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A B S T R A C T

Psychrophilic organisms adapted to cold environments produce molecules of relevance for biotechnological
application, in particular enzymes active at low temperatures and ice-binding proteins that control the growth of
ice crystals. The use of cold-active enzymes supports low temperature processes that preserve heat labile
compounds and can result, in some circumstances, in energy saving. Among the several possible applications in
biotransformations, this paper focuses on reactions of relevance for the food industry and in molecular biology,
representative of different market segments. Ice-binding proteins reduce tissues damage provoked by ice crystals
and are therefore of relevance for frozen foods and for the cryopreservation of organs and tissues in the bio-
medical sector.

Introduction

Arctic and Antarctic living organisms have raised considerable in-
terest in the scientific community in order to understand how they can
survive and thrive at temperatures near or even below the freezing
point of water. Knowledge about the biochemical and physiological
adaptive mechanisms allowing life in the cold has been reviewed in
[1–3]. There are many challenges that organisms inhabiting low-tem-
perature environments, so-called “psychrophiles”, must face, including
membrane rigidity and low rate of chemical reactions, as well as pos-
sible damage caused by freezing [2,4]. To survive in these extreme
environments, cold-adapted organisms have evolved adaptive changes
including the production of cold-active enzymes (CAEs) [5–7], and
proteins that control the growth of ice crystals, known as “ice-binding
proteins” (IBPs) [8,9]. Biotechnologists have also discovered the po-
tential of these molecules and started to design novel processes to ex-
ploit them [10]. Here, we explore the potential and present applications
of CAEs and IBPs.

The optimal temperature for CAEs activity (Topt) is usually close to
20–30 °C, but for some enzymes it may be higher and approach the Topt
values of thermophilic ones [1]. This is unsurprising since the real
hallmark of cold activity is the ability to retain a significant fraction of
activity at low temperature rather than the absolute Topt value (Fig. 1).
Such a property depends on the high flexibility of structural regions

critically important for catalytic activity, resulting in the reduction of
the activation energy [6,7]. Often, although not always, conformational
flexibility is reflected in low protein thermostability [6,11]. Because of
their inherent low activation energy and high activity at low tem-
peratures, CAEs can help to reduce energy consumption and the en-
vironmental impact of biotransformation reactions [12]. Moreover,
operating temperatures are permissive for heat-labile and perishable
substrates and raw materials. Not least, the possibility of inactivating
CAEs by moderate heating can also be advantageous whenever the
catalyst has to be removed at the end of a process [10]. Thus, CAEs can
be used to re-design existing processes based on mesophilic enzymes or
to develop new ones, promoting an up-coming “cold revolution” in
different fields [10,13].

Avoiding freezing, rather than resisting it, is one of the most unusual
strategies of cold adaptation developed by bony fish, insects, yeasts,
bacteria, grasses and algae that inhabit cold environments. It relies on
the inhibition of the growth of ice crystals by ice-binding proteins
[8,9,14,15]. IBPs display two major activities, both of them mediated
by their ability to bind to ice crystals. The adsorption of IBPs to the ice
surface reduces the freezing point and slightly increases the melting
point of water [8,9]. The difference between the two values is defined
as the thermal hysteresis (TH) gap (Fig. 2A) [16], the width of which is
strictly dependent both on the concentration of a given IBP and its
specific features [8,9]. The second activity performed by IBPs is related
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to ice recrystallization, which occurs by the spontaneous coalescence of
small ice crystals into larger ones (Fig. 2B) [17]. Adsorption of IBPs
onto small ice crystals results in their stabilization and inhibition of the
recrystallization (IRI) process [18]. All IBPs display both TH and IRI
activities to different extents, giving rise to distinct biological roles
[8,9,15]. Based on TH activity, IBPs are classified as moderate (TH
activity in the range 0–2 °C) and hyperactive (TH activity in the range
2–13 °C) [8,9]. As for IRI activity, IBPs are grouped as ‘ineffective’,
‘effective’ and ‘very effective’. The latter are active at nanomolar con-
centrations [19], and are produced by some fishes (antifreeze glyco-
proteins - AFGP) and bacteria [19–21]. Indeed, IRI is of utmost re-
levance in all freezing processes involving living cells and food
products, since large ice crystals damage cell membranes and impair
cell viability and food quality [22,23]. This review focuses on the IRI
activity of IBPs, and its relevance for the food industry and cryopre-
servation.

Cold-adapted enzymes

Two important slices of the industrial enzymes market are ‘food
enzymes’, whose volume is steadily increasing, with an expected global
demand of over $3.6 billion by 2024 [24], and enzymes used in mo-
lecular biology. The market for molecular biology kits, reagents and
enzymes was $5.69 billion in 2016 and is expected to reach $13.60

billion by 2022 [25]. Here, we consider the state of the art of CAEs in
the food industry [26,27] and molecular biology as representatives of
low- and high-value added sectors, respectively.

“Cold biocatalysis” in food processing

Enzymes are widely used in the food industry to prepare beverages,
dairy, baking and brewing products [28]. Different processes based on
the transformation of heat-labile products can take advantage of low
temperature to avoid food spoilage and alterations of flavor and nu-
tritional value [29]. To date the industrial application of bona fide cold-
active enzymes is still in its infancy. Instead, the food industry employs
mesophilic enzymes with low Topt. Nevertheless, a number of CAEs
described and protected by patents are ready for exploitation.

Alpha-amylases (EC 3.2.1.1). Cold-active amylases may be of in-
terest for baking to improve bread softness and prevent stalling
[30–32], since they can be easily inactivated during cooking [33]. A
patent developed with Novozymes (Bagsvaerd, Denmark) concerns a
Bacillus licheniformis enzyme whose specific activity was improved in
the temperature range from 10 to 60 °C by protein engineering [34]. A
second patent developed with the industrial partner ColdZYMES ApS,
Greenland, describes a system for the heterologous expression of a
Clostridium α-amylase retaining activity at temperatures lower than
10 °C [35].

β-D-Galactosidases (EC 3.2.1.23) hydrolyze lactose into glucose and
galactose and catalyze the transgalactosylation of lactose, which is used
in the synthesis of galacto-oligosaccharides [36,37]. β-galactosidases
are used in the dairy industry to produce lactose-free products. Lactose
hydrolysis is of benefit in lactose intolerance and increases milk
sweetness [38]. Moreover, in the production of ice cream, the treatment
of milk (or whey) with β-D-galactosidases avoids the formation of
lactose crystals and the undesired 'sandiness' of the texture. Several
industrial β-D-galactosidases are produced by mesophilic microorgan-
isms and have temperature optima in the range 30–60 °C [39]. To
control spoilage, lactose hydrolysis is usually carried out at 30–40 °C for
4 h or at 5–10 °C for 24 h [40]. The use of cold-active β-galactosidases

Fig. 1. Activity and heat-driven unfolding of psychrophilic enzymes. (A)
Temperature dependence of a generic cold active enzymes (CAE). Generally,
CAEs exhibit optimal temperature for catalysis (Topt) in the range from 20 to
30 °C and maintain relatively high activity at low temperature. (B) The in-
activation of psychrophilic enzymes usually anticipates the loss of protein
structure (temperature of melting), suggesting that the thermolability concerns
first their active sites.

Fig. 2. Activity of ice-binding proteins. (A) Thermal hysteresis. In the ab-
sence of IBPs (left), water melting and freezing points are very close to an
equilibrium temperature. When present, IBPs (red dots, right side) bind to ice
crystals and increase the difference between the melting and freezing points
(thermal hysteresis gap). (B) Ice recrystallization inhibition. In the absence of
IBPs, large ice crystals grow at the expenses of smaller ones (ice recrystalliza-
tion). IBPs stabilize small ice crystals, inhibiting the recrystallization process.
Panel B is reproduced from [15] with permission.
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for this reaction could contribute to improving the flexibility of the
process and to cost reduction, by allowing sugar hydrolysis to occur
during refrigerated shipping and storage (4 to 8 °C) [41]. Enzymes from
mesophilic Kluyveromyces sp. retain 10–20% activity at low tempera-
ture and are therefore the most frequently exploited for milk processing
[41–43]. Patented cold active β-D-galactosidases are reported in
Table 1.

Proteases (EC 3.4.) find wide application in food processing, in-
cluding brewing, bakery, dairy, meat tenderization and the production
of hydrolysates from meat, fish, gelatin and soy [28]. Presently, the
commonest enzymatic meat tenderizers are cysteine proteases, such as
bromelain, papain, actinidin and ficin from fruits. They are thermo-
stable and most remain active upon heating at 70 °C. The inherent
thermolability of CAEs is a desirable feature of meat tenderizers, since it
would allow enzyme inactivation at cooking temperatures. Table 1 re-
ports a list of patented thermolabile proteases from mesophilic as well
as from psychrophilic microorganisms. Among proteases from psy-
chrophilic sources, that from Pseudoalteromonas strain SM9913 might
be used in tenderizing collagen-rich meat [44], while that from Flavo-
bacterium balustinum promises wider applications, due to its optimal
temperature of 40 °C and high thermolability (full inactivation at 50 °C
in ca. 10min) [45].

Proteases are applied in cheese manufacture for the hydrolysis of

milk proteins (milk coagulation) [28]. Inactivation at the end of the
process prevents undesired long-lasting proteolytic activity in the curd
and in cheese, and allows processing of the whey after curd separation.
The commonly used rennet endoproteases undergo denaturation on
brief heating or pasteurization (60 °C for 20min or 71.5 °C for 15 s)
[46]. The demand for novel proteases as alternatives to rennet, and
possibly easy to inactivate, is increasing [28]. However, most microbial
enzymes derive from mesophilic organisms and are rather heat stable
[47]. Therefore, several studies have been aimed at increasing the
thermal sensitivity of the aspartic proteases from R. miehei and R. pu-
sillus [48]. That described in patent [46] uses chemical treatment to
induce thermal lability.

Pectinases (EC 3.2.1.15) account for ca. 40% of all food processing
enzymes [49,50] and are employed to clarify and reduce the viscosity of
fruit juices [51], in the extraction and purification of natural oils [52],
and in wine-, coffee- and tea-making [53,54]. Well-established in-
dustrial processes are based on thermostable enzymes, most of which
are active at 35–60 °C and inactive below 10 °C [55]. Low temperature
processes may be of advantage to limit contamination [56,57], preserve
volatile aromatic compounds [58] and increase storage capacity [59].
The need for cold-active enzymes is exemplified by the process of wine-
making, where pectinases are added to improve the efficiency of juice
extraction and the release of aroma and polyphenols [60]. Here, the
fermentation temperature is 10–15 °C, much lower than the optimal
temperature of mesophilic enzymes. Publications on cold-active pecti-
nases have been reviewed [61].

“Cold biocatalysis” in molecular biology

CAEs are the standard catalysts in several molecular biology tech-
niques (Table 2) due to their thermolability, which is fundamental for
some sequential enzymatic reactions where the increase of temperature
allows termination of their activity used in the first reaction steps.
Moreover, several in vitro reactions require low temperatures, for which
CAEs are more suitable than the mesophilic or thermophilic counter-
parts.

Alkaline Phosphatases (APs, EC 3.1.3.1) catalyse the depho-
sphorylation of the 5′ end of linearized DNA fragments. They are used
to perform DNA 5′ end-labelling and to prevent dsDNA self-ligation of
plasmid vectors, thus increasing cloning efficiency [62]. Although
commercially available and broadly used, the mesophilic calf intestinal
AP [63] has some drawbacks related to its heat-stability, which imposes
harsh or time-consuming procedures for inactivation or removal before
subsequent cloning steps (e.g. ligation). In contrast, cold-active APs can
be easily inactivated by mild or short heating treatments. To date, APs

Table 1
Patented cold-active or thermolabile enzymes. Hypertext links to the patents
are reported in Table S1.

Enzyme Organisms Patent number

Alpha-amylase Bacillus licheniformis US6673589
Clostridium perfringens US20170044510A1

β-D-Galactosidase Pseudoalteromonas haloplanktis US6727084
Protease Rhizomucor miehei US4591565

Rhizomucor pusillus US6149950
Pseudoalteromonas SM9913 CN102224938B
Flavobacterium balustinum US6200793
Leucosporodium antarcticum PI12
strain

US8623996

Alkaline phosphatase Pandalus borealis WO2002031157A8
Colwellia psychrerythraea US20120142061A1

CN106754823A
Uracil-DNA N-

Glycosylase
Gadus morhua US7037703
Psychrobacter sp. HJ147 US7723093B2
Marine bacterium BMTU 3346 WO1997020922A1
Psychrophilic marine bacterium WO2017162754A1

Nuclease Pandalus borealis US20020042052A1
Vibrio salmonicida WO2013121228A1
Shewanella sp. strain Ac10 WO2006095769A1

Table 2
Commercially available cold-active enzymes for molecular biology applications.

Enzyme Organisms Products

Alkaline phosphatase Pandalus borealis Shrimp AP (New England Biolabs)
Shrimp AP (Thermo Fisher Scientific)
Shrimp AP (Takara-Clontech)
Shrimp AP (ArcticZymes)
Shrimp AP (Jena Bioscience)

N.A. FastAP Thermosensitive AP (Thermo Fisher Scientific)
Alteromonas undina P2 Thermolabile AP (SibEnzyme)
Antarctic bacterium TAB 5 Antarctic Phosphatase (New England Biolabs)

Uracil-DNA N-Glycosylase Gadus morhua Cod-UDG (ArcticZymes)
UDG, heat-labile (Thermo Fisher Scientific)

Marine bacterium BMTU 3346 UDG, heat-labile (Merck)
Psychrophilic marine bacterium Antarctic Thermolabile UDG (New England Biolabs)

Nuclease Shewanella sp. strain Ac10 Cryonase (Takara-Clontech)
Pandalus borealis dsDNase (Thermo Fisher Scientific)
N.A. dsDNase (ArcticZymes)
N.A. HL- dsDNase (ArcticZymes)
N.A. HL-ExoI (ArcticZymes)

Protease Arctic marine microbial 1 ArcticZymes Proteinase (ArcticZymes)
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from three different psychrophilic organisms are commercially avail-
able (Table 2).

Uracil-DNA N-Glycosylases (UDGs, EC 3.2.2.27) recognize and re-
move uracil from DNA. Since 1990, they have been used to avoid PCR
carryover of DNA contaminants, i.e. the accumulation of PCR products
in laboratory environments [64], a major source of false-positive results
in diagnostic PCRs, including the loop-mediated isothermal PCR
[65,66]. The UDG-based protocol involves the use of uracil instead of
thymine, which results in the amplification of UDG-sensitive DNA
products. PCR mixtures are pre-treated with UDGs to selectively de-
grade carryover contaminants but not template DNA that contains
thymine [58]. It is important to avoid any UDG activity during the
following steps of amplification, when the desired DNA products, also
containing uracil, are synthesized. This motivates the use of thermo-
labile UDGs, which can be easily inactivated. The enzymes currently
used are listed in Table 2.

Nucleases (EC 3.1.21). Double-strand specific DNases can be used to
decontaminate PCR master mixes and to remove genomic DNA in RNA
preparations. Another application involves ssDNA-specific enzymes,
such as ExoI, which hydrolyse the target nucleic acid from its 3′ end.
Any subsequent procedure step requires the inactivation of nucleases,
which are therefore preferably thermolabile. Examples of heat labile
nucleases are reported in Table 2.

Proteases (EC 3.4.) are used to remove protein contaminants from
nucleic acid preparations [62]. The most popular is Proteinase K, which
retains relatively high activity at 20 °C and is stable up to 95 °C [67]. A
heat-labile protease is a valuable alternative, since its temperature of
inactivation is compatible with RNA integrity and conformation of
dsDNA. One such enzyme is commercially available (Table 1).

DNA ligases (EC 6.5.1.1) catalyse the formation of phosphodiester
bonds, joining DNA fragments with protruding or blunt ends [62].
Currently, DNA ligases from T4 and T7 bacteriophages, Chlorella virus
and E. coli are the most used. For DNA with protruding ends, the op-
timal ligation temperature is a compromise between the ligase Topt and
the optimal temperature for annealing short DNA protruding ends,
usually very low [62]. For this reason, the reaction efficiency can be
increased by low temperatures (4–8 °C) and by extending the incuba-
tion time over several hours (usually overnight) [62]. A novel DNA li-
gase from the psychrophilic Pseudoalteromonas haloplanktis proved to be
active up to 4 °C [68], but is not commercially available.

Ice-binding proteins

The market of IBPs was estimated at $2.7 million in 2017 and is
expected to reach $10 million by 2023 [69]. Although application of
IBPs can be envisaged in the fields of medicine, cosmetics and food, a
recent report suggests that the driving force for the IBP market is the
medical industry (e.g. cryopreservation) [69]. Below, we describe some
applications of IBPs in the food and medical fields, the major sectors in
which these proteins are used.

Applications of IBPs in the frozen food industry

Freezing is broadly used to preserve food from microbial decom-
position and is obtained by icing residual food moisture. The kinetics of
the process plays a fundamental role in maintaining frozen food quality
and texture [64]; the faster the icing process, the smaller the in-
tracellular ice crystals and the milder the damage to cellular structures.
In addition to preserving the nutritional value, taste and texture of fresh
products, frozen foods also have the advantage of shorter preparation
and cooking times compared to fresh products. A major challenge is to
maintain the cold chain, aimed at keeping optimal storage temperature
during production, storage and distribution. Inappropriate refrigeration
during distribution is one of the main causes of food waste that in the
U.S. is estimated to reach ̴ 12% [70]. Moreover, thermal fluctuations
may cause freeze-and-thaw cycles, inducing ice recrystallization that

can greatly affect the quality and shelf life of food products [71,72]. For
instance, the formation of large ice crystals alters the cream texture and
smoothness of ice creams [73,74]. In frozen fish and meats, the for-
mation of intracellular large ice crystals damages the membranes fa-
vouring drip and consequent loss of nutrients during thawing [71,72].
Such drawbacks call for the exploitation of inhibitors of ice re-
crystallization, such as IBPs.

IBPs are produced by several organisms including winter flounder,
carrots and cabbages [71,75]. Among IBPs, that from the ocean pout, an
arctic fish, was approved by the U.S. Food and Drug Administration and
the European Food Safety Authority as a non-allergenic and non-toxic
food additive [76].

Generally, when IBPs are used as food additives they are called “ice
structuring proteins” [8]. In some ice creams, IBPs are added to avoid
the granular texture induced by ice recrystallization [73,77]. Moreover,
in the “helical popsicle” made by a frozen core coated with a fruit ge-
latine, the addition of IBPs in the core favours the removability of
popsicle from the package thus preventing it to break in small pieces
[78]. A recent study shows that the small ice crystals formed in the
presence of IBPs can aggregate into a 3D network, thus inducing a
greater hardness and roughness of ice cream texture, which may be
desirable in some frozen dessert, but not in ice creams [79]. This study
suggests that the mere presence of IBPs in ice creams is not enough to
preserve their smoothly and creamy texture. Most probably these latter
features depend on other factors (i.e. stabilizers, air and fat), which
contribute to the complex multiphase structure of ice creams.

Bread dough is highly perishable, and since the 1960s freezing has
been used to increase its shelf life [22,75]. However, frozen dough
presents texture alterations and low CO2 content, which cause poor
bread quality [80–82]. The process developed to avoid these problems
includes the use of stronger flours with higher content of gluten, the
addition of freeze-tolerant yeasts and of IBPs [81]. Several studies re-
ported that added IBPs enhance the amount of total gas produced after
thawing of frozen sweet dough [83] and dough softness during freezing
[81].

In other cases, IBPs have been physically added in food before
freezing [71]. For instance, IBPs were infiltrated into blench vegetables
[84] or injected into animals or fishes [85]. The injection of antifreeze
glycoproteins (AFGP) 24 h before lamb slaughter was shown to induce
the formation of small ice crystals and to reduce dripping of water
during thawing [86].

Applications of IBPs in cryopreservation

Cryopreservation is the storage of biological materials in liquid ni-
trogen (−196 °C) [87,88]. The main challenge is to preserve cell via-
bility after thawing [89,90]. Generally, dispersed cells are cryopre-
served in freezing solutions using two methods: slow-freezing [87] and
vitrification [91]. In the slow-freezing approach, cells are frozen at a
slow cooling rate (1 °C/min) and stored; these steps are followed by a
fast thawing process [92]. In contrast, vitrification requires an ultrafast
cooling rate, in order to avoid ice formation, and high amounts of
cryoprotectants [23,91]. The main risk for both methods is the forma-
tion of large ice crystals inducing dehydration and rupture of cell
membranes [87]. Besides the chilling injury, a critical role is played by
the toxicity of chemical cryoprotectant [93,94] agents (CPAs) such as
glycerol and dimethyl sulfoxide. Both molecules can penetrate into
cells, reducing the intracellular concentration of electrolytes and pre-
venting de facto dehydration and cell lysis, disrupting intracellular
signalling [95] and driving protein unfolding [96]. In this scenario, the
IRI activity of IBPs might play a key role in the development of new,
less cytotoxic cryoprotectants [23,97].

The application of IBPs or AFGPs to mammalian cells and tissues is
described in a few patents [98,99] and widely in literature, and has
been reviewed in [23]. Several studies describe the addition of IBPs to
freezing medium coupled with lowering the amount of conventional
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CPA. The addition of IBPs to biological materials enhances cell viability
after thawing, regardless of freezing method and storage temperature
[23]. In addition, microorganisms with high biotechnological potential,
such as commercial microalgae, can be cryopreserved by the addition of
IBPs [100].

Conclusions and future perspectives

Some features of CAEs make them suitable for improving existing
biotechnological processes through the replacement of mesophilic/
thermophilic enzymes. Moreover, a deeper exploitation of CAEs can
pave the way for the design of novel transformation processes fully
based on psychrophilic catalysts and their combined cold activity and
thermolability. Nevertheless, such a “cold revolution” has just began.
Indeed, it emerges that several low-temperature processes do not em-
ploy CAEs as such. The main bottlenecks can be recognized in low CAE
activity and/or stability under environmental or process conditions,
including immobilization and re-use procedures, which overall reflect
on the costs of the whole cold process [101]. This is particularly true in
low-value added sectors, such as food processing, employing massive
amounts of low-cost enzymes. The industrial success of CAEs and their
competitiveness towards mesophilic and thermophilic enzymes will
therefore depend on the ease of production and on their structural ro-
bustness, either intrinsic or conferred by protein engineering. In this
case, the main bottleneck could be the availability of a suitable specific
catalyst, a limit which in turn reflects our poor knowledge of cold
ecosystems [102].

The use of IBPs in the cryopreservation of cells, tissue and organs is
promising and can contribute to the effectiveness of transport and
storage phases. Moreover, the development of "safe" CPAs could be a
driving force for organ and tissue banking [103,104]. Unfortunately, in
some cases, for example in the preservation of red blood cells [105] and
cardiomyocytes [106,107], the addition of IBPs was observed to induce
cell damage. Overall, one of the major limitations in the use of IBPs in
cryopreservation is still the need for high IBP concentrations that could
cause the formation of needle-like ice crystals and damage cell mem-
branes [107–109].
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