincides with the genus g of
the Riemann surface which is shared by all f = g coordinates. These
coordinates x1, . . . , xg are confined to g mutually different branch cuts,
and together, as a set, they are determined by the Jacobi inversion
of the Abel mapping. In our case, like in many others that occur in
physics, the genus of the hyperelliptic curve, g = 2, is larger than the
number of the effective degrees of freedom, f = 1: the motion of ϕ2

takes place along the branch cut a2, and ϕ1 is passively coupled to it.
There is no dynamic role to the other real branch cuts. But then, how
do we solve the inversion problem?

The answer involves the θ-divisor of the Jacobi variety.

3. Jacobi’s inversion problem and the θ-divisor

Let V (x, y) ∈ C2 be a hyperelliptic Riemann surface of genus g ≥ 2,
and z ≡ (x, y) a point on it. An Abelian integral

(27) u = u(z) =

∫ z

z0

R(x, y)dx =:

∫ z

z0

du,
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where z0 is any fixed reference point and R(x, y) a rational function in
x and y, cannot be considered a one-to-one map V (z) → C(u) because
its inverse would have to be a 2g-periodic function on C, and such
functions do not exist (in contrast to the case g = 1 where the doubly
periodic elliptic functions are the inverse of Abel maps). Jacobi realized
that the problem ought to be formulated in terms of a g-dimensional
complex variety, namely, the Jacobi variety J(V ) of the curve V .

3.1. The case of genus 2: preliminaries. As the double pen-
dulum involves a curve of genus 2, we treat this case in detail. To
start, we choose a basis of canonical holomorphic differentials dut =
(du1, du2) and associated meromorphic differentials of the second kind,
drt = (dr1, dr2), in such a way that their periods

2ωik =

∮
ak

dui, 2ω′ik =

∮
bk

dui,(28)

2ηik = −
∮

ak

dri, 2η′ik = −
∮

bk

dri,(29)

satisfy the generalized Legendre relation

(30)

(
ω ω′

η η′

) (
0 −12

12 0

) (
ω ω′

η η′

)t

= − iπ

2

(
0 −12

12 0

)
,

where 12 is the 2 × 2 unit matrix. Such a set of differentials can be
realized with (see [3])

(31) du1 =
dx

y
, du2 =

x dx

y
,

and

(32) dr1 =
λ3x + 2λ4x

2 + 12x3

4y
dx, dr2 =

x2

y
dx.

The periods 2ωik, 2ηik are real, the periods 2ω′ik, 2η′ik imaginary. We
shall also need the normalized holomorphic differentials

(33) dv = (2ω)−1du,

as well as the symmetric matrices of periods

(34) τ := ω−1ω′, κ := η(2ω)−1.

It is an important fact that τ is a Riemann matrix, i. e., τ i is negative
definite.

In the example of the double pendulum’s time differential, we have
from (22)

(35) dt = A du1 − α2 dr2,
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which involves only two of the four basic differentials. But let us de-
velop the solution procedure for a general differential of the first or
second kind,

(36) dt = a du1 + b du2 + c dr1 + d dr2.

The Jacobi variety J(V ) is a two-dimensional complex torus C2/Γ,
where Γ is the lattice generated by the periods of the canonical holo-

morphic differentials; denote as J̃(V ) the complex torus C2/Γ̃, where Γ̃
is the lattice generated by the periods of the normalized holomorphic

differentials. The Abel maps u : V → J(V ) or v : V → J̃(V ), defined
by

(37) ui(z) =

∫ z

z0

dui, vi(z) =

∫ z

z0

dvi, (i = 1, 2)

respectively, generate one-dimensional images of the Riemann surface
V in the two-dimensional Jacobi variety. Obviously, with these maps,
it would not make sense to look for preimages of every point in J(V ) or

J̃(V ). But if we consider the Abel-Jacobi map A : S2V → J(V ) from
the set of pairs of points {z1, z2} to the Jacobi variety, defined by

(38) u({z1, z2}) =

∫ z1

z0

du +

∫ z2

z0

du = u(z1) + u(z2)

(and similarly for the normalized version), then almost everywhere this
map establishes a one-to-one correspondence between points {z1, z2} ∈
S2V and u ∈ J(V ). This is Jacobi’s setting for the inversion problem.

3.2. Theta functions. The key to its solution are theta func-
tions [13, 12]. They come in two forms, and both are needed. First,

the canonical θ-function θ(v|τ) is a map J̃(V ) → C:

(39) θ(v|τ) =
∑

m∈Z2

exp iπ
{
mtτm + 2vtm

}
.

As function on the universal covering C2 of J̃(V ), it is even, periodic
in the real, or ω-directions, and “quasi-periodic” in the imaginary, or
ω′-directions:

θ(−v|τ) = θ(v|τ),(40)

θ(v + n|τ) = θ(v|τ),(41)

θ(v + τn|τ) = e−iπntτn−2iπvtnθ(v|τ),(42)

where n is any vector from Z2. The exponential multiplier in (42)

makes θ(−v|τ) a multivalued function on J̃(V ).
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Second, Riemann’s θe-function θe( · |τ) : V → C, is the composition
of Abel’s map, normalization, translation, and the canonical θ-function:

(43) θe(z|τ) = θ
(
(2ω)−1u(z)− e|τ

)
= θ

(
v(z)− e|τ

)
,

where et = (e1, e2) ∈ J̃(V ) is an arbitrary fixed vector.
The zeros of these two θ-functions are of particular importance.

Notice first that the set of zeros has four-fold periodicity in C2 because
the multiplier in (42) is always non-zero. Clearly, the solutions of

θ(v|τ) = 0 form a set Θzero of complex co-dimension 1 in J̃(V ), called
the θ-divisor. As to the zeros of the θe-function, they are precisely
those z ∈ V which the Abel map, followed by the shift e, carries to
Θzero. Riemann’s vanishing theorem (Nullstellensatz) relates them to
the solution of the inversion problem [13, 12]:

Theorem 3.1 (Riemann’s vanishing theorem in the case of genus 2).
The function θe(z|τ) either vanishes identically on V or else has pre-
cisely g = 2 zeros. In the latter case, the zeros z1, z2 fulfill the identity

(44) v({z1, z2}) =

∫ z1

z0

dv +

∫ z2

z0

dv = e + Kz0 ,

where Kz0 = (K1, K2)
t is the Riemann vector associated with the base

point z0:

K1 =
1 + τ11

2
−

∮
a2

dv2(z)

∫ z

z0

dv1,

K2 =
1 + τ22

2
−

∮
a1

dv1(z)

∫ z

z0

dv2.

(45)

The Riemann vectors for two different base points z, z0 are related by

(46) Kz = Kz0 +

∫ z

z0

dv.

For all v = Kz, the canonical θ-function vanishes, θ(Kz|τ) = 0.
Hence, the Riemann θ-function vanishes identically when e is chosen
as −Kz0 because then

(47) θ−Kz0

(∫ z

z0

dv|τ
)

= θ
(∫ z

z0

dv + Kz0 |τ
)

= θ(Kz|τ) = 0.

In the usual applications of the theorem [9], the two preimages z1,

z2 of a point v ∈ J̃(V ) are obtained with e = v −Kz0 , assuming that
θe does not vanish identically on V . Explicit solutions of the inversion
problem will be given later, see (63). We shall be interested in the
opposite case: the restriction of v to Θzero.
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Before we address this problem, let us get familiar with the Riemann
vectors. The formal definition (45) looks cumbersome, but Riemann
developed a surprisingly simple characterization in explicit terms [13].

At this point it is convenient to introduce the half-integer charac-
teristics [ε],

(48) [ε] =

[
ε′t

εt

]
=

[
ε′1 ε′2
ε1 ε2

]
,

where ε1, ε2 and ε′1, ε
′
2 are taken from the set {0, 1

2
}. Theta-functions

with characteristics are defined as

(49) θ[ε](v|τ) =
∑

m∈Z2

exp iπ
{
(m+ε′)tτ(m+ε′)+2(v +ε)t(m+ε′)

}
.

Their importance lies in the fact that they are a convenient manner to
describe θ-functions with shifted arguments. A simple relation holds
between θ[ε](v|τ) and the fundamental θ-function θ(v|τ) = θ [00

0
0] (v|τ):

(50) θ[ε](v|τ) = exp
{
2πiε′t(v + ε + 1

2
τε′)

}
θ(v + ε + τε′|τ).

It follows that a shift by a vector from the half-lattice,

(51) v → v + ε + τε′,

transforms the θ-functions in a simple way. In particular, if θ[ε](0|τ)
vanishes, then θ(ε + τε′) = 0. It can be checked that under inversion
v → −v, all θ-functions with half-integer characteristics are either even
or odd:

(52) θ[ε](−v|τ) = e−4πiεtε′
θ[ε](v|τ).

Among the 16 possible half-integer characteristics [ε], there are 6 for
which 4εtε′ = 1; these are the odd characteristics. For them it follows
that θ[ε](0|τ) = 0 = θ(ε + τε′). The other 10 half-characteristics are
called even; there θ[ε](0|τ) and hence θ(ε + τε′) does not vanish.

Let us list the six points of the half-lattice in J̃(V ) where θ(v|τ)
vanishes. They are

v1 = 1
2
(0, 1)t + 1

2
τ(0, 1)t, v2 = 1

2
(1, 1)t + 1

2
τ(0, 1)t,

v3 = 1
2
(1, 1)t + 1

2
τ(1, 0)t, v4 = 1

2
(1, 0)t + 1

2
τ(1, 0)t,(53)

v5 = 1
2
(1, 0)t + 1

2
τ(1, 1)t, v6 = 1

2
(0, 1)t + 1

2
τ(1, 1)t.

By definition, they are part of the θ-divisor. A look at the homology
basis of Fig. 2 and the definition of periods (28) shows that modulo
lattice vectors, vk − vj =

∫ ek

ej
dv. This is the specialization of (46) to

the branching points of our Riemann curve,

(54) Kei
= vi.
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More generally we may say that the θ-divisor is the set of all possible
Riemann vectors.

Notice that modulo integer lattice vectors, we have

(55) v1 + v3 + v5 = v2 + v4 + v6 = 0.

This reflects the fact that with the basis in Fig. 2, the cycle around
the branch cut from e5 to e6 is homologous to −(a1 + a2), while the
cycle around e2 and e3, going back on the lower sheet, is homologous
to b1 − b2. It follows, for example, that

(56) Ke6 = v6 = −v2 − v4 = −
∫ e2

e6

dv −
∫ e4

e6

dv,

but the signs do not matter because 2Ke6 is a lattice vector.

3.3. Explicit solutions. How does this help solving the Jacobi
inversion problem? Consider first the case where v = (2ω)−1u does not
lie on Θzero, and take, for example, e6 as the base point for integration
in (38). Then Riemann’s theorem states that z1, z2 are the two zeros
of

(57) θe(z) = θ
(∫ z

e6

dv − e|τ
)

= θ
(∫ z

e6

dv −
∫ z1

e2

dv −
∫ z2

e4

dv|τ
)

because e =
∫ z1

e6
dv +

∫ z2

e6
dv − Ke6 =

∫ z1

e2
dv +

∫ z2

e4
dv. Let us check

that θe(z1) = 0:

(58) θ
(∫ z1

e6

dv − e|τ
)

= θ
(∫ e2

e6

dv −
∫ z2

e4

dv|τ
)

= θ
(
−Ke4 −

∫ z2

e4

dv|τ
)

= θ
(
−Kz2|τ

)
= 0.

In a similar way, we find θe(z2) = 0.
Let us absorb the Riemann vector in the definition of a shifted Abel-

Jacobi map. Instead of (38) consider

(59) u({z1, z2}) =

∫ z1

e6

du +

∫ z2

e6

du− 2ωKe6 =

∫ z1

e2

du +

∫ z2

e4

du.

Then z1 = (x1, y1), z2 = (x2, y2) are the zeros of θe(z) with e =
(2ω)−1u. The theory of Abelian functions now tells us [4, 6] that this
inversion problem is equivalent to finding the roots of the quadratic
equation

(60) x2 − ℘22(u)x− ℘12(u) = 0,
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where ℘ij are second logarithmic derivatives of the fundamental σ-
function,

(61) ℘ij(u) = −∂2 ln σ(u)

∂ui∂uj

=
σiσj − σσij

σ2
.

The function σ(u) is closely related to the θ-function:

(62) σ(u) = C exp{utκu}θ
(
(2ω)−1u|τ

)
,

and the indices i, j at σ mean corresponding derivatives with respect
to ui, uj. The modulus κ = η(2ω)−1 was defined in (34); it contains
the periods of the differentials of the second kind. The constant C can
be given explicitly but does not matter here.

Solving equation (60) we find for the symmetric combinations of
the two roots

x1 + x2 = ℘22(u),

−x1x2 = ℘12(u).
(63)

Furthermore, the corresponding yk can be expressed as

(64) yk = ℘222xk + ℘122, k = 1, 2.

This solves the inversion problem in explicit terms, as far as integrals
of the first kind are concerned. (In the next section, integrals of the
second kind will also be considered.)

In a typical physical situation where this analysis applies [9], the
two points (x1, y1) and (x2, y2) on the Riemann surface lie in the re-
gions e1 ≤ x1 ≤ e2 and e3 ≤ x2 ≤ e4, respectively, cf. figure 2. x1

and x2 represent two degrees of freedom of the system. Their time
development is given by (63) because u varies linearly with t, as (36)
shows (ignore the second order differentials for a moment).

But what if only one of the ranges (e1, e2) or (e3, e4) has physical
meaning, as in the case of the double pendulum? Then we need a set-
ting where there is a one-to-one correspondence between points on the
Riemann surface and points in the Jacobi variety. This can be estab-
lished by the requirement that v = (2ω)−1u lie on the θ-divisor. The
curve V and Θzero are isomorphic manifolds of complex dimension 1,
so it ought to be possible to recover a single point z that maps to
u ∈ Θzero under the Abel map. Let us see how this can be done.

Notice first that Θzero is also the set of zeros of the σ-function.
Therefore a naive application of (63) to points of Θzero would produce
infinities for x1 + x2 and x1x2. We must proceed with some care and
consider their ratio. Take the shifted Abel-Jacobi map (59) and let
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x2 → e6 = ∞. Then (46) tells us that

(65) u({z,∞}) =

∫ z

e2

du +

∫ ∞

e4

du =

∫ z

e2

du + Ke2 = Kz ∈ Θzero

for any z ∈ V , i. e., the map u0 : V → J(V ) defined by

(66) z 7→ u0(z) = u({z,∞}) = Kz ∈ Θzero ⊂ J(V ),

takes a point z to its “home position” on Θzero. If we now approach
the point u(z,∞) as limx2→∞ u({z, x2}), we find with (63) that x may
be consistently determined from

(67) x = lim
x2→∞

xx2

x + x2

= lim
σ→0

σσ12 − σ1σ2

σ2
2 − σσ22

= −σ1

σ2

(u0).

This is the explicit inversion of the map (66). We remark that the
equality (67) was obtained in [14].

The last piece in the puzzle is to find an expression for the time
t =

∫
dt according to (36), with u ∈ Θzero.

4. Solution for integrals of first and second kind

If dt were a holomorphic differential, t = a u1 + b u2, the solution
of our inversion problem could proceed along the following lines. Start
from the definition σ(u0) = 0 of the θ-divisor, and use it to express u2 as
a function of u1. This gives t = t(u1), and x = x(u1) by Eq. (67). Invert
the first relation to obtain u1 = u1(t), hence x = x(u1(t)). The bulk of
the technical computations resides in the necessary manipulations of
the σ-function and its derivatives.

With meromorphic differentials there is more work to do. We need
to find σ-function expressions for the integrals

∫ z
dr1 and

∫ z
dr2. To

this end, we employ a few more relations from the theory of hyper-
elliptic functions [5, 6]. In traditional notation, the first logarithmic
derivative of σ is called a ζ-function,

(68) ζi(u) =
∂ log σ(u)

∂ui

=
σi

σ
(u).

Then the relations∫ z1

e2

dr1 +

∫ z2

e4

dr1 = −ζ1(u) +
1

2
℘222(u),(69) ∫ z1

e2

dr2 +

∫ z2

e4

dr2 = −ζ2(u)(70)

hold [5, 6] and are used in the solution of the Jacobi inversion problem.
The difficulty here is that we are interested in the limit z2 → ∞ and
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σ → 0, i. e., we must investigate the behavior of the σ-function and its
derivatives as u ≡ u({z1, z2}) → u({z1,∞}) ≡ u0. We have

(71) u− u0 =

∫ z2

e6

du

and consider the following Taylor expansion:

(72) ζi(u) =
σi

σ

(
u0 + (u− u0)

)
=

σi(u0) + σi1(u0)(u1 − u0,1) + σi2(u0)(u2 − u0,2) + . . .

σ(u0) + σ1(u0)(u1 − u0,1) + σ2(u0)(u2 − u0,2) + . . .
.

We need expressions for ui − u0,i =
∫ z2

e6
dui. Since ∞ = e6 is a branch

point of our hyperelliptic curve, the appropriate local coordinate is ξ:
x = 1/ξ2. Inserting this into the definition of dui, see (31), we find
(using e1 + e2 + e3 + e4 + e5 = −λ4/4)∫ z2

e6

du1 = −1

3
ξ3 +

λ4

40
ξ5 + O(ξ7),(73) ∫ z2

e6

du2 = −ξ +
λ4

24
ξ3 + O(ξ5).(74)

This is inserted into (72) and gives

(75) ζi(u) =
σi(u0)− ξσi2(u0) + O(ξ3)

−ξσ2(u0) + 1
2
ξ2σ22(u0) + O(ξ3)

= −1

ξ

σi

σ2

+
σi2

σ2

− σiσ22

2σ2
2

+ O(ξ).

In order to use this in the expressions (69) and (70), we must also
determine the asymptotic behavior of the second kind integrals:∫ z2

e6

dr1 =
1

ξ3
+

λ4

8ξ
+ O(ξ),(76) ∫ z2

e6

dr2 =
1

ξ
+

λ4

8
ξ + O(ξ3).(77)

For
∫

dr2 we see immediately that the leading singularities 1/ξ cancel
on the two sides of (70). Hence we have the result that

(78)

∫ z1

e4

dr2 = − σ22

2σ2

(u0) + c2,

where

(79) c2 =
σ22

2σ2

(ue4)
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and ue4 = (ue4,1, ue4,2)
t = u({e4,∞}) =

∫ e4

e4
du +

∫ e6

e2
du =

∫ e6

e2
du.

The case of
∫

dr1 is more involved. As (69) shows, we must consider
the expansion of ℘222 as u → u0. The formal expansion first gives

(80) ℘222 =
2

ξ3
− 2

ξ

(σ1

σ2

− λ4

8

)
− σ2222σ

2
2 − 2σ222σ22σ2 + σ3

22

4σ3
2

+ O(ξ).

But the ξ-independent term can be shown to be zero! To do so, we
employ one of the KdV-type equations which the ℘ij functions fulfill,
namely [5, 6],

(81) ℘2222 = 6℘2
22 +

1

2
λ3 + λ4℘22 + 4℘12.

Considering its expansion in ξ, and comparing the leading terms of
order ξ−2 and ξ−1 on both sides, we find

σ222 =
3

4

σ2
22

σ2

+
λ4

4
σ2 + σ1,

σ2222 =
σ22

σ2

( σ2
22

2σ2

+
λ4

2
σ2 + 2σ1

)(82)

on the θ-divisor. We remark that formulae of the form (82) were de-
rived and implemented in [14, 21]. Inserting them into (80) makes the
constant term vanish.

Collecting all the terms involved in (69), we see that∫ z1

e4

dr1 = −σ12(u0)

σ2(u0)
+

σ1(u0)σ22(u0)

2σ2(u0)2
+ c1(83)

= −σ12(u0)

σ2(u0)
− x1

σ22(u0)

2σ2(u0)
+ c1,

where we used (67) for the last equality and

(84) c1 =
σ12(ue4)

σ2(ue4)
− σ1(ue4)σ22(ue4)

2σ2(ue4)
2

.

We can now return to the differential dt in (36) and outline a pos-
sible inversion procedure for its integral t(x) =

∫ x

e4
dt. We require that

u0 = (u1, u2)
t + ue4 lie on Θzero, i. e., we use its definition σ(u0) = 0 to

express u2 as a function of u1. Then Eq. (67) allows us to express x as
a function of u1,

(85) x = −σ1

σ2

(
u0

)
= −σ1

σ2

(
u1 + ue4,1, u2(u1) + ue4,2

)
= x(u1).
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Next we express the time integral as a function of u0 on the θ-divisor,

t(x) =

∫ z

e4

dt(86)

= a u1 + b u2 + c
(
−σ12

σ2

− x1
σ22

2σ2

+ c1

)
+ d

(
− σ22

2σ2

+ c2

)
,

where the constants c1 and c2 are given in (84) and (79). Using again
σ = 0 to eliminate u2, we get t = t(u1). The final step is to invert this
relation and insert it into (85) to obtain x = x(u1(t)).

5. Comments and outlook

We found that the θ-divisor in the Jacobi variety of the system’s
hyperelliptic curve can be used to solve the inversion problem, and we
presented a procedure which we checked in detail by numerical compu-
tations. As far as the double pendulum at zero gravity is concerned,
the analytic nature of its integration has thereby been clarified.

The analysis ought to be extended to encompass even more in-
volved situations. For example, the time differential dt may have con-
tributions of the third kind; this situation has not yet been considered.
Another interesting generalization refers to higher genera. The work
of Jorgensen [16] and Ônishi [21] contains hints as to how one would
proceed. Consider a Riemann surface with genus g = 3 as an exam-
ple. The number f of degrees of freedom may be 1, 2, or 3. The case
f = g is the standard situation where u moves linearly with time t
(ignoring complications from differentials of second and third kind).
The case f = g − 1 = 2 involves a restriction to a codimension 1 man-
ifold. This may again be the theta divisor. With du = (du1, du2, du3)
and duk = xk−1dx/y, the theta divisor Θzero is the two-dimensional
manifold (z0 considered as a fixed base point on V )

(87) Θ2 := {(z1, z2) :

∫ z1

z0

du +

∫ z2

z0

du + Kz0}.

It is again characterized by σ = 0, and the inversion problem from
u ∈ Θ2 to z1, z2 ∈ V is solved with x1+x2 = σ1/σ3 and x1x2 = −σ2/σ3.

The case f = g − 2 = 1 requires a further restriction to the set

(88) Θ1 := {z :

∫ z

z0

du + Kz0}

which is characterized by σ = 0 and σ3 = 0. The inversion from u ∈ Θ1

to z ∈ V is solved with x = −σ1/σ2 as in (67).
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The generalization to arbitrary genus is obvious, at least in princi-
ple. The sets Θ0 := {Kz0} and

(89) Θf := {(z1, . . . , zf ) :

∫ z1

z0

du + . . . +

∫ zf

z0

du + Kz0}

(f = 1, . . . , g) define a stratification

(90) Θ0 ⊂ Θ1 ⊂ . . . Θg−1 = Θzero ⊂ Θg = J(V ),

and problems with f degrees of freedom should be treated on the stra-
tum Θf .

We are not aware of any previous attempt to put the θ-divisor to
this use, let alone its generalizations Θf . Let us conclude with a remark
on the computational aspects of this procedure. To identify the Jacobi
variety, we need the periods ωij and ω′ij, and if differentials of the second
kind play a role, the periods ηij and η′ij as well. These periods can only
be obtained by numerical integration. But given these periods, we
can discuss the time development in terms of θ- and σ-functions for
which there exist efficient computational procedures in the spirit of
Weierstrass recursions [7] . Unfortunately, the picture is not as simple
as in the usual case f = g where the dynamics in the Jacobi variety
is linear. The θ-divisor is a non-linear object, not simpler than the
Riemann surface itself, hence its usefulness for practical purposes is
limited.
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