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Abstract
This study investigated the feasibility of delivering a crop type map early during the growing 
season. Landsat 8 OLI multi-temporal data acquired in 2013 season were used to classify 
seven crop types in Northern Italy. The accuracy achieved with four supervised algorithms, 
fed with multi-temporal spectral indices (EVI, NDFI, RGRI), was assessed as a function 
of the crop map delivery time during the season. Overall accuracy (Kappa) exceeds 85% 
(0.83) starting from mid-July, five months before the end of the season, when maximum 
accuracy is reached (OA=92%, Kappa=0.91). Among crop types, rice is the most accurately 
classified, followed by forages, maize and arboriculture, while soybean or double crops can 
be confused with other classes.
Keywords: Early mapping, crop type, multi-temporal data, supervised classification, 
Landsat 8 OLI.

Introduction
Observation and assessment of crop status and development is a crucial topic for agronomic 
planning and management and for mitigating the effects induced by climate change and 
extreme events. To this aim, timely information on the area covered by different crops is 
necessary [Foerster et al., 2012; Conrad et al., 2014]. In particular, in-season crop type 
maps produced during early growth stages are key information for operational agricultural 
monitoring by both public authorities and private sector. In southern Europe, where 
irrigated agriculture is the major user of fresh water resources [Rost et al., 2008; Wriedt et 
al., 2009], early information on crop type and acreage is necessary to forecast agricultural 
water demand during the summer season [Mo et al., 2005; Reichstein et al., 2007]. Despite 
the need for information delivered in near-real time during the crop season, official figure 
and statistics are usually provided after the end of the growing season, since data have to be 
collected, verified and compiled into a database.
Satellite remote sensing is a unique source of data for the identification of crop types over 
large areas, as described in the last two decades in scientific literature [e.g. Ortiz et al., 
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1997; Pohl and Van Genderen, 1998; De Wit and Clevers, 2004; Ok et al., 2012; Villa et 
al., 2015]. A number of factors influence the accuracy of satellite-based crop maps: i.e. 
the spatial resolution of the imagery, the classification method, and the production time 
horizon, i.e. the temporal extent of the dataset and phenological stages covered [Hubert-
Moy et al., 2001; Van Niel and McVicar, 2004; Duveiller and Defourny, 2010]. Cultivated 
crops and site characteristics regulate the selection of the most suitable satellite dataset. 
Low/moderate resolution sensors with frequent revisit (300-1000 m, e.g. MODIS) are best 
suited for assessing inter-annual variability over large, homogeneous areas [e.g. Wardlow 
and Egbert, 2008], while medium resolution data (10-30 m, e.g. Landsat) give better results 
at local/regional scales and over fragmented landscapes [e.g. Murty et al., 2003; Conrad et 
al., 2014]. Duveiller and Defourny [2010] and Yang et al. [2011] demonstrated that spatial 
resolution in the range 10-140 m could be considered an optimal choice for a wide range of 
agricultural landscapes.
Vegetation indices (VIs) have been largely used for monitoring vegetation over a wide 
range of applications [e.g. Huete et al., 1994; Gitelson and Merzlyak, 1996; Nutini et al., 
2013; Villa et al., 2014]. They offer a straightforward way of feature reduction in high 
dimensional datasets and are easily interpretable proxies of vegetation processes and 
agro-practices. Multi-temporal studies focusing on in-season crop type mapping revealed 
that maximum discrimination capabilities occurs at different phenological stages and that 
great attention must be devoted to missing data at key dates along the growing season 
[Odenweller and Johnson, 1984; Murthy et al., 2003; Conrad et al., 2014].
In order to fill the gap towards operational use of satellite products for crop monitoring, 
more research is needed for evaluating timely crop mapping, and in particular experimental 
studies fully taking into account local agricultural practices and variability. New generation 
medium resolution satellite platforms recently put into orbit, e.g. Landsat 8 [Irons et al., 
2012] and Sentinel-2 [Drusch et al., 2012], will provide a large amount of data featuring 
spatial and temporal resolutions with great potential for advancing science and technology 
towards effective in-season crop mapping.
In this framework, the objective of this work is to investigate the performance of crop 
type classification as a function of the time of crop map delivery during the season (i.e. 
early season and end of season maps) over Lombardy, one of the most important extensive 
agricultural region in Italy. To this aim, we tested four common supervised classification 
algorithms (Maximum Likelihood, Minimum Distance, Spectral Angle Mapper and Neural 
Networks) [Kruse, 1993; Richards, 1999], applied to multi-temporal VIs derived from 
medium resolution satellite data (i.e. Landsat 5, 7 and 8). The main outcome focuses on how 
early in the growing season a reliable crop type map could be produced, as an operational 
remote sensing product targeted at regional agricultural monitoring.

Study site
The study area is located in the central portion of Lombardy region, Northern Italy, and 
covers more than 10,000 km². The area, highlighted by the light blue box in Figure 1, 
was selected in the overlapping region of two Landsat WRS-2 paths (193 and 194), in 
order to guarantee frequent observations of the surface by the Landsat overpass (up to 7-9 
day frequency). Such dataset is considered a good compromise between spatial resolution 
[Duveiller and Defourny, 2010] and temporal revisit for simulating an operational crop 
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mapping scenario, possibly exploiting the future availability (2017-2018) of optical satellite 
such as Sentinel-2 and Landsat 8 missions.
Lombardy region is among the most urbanized areas in Europe, hosting around 10 million 
people, yet 41.4% of its territory is dedicated to agriculture. The added value of agro-
industrial sector for regional economy is 15% of the national total. The region is mostly 
flat, except for the northernmost regions located in the Alps, and agriculture is the dominant 
land use especially in the southern Po plain. Climate is continental, with some variability 
due to altitude in northern mountainous areas and near the large pre-Alpine lakes, with 
accentuated annual temperature changes in the plains and precipitations that are ranging 
from 600 to 1000 mm/year (850 mm/year on average).
Vegetated land cover is quite heterogeneous, including woodland and arboriculture, 
grassland, horticulture, viticulture, winter and summer crops, forage crops and permanent 
meadows. According the National Institute of Agricultural Economics [Giuca et al., 2014] 
the main crops cultivated in Lombardy are: maize (38.5% of total cropland area), temporary 
and permanent meadows for forages (34.1%), rice (10.1%), winter cereals (common wheat 
and barley, 7.5%), soybean and other legumes (2.7%), vegetables (1.4%).

Figure 1 - Study area coverage (light blue box), bounded by overlapping of WRS-2 194 and 193 
paths of Landsat 8 orbits.

Two major crop seasons can be identified in the area: October to June for winter crops and 
April to October for summer crops. A graphical crop calendar is shown in Figure 2. Winter 
cereals, being barley the most cultivated one, are sown between October and November, 
typically reach the flowering in April-May of the following year, and are harvested in 
May-June. Maize and rice are the main summer crops that cover the majority (~ 50%) of 
cultivated area and they are more demanding in term of water consumption. Maize is sown 
between early April and the beginning of May: the crop reaches the peak of vegetative 
phase around July and it is harvested between late August and the second half of September. 
Rice is usually sown later than maize, from middle of April to late May, reaching flowering 
stage in late July-August, and is harvested in late September-beginning of October. Double 
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cropping practices concern maize and soybean that are sown as second crop in late May or 
early June, after the harvest of forage crops (e.g. ryegrass) or winter cereals (e.g. triticale); 
double crops are typical of integrated crop-livestock systems (e.g. for Parmesan cheese 
production) in which they are used either as fresh forage or silage. Other forage crops 
cultivated in the area mainly consist of grasses (i.e. ryegrasses) and herbaceous legumes 
(i.e. alfalfa and clovers), which are mowed and harvested three to four times, with nearly 
monthly frequency, during May to August period. Arboriculture is mainly consisting of 
poplar plantations for pulpwood, used in construction, paper production and biomass for 
power plants.

Figure 2 - Typical crop calendar for major cultivations in Lombardy (Northern Italy).

Dataset
Satellite data
26 Landsat 8 Operational Land Imager (OLI) individual scenes were collected for the year 
2013, covering the WRS-2 194-193/28-29 path/row (Fig. 1). The overlap between the two 
adjacent WRS-2 paths assures an enhanced temporal frequency of satellite coverage from 
16 days to 7-9 days, if cloud free images are available. Landsat 8 OLI scenes were retained 
only when overall cloud cover was less than 20%. Panchromatic and thermal infrared OLI 
bands were discarded and reflective bands at 30 meters spatial resolution were processed.
The study period covers the summer crop season, which is the most important one for 
agriculture in Lombardy; in this period in fact the main crops are cultivated (rice and 
maize) and water demand and water resource management are major issues for decision 
makers. Hence, the temporal range of interest is spanning from sowing (April) to harvest 
(October) of major summer crops in Northern Italy. Landsat 8 OLI is operational since 
April 2013, but the first cloud free image over our study area was collected on May, 13th. 
The multi-temporal dataset collected for the year 2013 spans 13 dates (two OLI scenes 
for each date) with a temporal interval between consecutive cloud free acquisitions in the 
range of 7-16 days, with the exception of the first two dates of the series which are 25 days 
apart (Tab. 1).
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Table 1 - The Landsat 8 OLI dataset acquired over the study area for the year 2013. Time step 
datasets (T) effectively considered for the classification are reported as progressive number (T1 
to T8) according the cardinality of dates included.

Path Row Date (DOY) T1 T2 T3 T4 T5 T6 T7 T8

194 28-29 13/05/2013 (133) x x x x x x x x

193 28-29 07/06/2013 (158) x x x x x x x x

194 28-29 14/06/2013 (165) x x x x x x x x

193 28-29 23/06/2013 (174) x x x x x x x x

194 28-29 30/06/2013 (181) x x x x x x x x

194 28-29 16/07/2013 (197) x x x x x x x

193 28-29 25/07/2013 (206) x x x x x x

194 28-29 01/08/2013 (213) x x x x x

193 28-29 10/08/2013 (222) x x x x

194 28-29 17/08/2013 (229) x x x

194 28-29 02/09/2013 (245) x x

194 28-29 07/12/2013 (341) x

193 28-29 16/12/2013 (350) x

T1 T2 T3 T4 T5 T6 T7 T8

Reference data
For calibration and validation purposes, we used independent crop type reference data 
derived on the basis of the “Annual agricultural land use map” (Carta Uso Agricolo Annuale, 
CUAA) produced by the “Ente Regionale per i Servizi all’Agricoltura e alle Foreste” 
(i.e. the regional agency for agriculture and forest services of the regional government) 
over Lombardy. This map elaborates information from 2013 farmers’ declarations for 
requesting European subsidy (http://www.ersaf.lombardia.it/servizi/Menu/dinamica.
aspx?idArea=16914&idCat=17255&ID=22103) and is usually published at the beginning 
of the year following the summer crop season, i.e. about four to five months after the harvest. 
The crop categories mapped in CUAA 2013 represent crop information not semantically 
consistent with crop classes that can be detected on the basis of optical spectral response 
from remote data. For example, the CUAA crop category maize includes both maize 
cultivated as single and double crop, while the category forages includes every crop which 
is cultivated for animal consumption, including some winter cereals, as well as fodder 
and meadows (alfalfa and similar), which is grown and mowed multiple times per season. 
Moreover, CUAA product is not officially validated. For the above reasons, this data is 
considered not enough reliable to be used as reference data directly by itself, without prior 
check. Therefore, CUAA 2013 map was used as base information for extracting a sample 
of fields, which have been further checked for crop type label attribution. A random sample 
of fields stratified by 6 vegetated land cover classes (5 crop types: maize, rice, soybean, 
winter crops, and forages, plus natural and artificial woodland areas) was extracted from 
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CUAA 2013. Class label attribution consistency check was carried out using additional 
information: i.e. visual assessment of high resolution satellite photos (from Google Earth), 
and in situ collected information (along the road survey with camera and GPS, especially 
for rice fields identification and flooding status assessment). Finally, in situ collected 
information and expert interpretation of VIs multi-temporal profiles extracted from OLI 
scenes were used for separating the double from single crops and for further subdividing 
of crop type classes according to their seasonality (e.g. early seeded vs. late seeded maize), 
thus delineating a detailed reference set composed by 15 crop type classes.

Methods
OLI data were converted to at-sensor radiance using calibration coefficients provided within 
the scenes metadata and transformed to surface reflectance with the Atmospheric/Topographic 
CORrection (ATCOR) software [Richter and Schläpfer, 2011]. For atmospheric correction, 
we adopted Aerosol Optical Depth (AOD) parameters derived as a weighted average of 
two AERONET stations measurements: Ispra, (45.803° N, 8.627° E, elevation: 235 m) and 
Modena (44.632° N, 10.945° E, elevation: 56 m); the MODIS aerosol products (MOD04_L2) 
were used when AERONET data were missing. After atmospheric correction, only the area 
overlapping WRS-2 paths 193 and 194 was used as input for the processing workflow (Fig. 3).

Figure 3 - The flowchart of the crop mapping methodological approach.

Three spectral VIs were calculated from each date of OLI 2013 dataset: Enhanced 
Vegetation Index (EVI) [Huete et al., 1997], Normalized Difference Flood Index (NDFI) 
[Boschetti et al., 2014], and Red Green Ratio Index (RGRI) [Gamon and Surfus, 1999]. 
Multi-temporal VIs, in particular Normalized Difference Vegetation Index (NDVI), have 
been extensively used in remote sensing of vegetation for their availability, simplicity and 
effectiveness in distinguishing phenological features of plant groups, including crops [e.g. 
Lunetta et al., 2006; Waldrow and Egbert, 2008]. As NDVI can be subject to distortion 
due to environmental factors, for our analysis we preferred to use EVI, which includes a 
factor for correcting background effects and partially compensating for major atmospheric 
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disturbances [Huete et al., 1997]. As a complement to EVI, we included NDFI, which is an 
index developed by Boschetti et al. [2014] for the detection of surface water in flooded rice 
areas, modified for optimizing the performance of indices previously used by Xiao et al. 
[2005] for mapping paddy rice cultivations. The RGRI was included due to its sensitivity 
to canopy greenness and light use efficiency in plant photosynthetic activity [Gamon and 
Surfus, 1999]. Differently from other indices of this category, relying on hyperspectral 
information, RGRI can be computed from the spectral bands available from OLI [e.g. 
Gamon et al., 1992; Gitelson and Marzlyak, 1996]. The equations used for calculating the 
three VIs using reflectance (ρ) derived from OLI spectral bands are:

EVI 2
-

6
NIR(OLI band 5 ) Red(OLI band 4 )

NIR(OLI band 5 ) R

=
+

ρ ρ

ρ ρ
eed(OLI band 4 ) Blue(OLI band 2 )

-7.5 1ρ +
[ ]1

NDFI
-

Red(OLI band 4 ) SWIR2(OLI band 7 )

Red(OLI band 4 )

=
+

ρ ρ

ρ ρ
SSWIR2(OLI band 7 )

2[ ]

RGRI Green(OLI band 3 )

Red(OLI band 4 )

= [ ]
ρ

ρ
3

From the whole dates of acquisition of OLI data, eight ‘time step’ datasets (T1-T8) were 
composed by stacking layers of the three VIs from the first up to the last date of each step 
(Tab. 1). The first time step, T1, includes the earliest 5 dates, from May 13th to June 30th, 
2013; at each following step one date is added to the multi-temporal dataset up to T7. At 
step T8 (13 dates) the entire crop growing season is covered, including harvest (218 days, 
from May 13th to December 16th). Among the time steps, T2 (up to July 16th) and T3 (up 
to July 25th) are assumed as potential horizons for delivering early in-season crop maps 
that could be used in support of crop management, i.e. before water demand peak of major 
summer crops in the study area (rice and maize) and last top-dressing fertilization.
Four supervised classification algorithms, three parametric and one non-parametric, were 
used: Maximum Likelihood Classification (MLC) [Richards, 1999], Euclidean Minimum 
Distance (EMD) [Richards, 1999], Spectral Angle Mapper (SAM) [Kruse et al., 1993] 
and Neural Networks (NN) [Richards, 1999]. All of these algorithms are coded in IDL 
and embedded in ENVI 4.7 software package. These algorithms well represent a variety 
of supervised approaches usually employed for classification purposes in remote sensing 
literature: MLC is a parametric algorithm, based on the conditional distribution of classes, 
EMD is a geometry-based algorithm using a distance metric, SAM is based on angular 
distance in n-dimensional space, and NN is non-parametric and non-linear algorithm based 
on feed-forward back-propagation learning.
Training and validation sets were selected as described in Dataset section by extracting a 
stratified random sample of field polygons from reference crop type data, belonging to 15 
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crop classes, to cover the variability of crop types within the study area (Tab. 2). Two-thirds 
of the fields were used for training, and the remaining third for validation of crop mapping 
results. Classification algorithms were applied to each time step dataset for mapping the 
15 crop classes, which were later aggregated to 7 classes to produce the final crop maps 
(Tab. 2). Arboriculture-woodland is a unique class, merging tree farming areas and natural 
woodland. Since our focus is on the assessment of crop type classification performance, 
crop type maps are produced only over vegetated areas. For this reason, CUAA 2013 map 
was used to mask out non-cropland (non-vegetated) areas, such as urban areas and water 
bodies, and the classification tests were run only over vegetated areas (i.e. covered by 
agricultural crops or natural vegetation).

Table 2 - Training and validation set description, highlighting crop type and land cover class targets.

Crop type/category description Training
 fields (px)

Validation
fields (px)

Aggregated
class 

1 Early maize
142 (2073) 71 (1733) Maize2 Medium maize

3 Late maize
4 Early rice

113 (2528) 58 (1328) Rice5 Late rice
6 Dry seeded rice
12 Early soybean

52 (1144) 21 (486) Soybean
13 Late soybean
7 Winter cereals

112 (2825)
31 (773) Winter crop

8 Double crop (winter crop + maize)
40 (1039) Double crop

9 Double crop (winter crop + other)
10 Fodder

72 (1713) 40 (1039) Forages
11 Grassland pasture
14 Tree farming and woodland (short trees)

70 (2082) 26 (671) Arboriculture-
woodland15 Tree farming and woodland (tall trees)

The four classifiers were applied separately to all the time step datasets (T1 to T8) and 
the output crop maps have been validated by comparison with the validation set, using 
the confusion matrix approach [Congalton, 1991]. The following accuracy metrics were 
computed: Overall Accuracy (OA), Kappa coefficient of agreement (k), per-class User’s 
(UA) and Producer’s (PA) Accuracy, as well as Commission (CE) and Omission (OE) errors.

Results
Crop mapping accuracy and delivery time 
Table 3 reports OA and k values together with the percentage change between two 
consecutive time steps as provided by the four classification algorithms. MLC is the best 
performing algorithm with OA>78% and k>0.73, already since the first time step T1 (end 
of June, 5 dates) followed by NN with OA > 71% and k > 0.66. A t-test revealed that MLC 
and NN OA scores are significantly different (α = 0.05) for all time step except T2 (t=0.067) 
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and T8 (t=0.106). SAM and EMD achieved lower accuracy with OA (at T2 to T3) 12-14% 
lower than MLC and NN classifications.

Table 3 - Overall accuracy (OA) and Kappa coefficient (k) for the four classification methods, 
expressed as values for each time step (Tn) and change with respect to the previous time step (Tn-1).

MLC NN EMD SAM
Value Change Value Change Value Change Value Change

T1
(30/06)

OA 78.0% - 71.8% - 62.4% - 63.7% -

k 0.737 - 0.660 - 0.547 - 0.563 -

T2
(16/07)

OA 86.5% +8.5% 85.5% +7.9% 70.3% +11.6% 75.3% +13.7%

k 0.838 +0.101 0.825 +0.095 0.641 +0.140 0.703 +0.165

T3
(25/07)

OA 88.5% +2.0% 87.1% +4.5% 74.8% +1.5% 76.8% +1.6%

k 0.862 +0.024 0.845 +0.056 0.697 +0.018 0.721 +0.019

T4
(01/08)

OA 89.4% +0.9% 88.1% +1.2% 76.0% +1.1% 77.8% +1.0%

k 0.872 +0.010 0.857 +0.015 0.712 +0.012 0.733 +0.012

T5
(10/08)

OA 91.1% +1.7% 88.3% +1.2% 77.2% +0.8% 78.7% +0.2%

k 0.893 +0.021 0.859 +0.013 0.726 +0.009 0.742 +0.002

T6
(17/08)

OA 90.9% -0.2% 89.1% +1.2% 78.4% +0.7% 79.3% +0.8%

k 0.891 -0.002 0.868 +0.014 0.740 +0.008 0.750 +0.010

T7
(02/09)

OA 92.6% +1.7% 90.7% +0.3% 78.7% +0.5% 79.8% +1.6%

k 0.912 +0.021 0.888 +0.003 0.743 0.006 0.756 +0.019

T8
(16/12)

OA 92.7% +0.1% 92.7% +3.3% 82.0% +1.8% 81.6% +2.0%

k 0.912 +0.001 0.912 +0.040 0.783 +0.022 0.778 +0.024

OA and k generally increase from T1 to T8 for all classification algorithms; the only minor 
exception is MLC at T6 which has a 0.2% OA decrease (-0.002 for k) with respect to T5. 
For all the classification methods, the lowest OA (k) scores are observed at T1 (only five 
images in the dataset, with 15 input features) with minimum of 62.4% (0.55) and maximum 
of 78.0% (0.74) for EMD and MLC classifiers, respectively. Conversely, OA (k) scores 
reach the highest values when the multi-temporal dataset is complete (T8, 13 dates, 39 
input features). In particular, on the upper bound MLC and NN classifications converge 
to the same accuracy (OA=92.7%, k=0.91), while on the lower bound SAM and EMD 
classifications converge to similar scores (OA ~ 82.0% and k ~ 0.78).
The largest accuracy increment is observed between T1 (end of June) and T2 (mid of July), 
for all classifiers with OA increments ranging from 7.9% to 13.7%. Best performing MLC 
classifications reach OA = 86.5% (k=0.84) at T2, compared to OA = 78.0% (k=0.74) scored 
at T1, and a further OA gain of +2% is observed adding the end of July OLI scene (T3). The 
additional information brought by post-harvesting scenes (T8) finally increases OA and k 
by a significant amount with respect to T7 (beginning of September), with the exception of 
MCL (+0.1% in OA).
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Figure 4 - The crop map derived with the MCL algorithm at T8 overlaid on EVI layer for July 16th, 
2013 (a), and a zoom over the study area showing a detail of the crop maps derived with the MLC 
algorithm at T2 (b) and T8 (c). The rectangle area in panel a shows the extent of the zoom area.

Figure 4 shows the crop map derived with the MCL algorithm at T8 (panel a); in the two 
zoom rectangles, the MCL classification at T2 (i.e. early in-season map, panel b) and T8 
(i.e. end of season map, panel c); urban areas and other non-arable land cover classes are 
displayed in black colour. The principal cropping systems in the area can be identified in 
Figure 4a: i) the rice district in the south-western part of the study area (cyan colour); ii) 
Maize and Forages are distributed in the central part (yellow and orange colour), with some 
Double crop and Winter crop patches (blue and red colour); and iii) winter crops are the 
major cultivation south of Po river (red colour, lower left in Fig. 4a). Areas classified as 
natural vegetation (included into Arboriculture-woodland class) can be observed as light 
green belts along the Po river, the Ticino river (flowing into the Po river from the west) and 
the Adda river (crossing the study area from North to South). In the detailed Figures 4b-c 
the patterns of the rice fields (cyan colour) mapped at T2 and T8 are consistent with each 
other while the Double crop class tends to increase in coverage at time T8 (Fig. 4c).

Per-class accuracy
Figure 5 shows per-class commission (CE) and omission (OE) errors for each considered 
time step and algorithm. Commission and omission errors in the MLC and NN classifications 
are generally lower than 25% after T3 (i.e. up to July 25th); the exceptions are Soybean and 
Double crop classes derived with NN algorithm, with OE > 25%. The Soybean class is 
the worst classified class, with CE and OE greater than 70% for EMD, NN and SAM at 
T1. Even with the best performing algorithm, i.e. MCL, CE is higher than 50% at T1 for 
the Soybean class, although it rapidly decreases below 25% after T2. As shown by the 
confusion matrices (Tab. 4), Soybean pixels are mainly confused with Maize (and vice-
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versa) at the earlier stages (T1 to T3). OE for Soybean at T8 is still around 25% for all 
classification algorithms, due to residual confusion with Maize. CE for Soybean at T8 are 
lower in the case of MCL and NN algorithms.

Figure 5 - The commission (CE, black line) and omission (OE, dotted grey line) errors (y-axis 
[%]) as a function of the time step (x-axis), derived with the four classification methods (columns) 
and for each target crop type (rows). For enhancing readability, the scale of y-axis varies with 
the crop type.

At T1 Double crop are mistakenly classified as Winter crop, and misclassifications of 
Soybean and Double crop classes strongly contribute to the lower overall accuracy observed 
(Tab. 3) when using multi-temporal data only up to June 30th.
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Table 4 - Confusion matrices for crop maps produced using MLC and EMD algorithms, at T2 and 
T8 time steps. Class accuracies (Producer’s and User’s) lower than 80% are highlighted in grey.

Reference dataset

Maize Rice Soyb. W. crop D. Crop Forages Arbor. User’s 
Accuracy

M
C

L 
(T

2)

Maize 1550 8 111 30 145 0 12 83.5%

Rice 57 1312 1 3 19 0 6 93.9%

Soybean 78 8 515 2 52 0 9 77.6%

Winter crop 6 0 18 626 37 3 78 81.5%

Double Crop 25 0 24 37 786 0 27 87.4%

Forages 0 0 0 51 0 481 64 80.7%

Arboriculture-woodland 17 0 2 24 0 2 839 94.9%

Producer’s Accuracy 89.4% 98.8% 76.8% 81.0% 75.7% 99.0% 81.1% OA=86.5%
k=0.838

M
C

L 
(T

8)

Maize 1657 4 83 0 62 0 2 91.7%

Rice 19 1324 14 3 0 0 0 97.4%

Soybean 12 0 493 0 0 0 0 97.6%

Winter crop 0 0 0 714 0 0 103 87.4%

Double Crop 22 0 65 19 976 0 2 90.0%

Forages 11 0 16 21 1 486 30 86.0%

Arboriculture-woodland 12 0 0 16 0 0 898 97.0%

Producer’s Accuracy 95.6% 99.7% 73.5% 92.4% 93.9% 100% 86.8% OA=92.7%
k=0.912

E
M

D
 (T

2)

Maize 1504 145 317 17 177 2 106 66.3%

Rice 116 1062 14 31 0 0 6 86.4%

Soybean 106 77 263 31 98 0 53 41.9%

Winter crop 0 0 20 476 149 103 64 58.6%

Double Crop 2 44 57 99 613 0 89 67.8%

Forages 0 0 0 0 0 358 26 93.2%

Arboriculture-woodland 5 0 0 119 2 23 691 82.3%

Producer’s Accuracy 86.8% 80.0% 39.2% 61.6% 59.0% 73.7% 66.8% OA=70.3%
k=0.641

E
M

D
 (T

8)

Maize 1617 14 72 7 168 0 73 82.9%

Rice 17 1259 9 0 0 0 8 97.4%

Soybean 96 23 489 0 25 12 0 75.8%

Winter crop 0 0 0 550 120 3 93 71.8%

Double Crop 0 32 91 0 715 69 0 78.8%

Forages 0 0 0 1 0 311 9 96.9%

Arboriculture-woodland 0 215 0 91 11 10 852 72.1%

Producer’s Accuracy 93.3% 94.8% 72.9% 71.2% 68.8% 64.0% 82.3% OA=82.0%
k=0.783
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In the MLC classifications, Rice and Arboriculture-woodland are characterized by the 
lowest commission (<10%) and Rice and Forages by the lowest omission (<10%) errors. 
As a general trend, CE is higher than OE for Maize and Forages, and OE is higher than CE 
for Double crop, Arboriculture-woodland and Soybean. The lowest difference between CE 
and OE is observed for Rice and Winter crop for all time steps.
Commission and omission errors for EMD and SAM classifications are significantly greater 
than for MLC and NN, with the worst performance scored by EMD. The lowest CE and 
OE is generally achieved at T8, except for Forages which in EMD and SAM scores errors 
greater than 30% with increasing trend from T4. SAM performs better than MLC only for 
Forages up to T5 in terms of CE, and generally shows the highest CE and OE for all other 
classes, similarly to EMD.

Performance over major crops
Rice and maize are the two major summer crops covering almost 50% of the cropland 
study area. According to crop maps produced using MLC at the end of the season (T8), 
when maximum accuracy is achieved, 297.7 km2 and 1240.3 km2 are classified as Rice 
and Maize, respectively; the CUAA 2013 map provides similar figures with 297.9 km2 and 
1435.4 km2, respectively.

Figure 6 - Spatial patterns of the class errors (red=omission, yellow=commission) and agreement 
(green) with reference data (CUAA2013), derived from MLC crop maps produced at time step 
T8 for (a) Rice (OE=0.3%; CE=2.2%) and (b) Maize (OE=4.4%; CE=8.4%) classes. Background 
is represented by EVI of July 16th, 2013. A detailed view of errors and agreement patterns for the 
area located southeast of Milan city is provided in (c) for Rice, and (d) for Maize classes.
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Figure 6 shows the CE and OE distribution of the Rice and Maize classes as derived from 
the MLC classification at time step T8 over the study area (Fig. 6a-b) and a detail view over 
the agricultural region south of Milan city (Fig. 6c-d); errors are derived by comparison 
to the CUAA 2013 map product. The agreement patches (green colour) correctly identify 
the known patterns of the areas cultivated with rice and maize. For what concerns the Rice 
class, no evident pattern of omission and commission errors is present at regional scale 
(Fig. 6a), while for Maize a significant proportion of the OE (red areas) is located in the 
agricultural regions East and South-east of Milan city, where the agricultural landscape is 
very fragmented with small fields. CE (yellow areas) are instead concentrated South of 
Milan city, where soybean and double crop fields are erroneously classified as Maize.

In general, Rice is the most accurately identified crop class across algorithms and time 
steps, with CE lower than 10% for all time steps and MLC, NN and SAM classification 
algorithms (Fig. 5) and OE below 10% for the MLC and NN. In particular, in the case of 
MCL classification, CE (OE) is lower than 3.7% (1.2%), after T3.
For Maize, CE is generally greater than OE for all time steps and algorithms. MLC shows 
the lowest difference between CE and OE; the commission error at T1 is above 40% for 
SAM. The confusion matrices at T2 and T8 (Tab. 4) show that the Maize class is often 
confused with Soybean and Double crop (i.e. winter crop followed by summer crop, which 
could also be maize).

Discussion
Results described in previous section showed that among the four supervised algorithms 
tested for in-season crop type mapping using optical satellite data, MLC is the best 
performing over the various time steps, with OA above 86.5% already in the middle of 
July (T2), and reaching OA=92.7% when using the whole multi-temporal dataset (T8). 
This confirms previous studies, which showed that MLC can achieve good performance 
for mapping crop types with medium resolution satellite data [Yang et al., 2011; Foerster et 
al., 2012]. Distance-based classifiers (EMD and SAM) confirmed their underperformance 
compared to statistical and non-parametric algorithms (MLC and NN). This is probably due 
to EMD and SAM lacking capabilities in handling intra-class variance into the classification 
decision rules [South et al., 2004], and in their original design being based on spectral 
rather than multi-temporal information [Kruse et al., 1993; South et al., 2004]. Moreover, 
SAM invariance to relative magnitude of input features is possibly adding some confusion 
when inputs are multi-temporal VIs profiles [Kruse et al., 1993]. 
MCL requires the availability of training data, which could limit its operational 
implementation; alternative approaches could be rule-based classifiers exploiting spectral-
temporal profiles and synthetic features as input. These methods do not require re-training 
at each run thus making the methodological approach more suitable for operational 
implementation over large areas and longer periods [e.g. Foerster et al., 2012]. The use of 
these approaches and the integration of SAR data, not affected by cloud cover that often 
limits optical data usability during spring-early summer season in temperate regions, could 
further enhance early/mid-season crop mapping applications [e.g. Villa et al., 2015].
Although accuracies are generally increasing along the summer season with the addition of 
each time step, meaning that adding a satellite image at each step brings new information 
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for mapping target crop types, minor absolute changes are observed (lower than 1.5%) after 
T3, when all algorithms reach a plateau. As expected, the greatest accuracy increase occurs 
at the beginning of the season, when the number of images in the multi-temporal stack is 
lower and summer crop biomass growth is faster; the largest increment is observed between 
T1 and T2 (middle of July) for all classifiers. This suggests that the OLI scene acquired 
until the middle of July contains key information related to crop types, which provides 
a notable enhancement in separating target classes, especially for summer crops. Major 
summer crops in Lombardy (e.g. rice, maize and soybean) usually reach a peak in vigour 
during July, following a first stage of fast biomass growth, which starts in late May to the 
middle of June. These phenological features are well reflected into the evolution of the VIs 
chosen, thus bringing to a relevant enhancement of accuracy (using MLC) in T2, reaching 
OA=86.5% (k=0.84), compared to OA=78.0% (k=0.74) scored at T1. A further gain in crop 
phenology information, reflected into the increment in crop mapping accuracy using MLC, 
is observed adding end of July OLI scene (T3), i.e. reaching OA=88.5%, 2% higher than at 
T2, even if less relevant than for T2-T1 accuracy increment.
A crop map for the study area, which distinguishes seven crop types, can be therefore 
delivered early (middle of July) during the summer crop growing season using multi-
temporal acquisition of mid resolution optical satellite data, i.e. three and a half months 
after the summer crop season start, with high accuracy levels [Foody, 2002] (OA>85%, 
k>0.82). This early in-season crop map, produced five months ahead of the end of season, 
could be useful to support agricultural practices and management for the maximization of 
crop productivity, i.e. for public agencies in charge of water supply and regulation. This 
result strengthens the findings of previous studies by confirming that: i) the optimal time 
range for distinguishing summer crops with Landsat occurs from 140 days after the nominal 
start of growing season [Van Niel and McVicar, 2004], and ii) OA higher than 85% can be 
achieved for a crop map produced using satellite optical time series around four months 
after the major summer crop sowing period [Conrad et al., 2014].
Per-class errors tend to group into three distinct patterns: Maize and Forages show a slight 
overestimation error (CE>OE), Double crop, Soybean and Arboriculture-woodland show 
inverse trends towards underestimation (OE<CE), and Rice and Winter crop show balanced 
commission and omission errors. Consistently with what observed for global metrics, OA 
and k, the greatest errors are observed at T1, followed by the most significant reduction rate 
occurring from T1 to T2.
Rice is among all the best identified class, with CE and OE in the MCL classification lower 
than 2% after T3. This is due to specific rice crop features: i) in Northern Italy, the rice-
cultivated area is clustered in homogeneous regions and fields have an average size greater 
than 1.5 ha [Giuca et al., 2014], compared to other, more fragmented, agricultural districts 
within the study area, and ii) the distinct temporal signature of agronomic flooding [Xiao 
et al., 2005; Boschetti et al., 2014] and the single crop cycle typical of rice cultivations in 
temperate areas are relatively easy to track with multi-temporal spectral data.
Maize, although being characterized by acceptable errors, is misclassified as Soybean at 
the beginning of the season, up to T3. Too few information is available to distinguish these 
classes, which are sown in the same period and are characterised by similar growing rates 
in the early stages, before late July - beginning of August (T3-T4); hence more images 
are needed to highlight the difference between the two classes. Furthermore, since maize 
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cultivation is widespread and presents a great variability in terms of agronomic practices 
and sowing dates (i.e. maize grown for grain, for silage stocks, or for biogas production), it 
is possible that some of this heterogeneity is underrepresented in the training set, which can 
justify the greater errors compared to the other major summer crop types.
Patterns of classification error for Maize (Fig. 6d), include few patches recognised as entire 
fields and the majority of the misclassification is due to border effects and mixture occurring 
at the edge of the fields. This aspect suggest that object-based approaches could provide an 
improvement, especially if a reliable database of field parcels is available [e.g. Ortiz et al., 
1997; De Wit and Clevers, 2004].
Other classes are sensitive to the length of the multi-temporal dataset. Double crop class 
is underestimated (see Fig. 4b, Tab. 4) at the beginning of the season (T1-T2), because it 
is early to observe the second cycle, which is typically sown around June. However, it is 
important to remind that crop types (winter crop, soybean), confused with Double crop in 
satellite maps, are one of the seasonal components of this cropping system in the study area. 
Forages class shows an anomalous behaviour, which features an increment in class error 
from T4 with EMD and SAM, likely due to agronomic practises such as meadows mowing 
and harvesting, which occur from July to August.
Major crops (rice and maize) acreage estimation (Fig. 6) performed using crop maps 
produced with MLC at the end of the season are precise enough, especially considering that 
reference data (CUAA 2013) comprises fields cropped with maize as second crop, which 
satellite produced crop maps identify as a separated class (Double crop).
The experimental design, focusing on the overlap area between the two adjacent WRS-
2 paths, enabled us to exploit the maximum temporal resolution currently provided by 
medium resolution operational satellites, so that our results could represent a hint about 
the potential of the forthcoming space platforms hosting similar multi-spectral sensors, i.e. 
Sentinel-2. Moreover, even if our findings are relative to Lombardy region crop types and 
practices, our approach could be tested and easily adapted using similar temporal resolution 
dataset over agricultural areas with climatic and agronomic characteristics similar to 
Northern Italy. Lombardy climate, characterized by cold winters and hot summers, allows 
the cultivation of both rain fed winter crops (wheat and barley), and irrigated summer crops 
(rice and maize). The presence in the study area of different cropping systems and up to 
seven main crop types indicate that the obtained results could be generalised to other similar 
context, e.g. temperate and continental Europe.
New generation satellite platforms, such as the Sentinel-2 constellation fully operational 
by 2017 (with Sentinel-2A now in orbit and regularly acquiring data from the summer of 
2015) will soon provide a temporal resolution (10 days with one sensor and 5 days with 
full two-satellite constellation) that will further enhance crop mapping based on multi-
temporal approaches. Indeed, the synergic use of OLI data with future Sentinel-2A data, 
which spectral configuration allow to derive the VIs used in our approach should ensure a 
high temporal revisit with of less than 10 days, enhancing the potential frequency of cloud 
free scenes. When both Sentinel-2 satellites will be operational (expected in 2017), with the 
increment in time revisit (less than 5 days, adding Landsat 8 data) and the spectral bands in 
the red-edge range, a boost in crop mapping reliability the production of even earlier crop 
maps (possibly in late June) will become feasible, thus further increasing the potential for 
operational crop management.
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Conclusions
In this work, we analysed the performance of crop classification from multi-temporal 
Landsat 8 OLI images over a study area in Northern Italy. Four supervised classification 
algorithms applied to spectral indices (EVI, NDFI, RGRI) profiles have been tested over 
different time step datasets, to assess the performance of in-season crop classification in 
the year 2013. Maximum Likelihood gave most accurate classification results and a crop 
type map with seven classes with OA=86.5% was produced five months ahead of the end 
of season, in the middle of July.
Our findings demonstrate that near real-time, in season crop mapping is feasible using 
satellite data with suitable spatial and temporal resolution in a simple, operational and 
inexpensive way. This early in-season crop map could be useful to support agricultural 
practices and management, especially for supporting the analysis of water demand for 
major crops (rice and maize) during dry summer months.
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