
ARTICLE

International Journal of Advanced Robotic Systems

Investigation of Vision-based Underwater
Object Detection with Multiple Datasets
Regular Paper

Dario Lodi Rizzini1*, Fabjan Kallasi1, Fabio Oleari1 and Stefano Caselli1

1 Universita degli Studi di Parma, Parma, Italy
*Corresponding author(s) E-mail: dlr@ce.unipr.it

Received 02 December 2014; Accepted 17 March 2015

DOI: 10.5772/60526

© 2015 Author(s). Licensee InTech. This is an open access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Abstract

In this paper, we investigate the potential of vision-based
object detection algorithms in underwater environments
using several datasets to highlight the issues arising in
different scenarios. Underwater computer vision has to
cope with distortion and attenuation due to light propaga‐
tion in water, and with challenging operating conditions.
Scene segmentation and shape recognition in a single
image must be carefully designed to achieve robust object
detection and to facilitate object pose estimation. We
describe a novel multi-feature object detection algorithm
conceived to find human-made artefacts lying on the
seabed. The proposed method searches for a target object
according to a few general criteria that are robust to the
underwater context, such as salient colour uniformity and
sharp contours. We assess the performance of the proposed
algorithm across different underwater datasets. The
datasets have been obtained using stereo cameras of
different quality, and diverge for the target object type and
colour, acquisition depth and conditions. The effectiveness
of the proposed approach has been experimentally dem‐
onstrated. Finally, object detection is discussed in connec‐
tion with the simple colour-based segmentation and with
the difficulty of tri-dimensional processing on noisy data.

Keywords Underwater Computer Vision, Object Detec‐
tion, Image Segmentation

1. Introduction

In recent years, the interest of the scientific community in
underwater computer vision has increased, taking advant‐
age of the evolution of sensor technology and image
processing algorithms. The main challenges of underwater
perception are due to the higher device costs, their complex
setup, and the distortion in signals and light propagation
introduced by the water medium. In particular, light
propagation in underwater environments suffers from
phenomena such as absorption and scattering which
strongly affect visual perception. While underwater
computer vision has been applied to inspection, environ‐
ment monitoring, mapping and terrain segmentation,
underwater object detection has not been thoroughly
investigated. In particular, accurate and robust object
detection and pose estimation are essential requirements
for the execution of manipulation tasks. A robust detection
method is able to correctly identify different target objects
in different experimental conditions. Once the region of the
image corresponding to an object is found, its pose with
regard to the observer frame can be estimated in a single
image, if the geometry and the size of the object is known,
or else by using stereo-processing.

In this paper, we investigate the potential of vision-based
object detection algorithms in underwater environments
using different datasets, including their contribution to
underwater stereo vision processing. Our first contribution
is a novel multi-feature object detection algorithm to find
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human-made artefacts lying on the seabed and which
improves and generalizes the work in [1]. The proposed
method searches a target object according to a few general
criteria, such as salient colour uniformity and sharp
contours. The images are initially processed to enhance the
contrast in the underwater images. First, the image is
partitioned into clusters according to the feature values
extracted from each pixel. The current feature vector
includes the values of the hue saturation value (HSV) space
and its response to the gradient, but it can be easily
extended to include pattern-related (e.g., the response to
Gabor filters or Eigen transform [2]) and other features.
Second, the connected regions of each cluster are classified
according to the corresponding angular histogram. The
angular histogram of the artefacts is concentrated on one
or a few peaks, while the histograms corresponding to the
blobs extracted from the natural seabed are usually more
distributed. The proposed algorithm relies on these salient
properties of common human-made objects, but it is robust
to the moderate violation of such hypotheses (e.g., the
presence of stripes on general colour uniformity).

The second contribution of this paper is the assessment of
the proposed algorithm across different underwater
datasets. There are few available datasets focused on
objects and acquired using stereo-vision systems in
underwater environments. Our experiments were per‐
formed on two datasets obtained during the MARIS project
(Marine Autonomous Robotics for InterventionS) [3] and a
dataset from the Trident project [4]. The differences among
the datasets concern the camera quality, the experimental
conditions (depth, light conditions, background, sensor
guidance, etc.) and the target objects. Despite these differ‐
ences, the proposed algorithm achieves precise and reliable
detection, while elementary colour-based segmentation
approaches cannot reliably find a region of interest (ROI).
Finally, the positive results achieved in mono-camera
detection are discussed in connection with the problems
occurring in 3D object recognition. In underwater environ‐
ments, stereo processing is usually not able to provide a
reliable 3D representation of the scene enabling object
recognition from shapes. In our evaluation, the target
object's pose can be reliably estimated only by exploiting
the output of mono-camera processing.

The paper is organized as follows. Section 2 reviews the
state of the art in vision-based object detection for under‐
water environments. Section 3 describes the image proc‐
essing pipeline and, in particular, the proposed object
detection algorithm. Section 4 illustrates the results on
object detection and pose estimation in underwater
environments. Section 5 discusses problematic issues
arising in the underwater context. Section 6 provides some
final remarks and observations.

2. Related Work

Computer vision is a major perception modality in robotics
and, in particular, for object detection tasks. In underwater
environments, however, vision is not as widely used due

to the problems arising with light transmission in water.
Instead, sonar sensing is largely used as a robust perception
modality for localization and scene reconstruction in
underwater environments. In [5], Yu et al. describe a 3D
sonar imaging system used for object recognition based on
sonar array cameras and multi-frequency acoustic signals
emissions. An extensive survey of ultrasonic underwater
technologies and artificial vision is presented in [6].
However, object detection using sonar imagery is difficult,
although some techniques have been proposed. Williams
and Groen [7] propose an integral image method to find
items differing from the homogeneous background. Sawas
et al. [8] use a boosted classifier on Haar features. Under‐
water laser scanners guarantee accurate acquisition [9];
however, they are very expensive and are also affected by
problems with light transmission in water.

Computer vision provides information at lower cost and
with a higher acquisition rate compared to acoustic
perception. Artificial vision applications in underwater
environments include the detection and tracking of
submerged artefacts [10], seabed mapping with image
mosaicing [11], and underwater SLAM [12]. Garcia et al.
[13] compare popular feature descriptors extracted from
underwater images with high turbidity, but not for object
detection. Aulinas et al. [14] search salient colour regions
of interest in order to select stable SURF features such as
landmarks in SLAM applications. Without colour segmen‐
tation, the data association is unreliable, even for scene
description purposes. Stereo vision systems have only been
recently introduced in underwater applications due to the
difficulty of calibration and the computational perform‐
ance required by stereo processing. To improve homolo‐
gous point matching performance, Queiroz-Neto et al. [15]
introduce a stereo matching system specific to underwater
environments. The disparity of stereo images can be
exploited to generate 3D models, as shown in [16, 17].
Leone et al. [18] present a 3D reconstruction method for an
asynchronous stereo vision system. Although the 3D
reconstruction achieved by underwater stereo vision may
be satisfactory to represent a scene, its accuracy is not
generally sufficient for the detailed perception required in
object detection and recognition.

PREPROCESSING

INPUT IMAGE

OBJECT DETECTION

MONO POSE ESTIMATION

ROI IDENTIFICATION

STEREO POSE ESTIMATION

Figure 1. Schema of the object detection and pose estimation algorithm. The
algorithm's operations can be combined variously in a pipeline.
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Underwater object recognition using computer vision is
somewhat difficult due to the lighting conditions of such
environments. To cope with the challenging environment,
underwater object detection always exploits the peculiar
characteristics of the object to be detected, such as shape
[19, 20, 10] or colour [21, 22]. Several of these works address
pipeline detection problems, since pipelines recur in many
underwater applications. Olmos et al. [23] addressed the
problem of detecting whether there is a man-made object
using contour and texture criteria. However, the proposed
method does not return a region in the image containing
the object, but simply a binary decision about the object's
presence. Several object detection algorithms [22, 21, 24]
exploit colour segmentation to find one or more regions of
interest and perform a more accurate assessment on the
found ROI. Kim et al. [25, 22] present a vision-based object
detection method based on template matching and tracking
for underwater robots using artificial objects, but all the
tests are performed in a swimming pool. Bazeille et al. [21]
discuss the colour modification occurring in underwater
environments and experimentally assess the performance
of object detection based on colour. Since underwater
imaging suffers from a short range, low contrast and non-
uniform illumination, simple colour segmentation is one of
the few viable approaches. In [24], the underwater stereo
vision system used in the European project Trident is
described. Object detection is performed by constructing a
colour histogram in the HSV space of the target object. In
the performed experiments, there is an intermediate step
between inspection and intervention where the real images
of the site to manipulate are available and used for acquir‐
ing the target object's appearance [4].

3. Algorithms

Vision-based object detection may be addressed by
different approaches according to the input data: through
image processing of an image acquired by a single camera,
or through more complex shape matching algorithms
based on stereo processing. The set of algorithms for
underwater object detection proposed in this paper consists
of several phases operating at decreasing levels of abstrac‐
tion and with increasing knowledge about the object to be
detected. Figure 1 shows how the different algorithm
operations can be combined together into a pipeline. The
chosen processing pipeline could depend upon the amount
of reliable visual features offered by the object, as well as
upon the specific underwater conditions. The initial step
aims to detect salient regions with regard to the back‐
ground representing candidate objects, possibly with no
prior knowledge about the object. The output of such a step
may be a broad candidate ROI to narrow the searching area
in the successive phases, with the classification of the
regions as a target object or not (respectively the blocks ROI
Identification and Object Detection in Figure 1). In the first
case, no decision about the target's presence is taken from
a single frame. Such a decision is delegated either to a more
accurate monocular processing or is jointly performed with
pose estimation on the 3D point cloud. In the second case,
the output of the Object Detection module consists of an ROI,

the contour of which accurately delimits the object's edges
in the image. The point cloud is used only to estimate the
pose of an already-detected object (Stereo Pose Estimation
block in Figure 1). Alternatively, if the geometric model and
the dimensions of the object are known, the pose can be
estimated from the shape of the object's projection in a
single frame. Both the pose estimation methods require a
geometric description of the target object.

3.1 Image Pre-processing

Underwater object detection requires the vision system to
cope with difficult underwater lighting conditions. In
particular, light attenuation in water produces blurred
images with limited contrast, and light back-scattering
results in artefacts in the acquired images. Object detection
becomes even more difficult in the presence of suspended
particles or with an irregular and variable background.
Hence, for underwater perception, special attention must
be paid to algorithmic solutions improving image quality.

The first phase of the algorithmic pipelines in Figure 1 is
conceived to compensate the colour distortion incurred by
the light propagating in water through image enhance‐
ment. No information about the object is used in this phase,
since the processing is applied to the whole image. Popular
techniques for image enhancement are based on colour
restoration [26]. The approach adopted in this paper
focuses on strengthening contrast to recover blurry
underwater images. A contrast mask method is first applied
to the component L  of the CIELAB colour space of the
input image. In particular, the component L in,i of each pixel
i is extracted, a median filter is applied to the L  -channel
of the image to obtain a new blurred value L blur ,i, and the
new value is computed as L out ,i1.5L in,i −0.5L blur ,i. The effect
of the contrast mask is a sharpened image with increased
contrast.

Next, in order to re-distribute luminance, contrast-limited
adaptive histogram equalization (CLAHE) [27] is per‐
formed. The combined application of the contrast mask and
CLAHE compensates the light attenuation and removes
some of the artefacts in the image. Figure 2 shows an
example of the effect of pre-processing for an underwater
image. In our experiments, the image enhanced by CLAHE
alone is not discernible from one obtained after applying
both filters. Hence, the contrast mask computation may be
skipped, thereby reducing processing time.

PREPROCESSING

INPUT IMAGE

OBJECT DETECTION

MONO POSE ESTIMATION

ROI IDENTIFICATION

STEREO POSE ESTIMATION

Figure 1. Schema of the object detection and pose estimation
algorithm. The algorithm's operations can be combined variously
in a pipeline.

method based on template matching and tracking for
underwater robots using artificial objects, but all the tests
are performed in a swimming pool. Bazeille et al. [21]
discuss the colour modification occurring in underwater
environments and experimentally assess the performance
of object detection based on colour. Since underwater
imaging suffers from a short range, low contrast and
non-uniform illumination, simple colour segmentation is
one of the few viable approaches. In [24], the underwater
stereo vision system used in the European project Trident
is described. Object detection is performed by constructing
a colour histogram in the HSV space of the target object.
In the performed experiments, there is an intermediate
step between inspection and intervention where the real
images of the site to manipulate are available and used for
acquiring the target object’s appearance [4].

3. Algorithms

Vision-based object detection may be addressed by
different approaches according to the input data: through
image processing of an image acquired by a single camera,
or through more complex shape matching algorithms
based on stereo processing. The set of algorithms
for underwater object detection proposed in this paper
consists of several phases operating at decreasing levels
of abstraction and with increasing knowledge about the
object to be detected. Figure 1 shows how the different
algorithm operations can be combined together into a
pipeline. The chosen processing pipeline could depend
upon the amount of reliable visual features offered by
the object, as well as upon the specific underwater
conditions. The initial step aims to detect salient regions
with regard to the background representing candidate
objects, possibly with no prior knowledge about the object.
The output of such a step may be a broad candidate ROI
to narrow the searching area in the successive phases,
with the classification of the regions as a target object or
not (respectively the blocks ROI Identification and Object
Detection in Figure 1). In the first case, no decision about
the target’s presence is taken from a single frame. Such a
decision is delegated either to a more accurate monocular
processing or is jointly performed with pose estimation
on the 3D point cloud. In the second case, the output
of the Object Detection module consists of an ROI, the
contour of which accurately delimits the object’s edges in
the image. The point cloud is used only to estimate the
pose of an already-detected object (Stereo Pose Estimation

block in Figure 1). Alternatively, if the geometric model
and the dimensions of the object are known, the pose can
be estimated from the shape of the object’s projection in a
single frame. Both the pose estimation methods require a
geometric description of the target object.

3.1. Image Pre-processing

Underwater object detection requires the vision system
to cope with difficult underwater lighting conditions. In
particular, light attenuation in water produces blurred
images with limited contrast, and light back-scattering
results in artefacts in the acquired images. Object detection
becomes even more difficult in the presence of suspended
particles or with an irregular and variable background.
Hence, for underwater perception, special attention must
be paid to algorithmic solutions improving image quality.

The first phase of the algorithmic pipelines in Figure 1 is
conceived to compensate the colour distortion incurred
by the light propagating in water through image
enhancement. No information about the object is used in
this phase, since the processing is applied to the whole
image. Popular techniques for image enhancement are
based on colour restoration [26]. The approach adopted
in this paper focuses on strengthening contrast to recover
blurry underwater images. A contrast mask method is
first applied to the component L of the CIELAB colour
space of the input image. In particular, the component
Lin,i of each pixel i is extracted, a median filter is applied
to the L-channel of the image to obtain a new blurred
value Lblur,i, and the new value is computed as Lout,i =
1.5 Lin,i − 0.5 Lblur,i. The effect of the contrast mask is a
sharpened image with increased contrast.

Next, in order to re-distribute luminance, contrast-limited
adaptive histogram equalization (CLAHE) [27] is
performed. The combined application of the contrast
mask and CLAHE compensates the light attenuation
and removes some of the artefacts in the image. Figure
2 shows an example of the effect of pre-processing for
an underwater image. In our experiments, the image
enhanced by CLAHE alone is not discernible from one
obtained after applying both filters. Hence, the contrast
mask computation may be skipped, thereby reducing
processing time.

Figure 2. An underwater image before (left) and after (right) the
application of a contrast mask and CLAHE.

3.2. Mono Camera Processing

The goals of single image processing may include the
identification of an ROI containing target objects, the
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Figure 2. An underwater image before (left) and after (right) the application
of a contrast mask and CLAHE
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3.2 Mono Camera Processing

The goals of single image processing may include the
identification of an ROI containing target objects, the
detection of the specific target object and, if the target
object's geometry is known, the estimation of its pose. The
careful use of monocular processing can significantly
improve the effectiveness of the application. Even in an
underwater environment, with proper illuminators,
shallow and clean waters, and quality cameras, the con‐
tours of objects are distinguishable in the image. The target
object thus can be detected in a single image or - at least -
its detection can be facilitated by restricting the search
region to be analysed in later, more expensive steps. Object
recognition on a 3D point cloud is computationally
expensive and depends upon the quality of the input data
obtained by stereo processing. If the object has already been
detected based on appearance in mono camera images, the
3D data corresponding to the segmented ROI are used only
to estimate the pose of the object. In the following, two
rough but fast techniques for the identification of an ROI
possibly containing the target object (ROIarea and ROIcolour)
and a more accurate technique for target object detection
(ROIshape) are illustrated. Furthermore, a method for the
pose estimation of cylindrical objects in a single images is
proposed.

ROI Identification

The algorithms described in this section aim to detect an
ROI that may represent - or at least contain - an object. The
ROI may be searched according to different criteria based
on specific features of the object to be found. We have
developed two approaches that exploit different assump‐
tions about the properties of the target. The HSV colour
space is used to improve colour segmentation [28] since it
better represents human colour perception. In particular,
to reduce the effect of noise and light distortion, a colour
reduction is performed on the H  channel of the input
image. The algorithms described in this paper use 16 levels
of quantized colour. The input image is partitioned into
subsets of - possibly not connected - pixels with the same
hue level according to the value of the reduced channel
H . The rough level quantization is not affected by the
patterns generated by light back-scattering.

The first segmentation method, hereafter denoted ROIarea,
is based on the assumption that the unknown object never
occupies more than a given portion of the image pixels and
that it has a uniform colour. The region corresponding to a
given hue level is estimated as the convex hull of the pixels.
Only regions the area of which is less than 50% of the image
are selected as part of the ROIarea. This heuristic rule rests
on the hypothesis that the object is observed from a
distance, such that only the background occupies a large
portion of the image.

The second approach exploits information about the colour
of the target. When the object's colour is known, a more

specific colour mask(ROIcolour) can be applied to detect the
object with an accurate estimation of the object's contour.
Hence, ROIcolour is obtained by composing the regions
where the colour is close (up to a threshold) to the expected
target colour.

The region computed either by ROIarea or ROIcolour  is made
available for further processing. Both these ROI estimation
techniques exploit only the relative colour uniformity of a
texture-less object, but they do not identify a specific object.
Furthermore, they tend to overestimate the area that
potentially contains the object.

Object Detection

The proposed ROIshape algorithm performs object detection
in two steps: image segmentation and contour shape valida‐
tion. The goal is the identification of a connected region
with straight and sharp contours like typical human-made
artificial objects. ROIshape relies on the relative colour
uniformity of the object for segmentation and on its regular
contour shape for validation. The detection exploits these
two salient and relatively general features of artefacts in an
underwater environment. In contrast with the previously
described coarse segmentation approaches (ROIarea and
ROIcolour), ROIshape is able to detect whether the target object
belongs to the image before performing pose estimation.
The current implementation of the algorithm finds a single
object in the image, although it could be adapted to return
multiple regions in the image satisfying the above criteria.

The image segmentation step classifies each pixel of the
image according to its corresponding vector of local
features. The input image can be rescaled to a lower size to
remove unnecessary details and to reduce the computa‐
tional complexity of the object detection. The scaling
operation acts as a low-pass filter in the image. The initial
classification of each pixel pi is independent of the classifi‐
cation of other pixels. In particular, the feature vector
computed for pi consists of the colour channels of the HSV
space, respectively hue h i, saturation si and value vi, and of
the gradient response to a Sobel filter gi. The feature space
adopted in this paper is larger than that used in [29] and
could be further expanded. Next, the item vectors
fi = h i,si,vi,gi

Τ are clustered according to a k-means algo‐
rithm [30]. The number of clusters used in the experiments
described in Section 4 is k =3 and is independent of the
number of objects in the scene. Figure 3(a)-(b) illustrates a
typical output of k-means clustering for one of the datasets
investigated in this paper: the artificial objects are classified
as belonging to the same cluster, whereas the background
is split into a light region and a dark region. The image
partition achieved by k-means is further refined by
computing the connected components of the cluster. Before
searching the connected components, a morphological
dilation followed by an erosion is performed on the image
to avoid over-segmentation. The result is shown in Figure
3(c). The achieved segmentation is correct when there is no
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contact among the objects; otherwise, a more sophisticated
and computationally complex technique must be applied.
The proposed approach has been successfully applied to
different underwater datasets corresponding to typical
scenarios of robotic underwater experiments.

The shape validation step is applied to each cluster obtained
from image segmentation. The algorithm computes the
contour of each binary image corresponding to the cluster,
as shown in Figure 3(d). Each closed contour represents a
cluster-region, and shape matching between the contours
and the target shape allows the identification of the target
region. The contours of human-made regularly shaped
objects - in particular when their projection in the image
plane is approximately a rectangle - often consists of
parallel edges. Under this assumption, the target region is
recognized by detecting parallel line-segments from the
contour, e.g., using the Hough transform. Hence, a set of
segments is extracted from the contour. Each segment j is
described by its length lj and by its supporting line with
equation xcosαj + ysinαj = rj (coordinates are expressed with
regard to the image centre). The detection of line direction
is allowed by an angular histogram ℋ with bin counters
h s∈ℕ and the intervals sΔθ,(s + 1)Δθ , s =0,…,nh −1 and
Δθ =π / (2nh ). In particular, the segment j increments the
corresponding angle bin h k  with a contribution propor‐
tional to the square of its length lj as
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The square of the normalized length reduces the influence
of the smaller segments resulting from the potential over-
segmentation of the contours. Finally, a cluster is classified
as an object with a regular shape if the histogram is
"peaked", i.e., if it is distributed along a few principal
directions. In particular, the validation condition of the
clusters is
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where σth  is a proper acceptance threshold. An example of
a histogram with its mean value is shown in Figure 3(e).
The ROIshape algorithm may validate more than a cluster in
each image. An additional rule must therefore be provided
to select a single cluster according to the features of the
specific dataset. For example, in the dataset illustrated by
Figure 3(a), the largest segmented regularly-shaped area
could be returned. Alternatively, when some part of the
robotic exploring agent is included in the image sequence
(a condition arising in other datasets), the corresponding
area is known and can be excluded from the cluster search
area. Of course, ROIshape may also simply return the list of
the objects or adopt any task-oriented selection criterion.
The execution of ROIshape requires about 150ms on an Intel
i7-3770 CPU 3.40 GHz and 8 GB RAM.
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Figure 3. Steps of the ROIshape algorithm: (a) the input image; (b) the clusters obtained from k-means; (c) the connected components
extracted from one of the clusters; (d) the contour image of one component (within its bounding box); (e) the corresponding angle
histogram; (f) the output mask.

region. The contours of human-made regularly shaped
objects - in particular when their projection in the image
plane is approximately a rectangle - often consists of
parallel edges. Under this assumption, the target region
is recognized by detecting parallel line-segments from the
contour, e.g., using the Hough transform. Hence, a set of
segments is extracted from the contour. Each segment
j is described by its length lj and by its supporting line
with equation x cos αj + y sin αj = rj (coordinates are
expressed with regard to the image centre). The detection
of line direction is allowed by an angular histogram H
with bin counters hs ∈N and the intervals [s∆θ, (s+ 1)∆θ[,
s = 0, . . . , nh − 1 and ∆θ = π/(2nh). In particular, the
segment j increments the corresponding angle bin hk with
a contribution proportional to the square of its length lj as
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The square of the normalized length reduces the influence
of the smaller segments resulting from the potential
over-segmentation of the contours. Finally, a cluster is
classified as an object with a regular shape if the histogram
is “peaked”, i.e., if it is distributed along a few principal
directions. In particular, the validation condition of the
clusters is
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where σth is a proper acceptance threshold. An example
of a histogram with its mean value is shown in Figure 3(e).
The ROIshape algorithm may validate more than a cluster in
each image. An additional rule must therefore be provided
to select a single cluster according to the features of the
specific dataset. For example, in the dataset illustrated by
Figure 3(a), the largest segmented regularly-shaped area
could be returned. Alternatively, when some part of the
robotic exploring agent is included in the image sequence
(a condition arising in other datasets), the corresponding
area is known and can be excluded from the cluster search
area. Of course, ROIshape may also simply return the list of
the objects or adopt any task-oriented selection criterion.
The execution of ROIshape requires about 150 ms on an Intel
i7-3770 CPU 3.40 GHz and 8 GB RAM.

Mono Camera Pose Estimation

In general, object pose estimation cannot be performed
on a single image and requires 3D perception. In this
paragraph, we describe pose estimation in mono camera
underwater images when the object is known and has
a regular shape. We specifically focus on cylinder-like
objects, although a similar approach could be developed
for box-like objects and other regular 3D shapes. In
particular, a cylinder is defined once the cylinder radius cr
and its axis, a line with equation c(t) = cp + cd t, are given.
The contour of a cylinder in the image plane is delimited
by two lines with equations lT

i u = 0 with i = 1, 2,
where u = [ux, uy, 1]T is the pixel coordinate vector and
l1, l2 are the coefficients. Let l0 be the parameters of the
line representing the projection of the cylinder axis in the
image. The two lines with parameters l1 and l2 are the
projections on the image plane of the two planes, which
are tangent to the cylinder and contain the camera origin
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Figure 3. Steps of the ROIshape algorithm: (a) the input image; (b) the clusters obtained from k-means; (c) the connected components extracted from one of the
clusters; (d) the contour image of one component (within its bounding box); (e) the corresponding angle histogram; (f) the output mask
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Mono Camera Pose Estimation

In general, object pose estimation cannot be performed on
a single image and requires 3D perception. In this para‐
graph, we describe pose estimation in mono camera
underwater images when the object is known and has a
regular shape. We specifically focus on cylinder-like
objects, although a similar approach could be developed
for box-like objects and other regular 3D shapes. In
particular, a cylinder is defined once the cylinder radius cr

and its axis, a line with equation c(t)=c p + cd t , are given. The
contour of a cylinder in the image plane is delimited by two
lines with equations li

T u=0 with i =1,2, where u= ux,uy,1 T

is the pixel coordinate vector and l1, l2 are the coefficients.
Let l0 be the parameters of the line representing the
projection of the cylinder axis in the image. The two lines
with parameters l1 and l2 are the projections on the image
plane of the two planes, which are tangent to the cylinder
and contain the camera origin (Figure 4). The line with
parameter l0 is the projection of the plane passing through
the cylinder axis and the camera origin. The equations of
these three planes in the 3D space are given by

( ) ( ) =   =  = 0
TT T T

i i il Kp K l p n p (4)

where K is the camera matrix obtained from the intrinsic
calibration, ni =KT li are the normal vectors of the planes
corresponding to the lines li with i =0,1,2 (in the following,
the normalized normals n̂i =ni / ni  are used), and p is a
generic point in the camera reference frame coordinates.
The direction of the cylinder axis is given by direction
vector cd = n̂1 × n̂2. If the cylinder radius cr  is known, then the
distance of the cylinder axis from the camera centre is

( )1 2

=
1 ˆ ˆsin acos | |
2

rcd
æ ö

×ç ÷
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Figure 4. Monocular pose estimation of a cylinder shape using the projection
of its tangent planes on the image

The projection of the camera origin on the cylinder axis is
equal to c p =d (cd × n̂0) (if cp,z <0, then substitute c p ← −c p).
These geometric constraints allow the estimation of the
object pose in space using only a single image. The accuracy
of such an estimation depends upon the image resolution
and upon the extraction of the two lines. It can be used as
an initial estimation or as a validation criterion of the object
pose computed on the 3D point cloud generated from
stereo vision.

3.3 Stereo Camera Processing

For generic or unknown objects, pose estimation from
mono camera images is not possible and 3D data analysis
based on stereo processing is required. Moreover, if a
coarse segmentation method such as ROIarea or ROIcolour  has
been adopted (rather than ROIshape), segmentation must
often be refined on 3D data to enable object detection for
manipulation or recognition tasks as well as object pose
estimation. In these cases, the available ROI is used as a
filtering mask to generate a smaller point cloud that
represents the 3D scene limited to the object (possibly
together with some of the surrounding area). The benefit of
restricting the region size where stereo processing is
performed is limited when the disparity image is computed
using an incremental block-matching SAD (sum of absolute
differences) algorithm. Since the SAD of a block is comput‐
ed using the SAD values of adjacent blocks, the advantage
of computing the disparity image on the ROI alone is
reduced. Indeed, the estimation of point clouds limited to
the ROI saves around 15% of the time required for each
frame.

3.4 Stereo Camera Pose estimation

In this paragraph, we describe the algorithm for the pose
estimation of a regularly-shaped object with stereo proc‐
essing. Pose is computed with regard to the stereo vision
frame. The importance of an ROI is even more apparent in
3D object recognition, since this step requires computation‐
ally expensive operations on point clouds. In particular, the
ROI can be used to select the point cloud C to search for the
target object. If the ROI has not been classified, the distance
between the points and the geometric model of the target
object provides a criterion for object recognition. Again, our
development focuses on the case where the objects to be
recognized have a cylindrical shape. Similar developments
can be carried out for box-like shapes and other shapes that
can be represented by a parametric model. In particular, we
represent cylinders in 3D using 7 parameters: the three
coordinates of the cylinder axis point c p = cp,x,cp,y,cp,z

T , the
axis direction vector cd = cd ,x,cd ,y,cd ,z

T , and the radius cr .
The model matching algorithm simultaneously searches
for a subset of the point cloud that better fits a cylindrical
shape and computes the value of the cylinder parameters
c= c p

T ,cd
T ,cr

T . For pose estimation, three algorithms have
been implemented: RANSAC model-fitting, particle swarm
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optimization (PSO) and differential evolution (DE) [31]. The
latter two are bio-inspired algorithms [29].

The estimated pose is obtained through the geometric
alignment of the model of the searched object and the point
cloud obtained from stereo processing. The RANSAC, PSO
and DE algorithms require a fitness function to measure the
consensus of a subset of the point cloud C over a candidate
model c. A natural fitness function is the percentage of
points pi∈C such that their distance to the cylinder c is less
than a given threshold dthr . The more obvious measure of
the displacement between a point pi and a cylinder c is the
Euclidean distance

( ) ( )
d , = p p i

E i
d

r
´ -

-
c c p

p c
l

P P

P P
(6)

However, the Euclidean distance might not take into
account some orientation inconsistencies. If the normal
vector ni on point pi can be estimated, the angular displace‐
ment between the normal and the projection vector of the
point pi on the cylinder c (called proj(pi,c) hereafter)
provides

( ) ( )

( ) 2

d , , = min ,

proj( , )= arcos
 proj( , )

proj , =  

N i i i i

i i
i

i i

i d p d
i i p d

d

a p a

a

-

æ ö×
ç ÷ç ÷
è ø

æ ö× - ×
- - ç ÷ç ÷

è ø

p n c

n p c
n p c

p c c c
p c p c c

c

P PP P

P P

(7)

The chosen distance function is a weighted sum of two
distances
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Figure 5. Images of the experimental sessions

4. Experimental Evaluation

4.1 Dataset Acquisition

In this section, we report the evaluation of the vision
algorithms for underwater object detection described in
section 3 using three datasets. These datasets differ signif‐
icantly in terms of their acquisition setup and operating

conditions. Moreover, one of these datasets has been
collected by an independent research group, which is freely
available over the Internet. Based on this assessment, we
aim to make general remarks on the influence of the
acquisition setup and underwater conditions on the
performance of vision-based underwater object detection.

The three datasets, Garda, Portofino and Soller are described
hereafter. These datasets have been obtained in various
scenarios by rather different underwater systems, and have
been chosen in order to robustly evaluate the potential of
object detection algorithms in the underwater context.

The Garda dataset has been acquired using the low-cost
stereo vision system described in [32]. This system consists
of a low-cost prototype conceived to investigate the
performance, power consumption and thermal dissipation
trade-offs involved in designing an embedded vision unit
for underwater operation. The vision sensors are three
Logitech C270 webcams (working resolution: 640x480 @
7.5 fps), chosen due to their low-cost, dimensions, standard
USB interface, and the prototypical nature and testing
objectives of the system (Figure 6(a)). The cameras can be
combined in pairs in order to test three different stereo
baselines. The webcams are driven by an off-the-shelf x86
ECU based on a Mini-ITX Intel Desktop Board DN2800MT
with an Intel Atom CPU, offering the lowest available TDP
(thermal dissipation parameter). Unfortunately, the lack of
synchronism between the cameras and the low quality of
the sensors have been shown to affect the quality of the
disparity images obtained from stereo processing in
underwater environments. In contrast, a stereo camera
built with the same sensors proved reasonably effective for
in-air stereo processing and 3D shape reconstruction [33].
This difference in performance emphasizes the more
challenging nature of the underwater environment. Two
experimental sessions were conducted at the Lake of Garda
to acquire an underwater image dataset in multiple
ambient situations and with different objects (Figure 5). The
dataset also includes several submerged cylindrical objects
(the depth range is from 1.8m to 3m). In both sessions, the
average depth of the camera was about 40cm below water
level. Figure 7(a) shows an image from this dataset.Figure 5. Images of the experimental sessions.

The chosen distance function is a weighted sum of two
distances

d(pi , ni , c) = w · dE(pi , c) + (1− w) · dN(pi , ni , c) (8)

4. Experimental Evaluation

4.1. Dataset Acquisition

In this section, we report the evaluation of the vision
algorithms for underwater object detection described in
section 3 using three datasets. These datasets differ
significantly in terms of their acquisition setup and
operating conditions. Moreover, one of these datasets
has been collected by an independent research group,
which is freely available over the Internet. Based on
this assessment, we aim to make general remarks on
the influence of the acquisition setup and underwater
conditions on the performance of vision-based underwater
object detection.

The three datasets, Garda, Portofino and Soller are described
hereafter. These datasets have been obtained in various
scenarios by rather different underwater systems, and
have been chosen in order to robustly evaluate the
potential of object detection algorithms in the underwater
context.

The Garda dataset has been acquired using the low-cost
stereo vision system described in [32]. This system
consists of a low-cost prototype conceived to investigate
the performance, power consumption and thermal
dissipation trade-offs involved in designing an embedded
vision unit for underwater operation. The vision
sensors are three Logitech C270 webcams (working
resolution: 640x480 @7.5 f ps), chosen due to their low-cost,
dimensions, standard USB interface, and the prototypical
nature and testing objectives of the system (Figure 6(a)).
The cameras can be combined in pairs in order to test
three different stereo baselines. The webcams are driven
by an off-the-shelf x86 ECU based on a Mini-ITX Intel
Desktop Board DN2800MT with an Intel Atom CPU,
offering the lowest available TDP (thermal dissipation
parameter). Unfortunately, the lack of synchronism
between the cameras and the low quality of the sensors
have been shown to affect the quality of the disparity
images obtained from stereo processing in underwater
environments. In contrast, a stereo camera built with
the same sensors proved reasonably effective for in-air

stereo processing and 3D shape reconstruction [33].
This difference in performance emphasizes the more
challenging nature of the underwater environment. Two
experimental sessions were conducted at the Lake of
Garda to acquire an underwater image dataset in multiple
ambient situations and with different objects (Figure 5).
The dataset also includes several submerged cylindrical
objects (the depth range is from 1.8m to 3m). In both
sessions, the average depth of the camera was about 40cm
below water level. Figure 7(a) shows an image from this
dataset.

(a)

(b) (c)

Figure 6. Cameras used for the acquisition of the Garda (a),
Porto�no (b) and Soller (c) datasets. (a) Multi-stereo head made
of three Logitech C270 webcams; (b) Allied Vision Technologies
MAKO camera; (c) Point Grey BumbleBee 2.

The Portofino dataset represents the first outcome of a new
prototype of an underwater stereo vision system currently
under development. On the basis of lessons learned
from the low-cost prototype, a newly designed system
has been developed and tested in shallow water near
Portofino, Italy. This system exploits two industrial GigE
cameras from Allied Vision Technologies, belonging to the
Mako series and providing a resolution of 1292x964 pixels
(Figure 6(b)). The embedded ECU, made from a Mini-ITX
board and an Intel i7 CPU, represents a good trade-off
between computational power and power consumption.
The cameras were driven at a rate of 10 fps without
communication losses. A sample image of the Portofino
dataset, at about 10 m is shown in Figure 7 (b).

Image sequences of the Soller dataset were acquired near
Soller, Balearic Islands (Spain), by a research team of the
European project TRIDENT [4, 24]. Within this project,
an autonomous underwater vehicle (AUV) has been
developed to perform submarine interventions exploiting
a floating manipulator arm and a vision system. The
vehicle and issues related to system integration, including
the features of the vision system, are described in [24]. The
vision unit consists of two Point Grey BumbleBee2 stereo
cameras and an ECU for image processing. The two stereo
heads have different fields of view (FOVs) and the camera
with a wider FOV is used for sea-floor mapping and object
detection. In particular, the images of the Soller dataset
were obtained with the BumbleBee2 BB2-08S2C-25, a very
short focal length 8 Mpx camera capable of 97 deg HFOV
(Figure 6(c)). With these configurations and a resolution
of 1024x768, each pixel corresponds to an area of 1.5 mm2

at a rough distance of two metres. Figure 7(c) reproduces
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Figure 6. Cameras used for the acquisition of the Garda (a), Portofino (b) and
Soller (c) datasets. (a) Multi-stereo head made of three Logitech C270
webcams; (b) Allied Vision Technologies MAKO camera; (c) Point Grey
BumbleBee 2.

7Dario Lodi Rizzini, Fabjan Kallasi, Fabio Oleari and Stefano Caselli:
Investigation of Vision-based Underwater Object Detection with Multiple Datasets



The Portofino dataset represents the first outcome of a new
prototype of an underwater stereo vision system currently
under development. On the basis of lessons learned from
the low-cost prototype, a newly designed system has been
developed and tested in shallow water near Portofino,
Italy. This system exploits two industrial GigE cameras
from Allied Vision Technologies, belonging to the Mako
series and providing a resolution of 1292x964 pixels (Figure
6(b)). The embedded ECU, made from a Mini-ITX board
and an Intel i7 CPU, represents a good trade-off between
computational power and power consumption. The
cameras were driven at a rate of 10 fps without communi‐
cation losses. A sample image of the Portofino dataset, at
about 10m is shown in Figure 7 (b).

Image sequences of the Soller dataset were acquired near
Soller, Balearic Islands (Spain), by a research team of the
European project TRIDENT [24, 4]. Within this project, an
autonomous underwater vehicle (AUV) has been devel‐
oped to perform submarine interventions exploiting a
floating manipulator arm and a vision system. The vehicle
and issues related to system integration, including the
features of the vision system, are described in [24]. The
vision unit consists of two Point Grey BumbleBee2 stereo
cameras and an ECU for image processing. The two stereo
heads have different fields of view (FOVs) and the camera
with a wider FOV is used for sea-floor mapping and object
detection. In particular, the images of the Soller dataset
were obtained with the BumbleBee2 BB2-08S2C-25, a very
short focal length 8 Mpx camera capable of 97 deg HFOV
(Figure 6(c)). With these configurations and a resolution of
1024x768, each pixel corresponds to an area of 1.5 mm2 at a
rough distance of two metres. Figure 7(c) reproduces a
sample image from the Soller dataset. At the bottom of this
image, a part of the arm gripper is clearly visible. This
dataset includes many images with the gripper or some
part of it in the camera field of view: clearly, self-occlusions
must be dealt with. Images were acquired and processed
by the on-board ECU, consisting of a mini-ITX board with
a CPU Intel i5 @ 2.33 GHz. This configuration was able to
acquire and process image pairs at approximately 2 fps [34].

4.2 Mono Camera Object Detection

The aim of the ROI identification algorithms is the identi‐
fication of the image region containing a significant part of

the target object. Such techniques are designed in order to
overestimate the region including the target, and must
contain a portion of the target to enable the detection
operation which follows. As discussed in section 2, alter‐
native approaches like those based on the extraction of local
features do not achieve reliable detection.

The performance of ROIcolour  has been assessed on the
Garda, Portofino and Soller datasets and the results of this
assessment are shown in Table 1. The frame resolution of
each dataset depends upon the camera used in the image
acquisition. Furthermore, the datasets are divided into
subsets with homogeneous features in the images, i.e., the
target object's colour for the Garda and Portofino datasets,
and the presence of other objects like the robotic arm for the
Soller dataset. A target reference colour is chosen for each
group. The output pixels of ROIcolour  are classified as true
positive (TP), true negative (TN), false positive (FP) and
false negative (FN) through the comparison with the
ground-truth. Table 1 reports the average values of the
overlapping results, and the recall and precision for each
image subset. In general, the proposed approach performs
the ROI identification for the target with high precision,
except for the Portofino dataset with grey targets and for
the Soller dataset with images including both the target
object and the arm. The limited precision for the grey target
object in the Portofino images depends upon the similarity
between the target's colour and the seabed in the back‐
ground. These results, in terms of colour-based object
detection with pixel-level evaluation, appear to be in
reasonable agreement with the results from Bazeille et al.
in [21]. In essence, contrasting or brilliant colours are
reliably detected in underwater images up to a few metres,
with very few FPs. There can indeed be a number of FNs,
i.e., missed perceptions, which nonetheless can be coped
with through repeated observations. In the Soller dataset,
the ROIcolour  computation algorithm tended to treat the
target object and the part of the robotic arm in view in the
same way, unless the arm zone was suitably discarded
from the images (as in the column "Target" in Table 1). The
recall values are generally low, but the detected portion of
the object is sufficient for overall object detection, as
pointed out in [35].

(a) (b) (c)

Figure 7. Sample images from the (a) Garda, (b) Porto�no and (c) Soller datasets.

a sample image from the Soller dataset. At the bottom of
this image, a part of the arm gripper is clearly visible. This
dataset includes many images with the gripper or some
part of it in the camera field of view: clearly, self-occlusions
must be dealt with. Images were acquired and processed
by the on-board ECU, consisting of a mini-ITX board with
a CPU Intel i5 @ 2.33 GHz. This configuration was able
to acquire and process image pairs at approximately 2
fps [34].

4.2. Mono Camera Object Detection

The aim of the ROI identification algorithms is the
identification of the image region containing a significant
part of the target object. Such techniques are designed in
order to overestimate the region including the target, and
must contain a portion of the target to enable the detection
operation which follows. As discussed in section 2,
alternative approaches like those based on the extraction
of local features do not achieve reliable detection.

The performance of ROIcolour has been assessed on the
Garda, Portofino and Soller datasets and the results of this
assessment are shown in Table 1. The frame resolution of
each dataset depends upon the camera used in the image
acquisition. Furthermore, the datasets are divided into
subsets with homogeneous features in the images, i.e., the
target object’s colour for the Garda and Portofino datasets,
and the presence of other objects like the robotic arm for
the Soller dataset. A target reference colour is chosen for
each group. The output pixels of ROIcolour are classified
as true positive (TP), true negative (TN), false positive (FP)
and false negative (FN) through the comparison with the
ground-truth. Table 1 reports the average values of the
overlapping results, and the recall and precision for each
image subset. In general, the proposed approach performs
the ROI identification for the target with high precision,
except for the Portofino dataset with grey targets and for
the Soller dataset with images including both the target
object and the arm. The limited precision for the grey
target object in the Portofino images depends upon the
similarity between the target’s colour and the seabed in
the background. These results, in terms of colour-based
object detection with pixel-level evaluation, appear to be
in reasonable agreement with the results from Bazeille et
al. in [21]. In essence, contrasting or brilliant colours are
reliably detected in underwater images up to a few metres,
with very few FPs. There can indeed be a number of FNs,
i.e., missed perceptions, which nonetheless can be coped

with through repeated observations. In the Soller dataset,
the ROIcolour computation algorithm tended to treat the
target object and the part of the robotic arm in view in
the same way, unless the arm zone was suitably discarded
from the images (as in the column "Target” in Table 1). The
recall values are generally low, but the detected portion
of the object is sufficient for overall object detection, as
pointed out in [35].
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Figure 8. Precision-recall curves of the ROIshape algorithm applied
to the Soller and Garda datasets.
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Figure 9. ROC curves of the ROIshape algorithm applied to the Soller
and Garda datasets.

A second set of experiments has been performed for the
ROIshape algorithm. This algorithm segments the image
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Figure 9. ROC curves of the ROIshape algorithm applied to the Soller and
Garda datasets

Dataset Garda Portofino Soller

Grey Orange Grey Orange Target &
Arm

Target Arm

Frames 89 47 107 111 151 354 290

Width 640 1292 1024

Height 480 964 768

TP [px] 21117 11411 26407 43775 1688 2548 0

TN [px] 256941 285458 1070788 1163113 772154 776977 760148

FP [px] 334 305 62502 569 6076 360 26284

FN [px] 28807 10026 85791 38030 6513 6547 0

Recall 40.3% 55.9% 29.0% 53.3% 20.6% 27.6% -

Precision 98.2% 98.2% 49.0% 98.8% 44.1% 93.5% -

Table 1. The average overlap of the ROIcolour  area and the target object
measured in pixels and the corresponding values of recall and precision. The
overlap is measured by true positive (TP), true negative (TN), false positive
(FP) and false negative (FN) pixels. The assessment distinguishes the
experimental setup according to the target object's colour (for the Garda and
Portofino datasets) or to the objects appearing in the scene (in particular, the
robotic arm of the Soller dataset).

Garda Portofino Soller

Frame number 136 305 505

sigma _th 0.04 0.04 0.027

TP 93 179 417

TN 19 91 223

FP 2 11 66

FN 22 24 88

Precision 97.9% 94.2% 86.3%

Recall 80.9% 88.2% 82.6%

Accuracy 82.4% 88.5% 80.6%

-FPRate 90.5% 89.2% 77.2%

F-Measure 88.6% 91.1% 84.4%

Table 2. Detection results for the Garda, Portofino and Soller datasets for a
specific value of acceptance threshold σth

Num. Frames Avg. Distance Std.Dev. Distance

302 1441 mm 169 mm

Table 3. Mono camera estimated distances

A second set of experiments has been performed for the
ROIshape algorithm. This algorithm segments the image into
different clusters and classifies each cluster according to its
shape. The segmentation into clusters requires a certain
similarity among the features extracted for each pixel. Since
the ROIshape operates with colour features, the approximate
colour uniformity of the target objects is a requirement,
although the algorithm is tolerant to the violation of such
an hypothesis. The algorithm detects objects with straight
and sharp contours, as with many human-made artefacts,
especially when they are compared with the less regular
borders. The objects used in the considered datasets meet
such requirements: grey and orange pipes for the Garda
and Portofino datasets, and a red-black box for the Soller
dataset. In this assessment, the target is considered to be
detected if its ground-truth area overlaps at least 50% with
the ROIshape area. Figures 8 and 9, respectively, show the
precision-recall (PR) and receiving operating curve (ROC)
for the different datasets. Table 2 illustrates the classifica‐
tion values obtained for a specific value of σth . Note that the
PR curve never reaches zero due to the filtering in the
segmentation phase: even after increasing the threshold
σth , clearly negative images are not classified as positive
and the precision is not compromised.

The PR and ROC corresponding to the Garda and Portofino
datasets tend to dominate those obtained for the Soller
dataset, at least for a restrictive choice of σth . This result can
be explained by observing that, although rather general,
ROIshape has been designed to find and classify pipes with
uniform colour. The red-black box from Soller is less
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elongated and is marked by white stripes. These features
stress, respectively, the shape validation step and the
segmentation (e.g., the object could be split into different
connected components). Furthermore, the robotic arm
belonging to the underwater vehicle appears in the scene
and a more advanced method could shadow its projection
in the image. However, ROIshape has proven robust to such
differences even though they were not predicted during the
algorithm's design. The precision in Table 2 is above 85%
and its recall is even higher than that obtained for the Garda
dataset.

Grey Orange

Num. Frames 107 111

True Radius [mm] 45.0 50.0

Avg. [mm] 55.6 85.7

Std. Dev. [mm] 36.9 32.2

Max [mm] 249.5 191.4

Table 4. Cylinder radius estimated in the Portofino dataset for grey and
orange pipes

Mono camera images have been used to estimate the pose
of a cylindrical pipe - as discussed in section 3.2 - in the
Garda dataset images. The algorithm computes all the
parameters of the cylinder axis that allow the localization
of the target object. However, during experiments at Lake
Garda, the embedded system swung rather quickly when
attached to the floating support, due to continuous waves
(see Figure 5). In such experiments, no ground-truth is
usually available and therefore a parameter that is invari‐
ant to camera motion is required to assess the precision of
the proposed method. The object lies on the lake floor and
the camera depth remains approximately constant. Thus,
the distance between the camera centre and the cylinder
axis in equation (5) approximately meets this prerequisite.
Table 3 illustrates the average distance and the standard
deviation of the axis computed in a sequence of 302 frames.
The standard deviation of 17 cm is due to both the estima‐
tion error and the slight variation of distances caused by
waves.

4.3 Stereo Vision Processing

All three datasets considered in this work provide pairs of
camera frames acquired by stereo cameras. The Garda
dataset differs from the other two since it uses three
cameras and the acquisition is not triggered by a signal. The
resulting disparity images and the corresponding point
clouds are rather sparse and inaccurate. In a few cases,
when the target object is relatively still with respect to the
cameras, it is possible to compute the point cloud and to
apply the 3D object recognition algorithms illustrated in
section 3.4 in the Garda dataset. The method operates only
on those points corresponding to an ROI obtained, for
example, with ROIcolour . Figure 11 shows an example of
recognition based on alignment. The success rate of this
approach is generally low, with a precision value of around
60% and recall around 40%. The classification is mainly due
to ROI identification.

Figure 11. An example of pose estimation by matching the raw point cloud
from the Garda dataset (orange) and a cylinder model (blue)

The Portofino and Soller datasets provide high-quality and
synchronized camera frames. Figure 10 illustrates two
examples of point clouds obtained by each of the two
collections. The images are globally dense, although there
are empty regions where the disparity image fails or is
incorrect. For example, the holes are located in correspond‐
ence with the uniform texture of the pipe in Figure 10(left).
Moreover, the resulting 3D reconstruction is sometimes
distorted (Figure 10(right)). Figure 12 shows two examples

Figure 10. Detailed view of the target object point clouds obtained from the Porto�no (left) and Soller (right) datasets. The point cloud
can display void regions or shape distortions where the stereo processing fails.

Figure 11. An example of pose estimation by matching the raw
point cloud from the Garda dataset (orange) and a cylinder model
(blue).

cameras and the acquisition is not triggered by a signal.
The resulting disparity images and the corresponding
point clouds are rather sparse and inaccurate. In a
few cases, when the target object is relatively still with
respect to the cameras, it is possible to compute the point
cloud and to apply the 3D object recognition algorithms
illustrated in section 3.4 in the Garda dataset. The method
operates only on those points corresponding to an ROI
obtained, for example, with ROIcolour. Figure 11 shows
an example of recognition based on alignment. The
success rate of this approach is generally low, with a
precision value of around 60% and recall around 40%. The
classification is mainly due to ROI identification.

The Portofino and Soller datasets provide high-quality
and synchronized camera frames. Figure 10 illustrates
two examples of point clouds obtained by each of the
two collections. The images are globally dense, although
there are empty regions where the disparity image fails
or is incorrect. For example, the holes are located in
correspondence with the uniform texture of the pipe in
Figure 10(left). Moreover, the resulting 3D reconstruction
is sometimes distorted (Figure 10(right)). Figure 12 shows
two examples of RANSAC cylinder-fitting. Thanks to the
previous object detection, the estimated pose is close to
the correct object location. When there are enough 3D
points lying in the ROI (Figure 12(left)), the cylinder axis
is computed with acceptable accuracy. Otherwise, the
resulting pose is rather inaccurate (Figure 12(right)). The
assessment of the object’s dimensions and, in particular,
of its radius in Table 4 leads to the same conclusion.
The estimated radius is close to the correct value, with
a standard deviation of around 3 cm for both the grey
and the orange pipes. This result depends upon both the
reliable monocular object detection and the density of the
stereo disparity image. The complete object recognition

based on the point cloud remains difficult due to the
inaccurate underwater perception of objects. However,
in underwater environments stereo cameras enable the
evaluation of a 3D target object’s position once the object
has been already detected in the corresponding single
image.

5. Discussion

The experimental assessment was performed across
several datasets acquired at different depths (from 2 m
to 10 m depth), light conditions and objects. Not all the
techniques presented in section 3 can be applied to all the
datasets. The ROIshape method has been successfully used
to detect target objects by exploiting colour uniformity and
shape regularity in all three datasets. These assumptions
are standard characteristics in an underwater context, as
illustrated by the discussion of related work in section 2.

Popular approaches to object detection, like feature
constellation methods, are less reliable for underwater
computer vision. The standard SIFT key-point feature [36]
was tested on sample images from the Portofino dataset.
Figure 13 shows a few examples of the resulting feature
association between the model to be found and an
image containing the same object. The results are
clearly unreliable. Although features are in general less
stable with texture-less objects, like the orange pipe,
the associations are strongly affected by the different
luminance of the target (e.g., in the leftmost example of
Figure 13 the model features are matched with another
pipe). Thus, the feature constellation method, which
depends upon the association between the object model’s
features and the extracted ones, is not reliable.

The 3D data obtained from stereo processing have been
used to estimate the target object pose for the Garda
and Portofino datasets. The point clouds resulting from
the stereo camera are not dense or detailed enough to
enable more sophisticated approaches than geometric
model-fitting. The precision of the pose estimation
depends upon the density of the disparity map, while
the density of the disparity map in turn relies upon the
correspondence of homologous points in the two images.
Only the accurate assessment of the ROI containing
the target object avoids erroneous matches between the
geometric model and the candidate 3D points. When
an accurate ROI is available and there are enough points
belonging to the target, the estimated values of the object’s
dimensions (i.e., the radius) and pose are close to the
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Figure 10. Detailed view of the target object point clouds obtained from the Portofino (left) and Soller (right) datasets. The point cloud can display void regions
or shape distortions where the stereo processing fails.
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of RANSAC cylinder-fitting. Thanks to the previous object
detection, the estimated pose is close to the correct object
location. When there are enough 3D points lying in the ROI
(Figure 12(left)), the cylinder axis is computed with
acceptable accuracy. Otherwise, the resulting pose is rather
inaccurate (Figure 12(right)). The assessment of the object's
dimensions and, in particular, of its radius in Table 4 leads
to the same conclusion. The estimated radius is close to the
correct value, with a standard deviation of around 3 cm for
both the grey and the orange pipes. This result depends
upon both the reliable monocular object detection and the
density of the stereo disparity image. The complete object
recognition based on the point cloud remains difficult due
to the inaccurate underwater perception of objects. How‐
ever, in underwater environments stereo cameras enable
the evaluation of a 3D target object's position once the object
has been already detected in the corresponding single
image.

5. Discussion

The experimental assessment was performed across
several datasets acquired at different depths (from 2 m to
10 m depth), light conditions and objects. Not all the
techniques presented in section 3 can be applied to all the
datasets. The ROIshape method has been successfully used
to detect target objects by exploiting colour uniformity and
shape regularity in all three datasets. These assumptions
are standard characteristics in an underwater context, as
illustrated by the discussion of related work in section 2.

Popular approaches to object detection, like feature
constellation methods, are less reliable for underwater

computer vision. The standard SIFT key-point feature [36]
was tested on sample images from the Portofino dataset.
Figure 13 shows a few examples of the resulting feature
association between the model to be found and an image
containing the same object. The results are clearly unrelia‐
ble. Although features are in general less stable with
texture-less objects, like the orange pipe, the associations
are strongly affected by the different luminance of the
target (e.g., in the leftmost example of Figure 13 the model
features are matched with another pipe). Thus, the feature
constellation method, which depends upon the association
between the object model's features and the extracted ones,
is not reliable.

The 3D data obtained from stereo processing have been
used to estimate the target object pose for the Garda and
Portofino datasets. The point clouds resulting from the
stereo camera are not dense or detailed enough to enable
more sophisticated approaches than geometric model-
fitting. The precision of the pose estimation depends upon
the density of the disparity map, while the density of the
disparity map in turn relies upon the correspondence of
homologous points in the two images. Only the accurate
assessment of the ROI containing the target object avoids
erroneous matches between the geometric model and the
candidate 3D points. When an accurate ROI is available and
there are enough points belonging to the target, the
estimated values of the object's dimensions (i.e., the radius)
and pose are close to the correct ones (Figure 12(left)).
Unfortunately, and quite often, the object point cloud is not
sufficiently populated to achieve an acceptable estimation
(see Figure 12(right)).

Figure 12. Pose estimation results of a cylinder �tting in the 3D point cloud for the Porto�no dataset. The points in the ROI are in red,
the cylinder is computed by model-�tting with RANSAC and the reference frame corresponds to the left camera of the stereo system.

Figure 13. Results of the constellation method with SIFT feature extraction and matching applied to the Porto�no dataset at di�erent
light conditions. The matches are represented by coloured segments between the features extracted from the object model image (on the
left) and those extracted from each image. The resulting associations are rather unreliable.

correct ones (Figure 12(left)). Unfortunately, and quite
often, the object point cloud is not sufficiently populated
to achieve an acceptable estimation (see Figure 12(right)).

6. Conclusion

This paper has investigated vision-based object detection
algorithms in underwater environments using multiple
datasets. We have presented a complete algorithmic
pipeline for underwater object detection and pose
estimation and, in particular, a novel multi-feature object
detection algorithm to find human-made artefacts. The
proposed method operates according to rather general
hypotheses on the salient colour uniformity and sharp
shape of the target object, and has been effectively used
to search different items in several underwater scenarios.
Once the target is detected, its pose with regard to the
camera can be estimated using the region of disparity
image corresponding to such a target. The performance
of the proposed algorithm has been assessed using three
underwater datasets. The camera quality, the experimental
conditions (depth, light conditions, background, sensor
guidance, etc.) and the types of targets are different in
the used datasets. However, the object detection algorithm
has proven robust to such differences, and achieves
satisfactory values of precision and recall in underwater
environments. In the design of a stereo vision system
for underwater objects’ manipulation, the importance
of monocular detection is apparent in connection with
the unreliability of simple segmentation techniques and
with the shape distortion occurring in stereo camera
reconstruction.
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Figure 12. Pose estimation results of a cylinder fitting in the 3D point cloud for the Portofino dataset. The points in the ROI are in red, the cylinder is computed
by model-fitting with RANSAC and the reference frame corresponds to the left camera of the stereo system.

Figure 12. Pose estimation results of a cylinder �tting in the 3D point cloud for the Porto�no dataset. The points in the ROI are in red,
the cylinder is computed by model-�tting with RANSAC and the reference frame corresponds to the left camera of the stereo system.

Figure 13. Results of the constellation method with SIFT feature extraction and matching applied to the Porto�no dataset at di�erent
light conditions. The matches are represented by coloured segments between the features extracted from the object model image (on the
left) and those extracted from each image. The resulting associations are rather unreliable.

correct ones (Figure 12(left)). Unfortunately, and quite
often, the object point cloud is not sufficiently populated
to achieve an acceptable estimation (see Figure 12(right)).

6. Conclusion

This paper has investigated vision-based object detection
algorithms in underwater environments using multiple
datasets. We have presented a complete algorithmic
pipeline for underwater object detection and pose
estimation and, in particular, a novel multi-feature object
detection algorithm to find human-made artefacts. The
proposed method operates according to rather general
hypotheses on the salient colour uniformity and sharp
shape of the target object, and has been effectively used
to search different items in several underwater scenarios.
Once the target is detected, its pose with regard to the
camera can be estimated using the region of disparity
image corresponding to such a target. The performance
of the proposed algorithm has been assessed using three
underwater datasets. The camera quality, the experimental
conditions (depth, light conditions, background, sensor
guidance, etc.) and the types of targets are different in
the used datasets. However, the object detection algorithm
has proven robust to such differences, and achieves
satisfactory values of precision and recall in underwater
environments. In the design of a stereo vision system
for underwater objects’ manipulation, the importance
of monocular detection is apparent in connection with
the unreliability of simple segmentation techniques and
with the shape distortion occurring in stereo camera
reconstruction.
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Figure 13. Results of the constellation method with SIFT feature extraction and matching applied to the Portofino dataset at different light conditions. The
matches are represented by coloured segments between the features extracted from the object model image (on the left) and those extracted from each image.
The resulting associations are rather unreliable.
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6. Conclusion

This paper has investigated vision-based object detection
algorithms in underwater environments using multiple
datasets. We have presented a complete algorithmic
pipeline for underwater object detection and pose estima‐
tion and, in particular, a novel multi-feature object detec‐
tion algorithm to find human-made artefacts. The proposed
method operates according to rather general hypotheses on
the salient colour uniformity and sharp shape of the target
object, and has been effectively used to search different
items in several underwater scenarios. Once the target is
detected, its pose with regard to the camera can be estimat‐
ed using the region of disparity image corresponding to
such a target. The performance of the proposed algorithm
has been assessed using three underwater datasets. The
camera quality, the experimental conditions (depth, light
conditions, background, sensor guidance, etc.) and the
types of targets are different in the used datasets. However,
the object detection algorithm has proven robust to such
differences, and achieves satisfactory values of precision
and recall in underwater environments. In the design of a
stereo vision system for underwater objects' manipulation,
the importance of monocular detection is apparent in
connection with the unreliability of simple segmentation
techniques and with the shape distortion occurring in
stereo camera reconstruction.
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