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Abstract
Land Surface Temperature (LST) is a key variable in the interactions and energy fluxes 
between the Earth surface and the atmosphere. Satellite data provide consistent, continuous 
and spatially distributed information on the Earth’s surface conditions among which LST. 
Ten years of NASA-MODIS day-time and night-time 1 km LST data over Southern Italy 
have been analyzed to quantify the influence of factors such as topography and the land cover 
on LST spatio-temporal variations. Results show that topography significantly influence 
LST variability as a function of the land cover and to a different extent for day-time and 
night-time data. Moreover, the relation between LST and the influential factors varies with 
the season during the year. This study contributes to a further understanding of the complex 
relationship between the spatio-temporal variability of the surface thermal conditions and its 
driving factors highlighting how these relationships might change within the year.
Keywords: MODIS, LST time series, land cover, topography, solar radiation, geothermal 
research.

Introduction
Land Surface Temperature (LST) is the radiation temperature measured at the interface 
between surface materials (top of plant canopy, water, ground, ice, or snow surface) and the 
atmosphere. It is a key parameter in the land surface radiation budget being an important 
variable in climate change studies [Brivio et al., 2001; Jin and Liang, 2006; Wan and Liang, 
2009]. LST is also a factor controlling most physical, chemical and biological processes 
[Qin and Karnieli, 1999; Zhong et al., 2010] and, in particular, it is correlated to soil moisture 
and canopy evapotranspiration [Wan et al., 2004a; Wang and Liang, 2008].
Remote sensing techniques can provide information on the properties of the Earth from 
local to global scales with a high temporal frequency especially for surface characteristics 
that have a large spatial heterogeneity, such as LST [Wan and Liang, 2009]. Starting 
from the early missions, such as the Heat Capacity Mapping Missions (HCMM) carrying 
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the Heat Capacity Mapping Radiometer (HCMR) [Price, 1977; Watson et al., 1982; 
Cassinis et al., 1984; Vukovich, 1984], thermal infrared (TIR) data have been used to 
obtain information on the Earth surface temperature. Space-borne sensors carried by 
polar orbiting satellites with spectral bands in the TIR domain of the electromagnetic 
spectrum, allowed scientists to observe and monitor LST over large areas and long 
periods of time.
Data acquired by the NASA-MODIS (Moderate Resolution Imaging Spectroradiometer) 
sensor, beginning from the year 2000, significantly improve both geometric and 
radiometric characteristics of previous sensors, such as NOAA-AVHRR (National Oceanic 
and Atmospheric Administration-Advanced Very High Resolution Radiometer), besides 
being routinely processed to derive a suite of standard products for land/atmosphere/ocean 
monitoring [Justice et al., 2002; Tucker and Yager, 2011]. Among them, the MOD11A2 
product provides estimates of LST and Emissivity (ε) from MODIS-Terra acquisitions at 
10.30 am and 10.30 pm globally, at 1 km spatial resolution and every 8 days. MODIS LST 
data have been exploited in environmental studies such as monitoring urban heat island 
effect [Liu et al., 2007; Xiao et al., 2007; Retails et al., 2010; Keramitsoglou et al., 2011; 
Liu and Zhang, 2011], estimating air temperature [Huang et al., 2008; Son et al., 2012] and 
retrieving soil moisture mainly for agricultural applications [Benali et al., 2012]. Since LST 
is a key indicator of geothermal and geological activities below the Earth surface [Kahle 
et al., 1976; Cassinis et al., 1984] satellite data could also be exploited for geothermal 
exploration for searching alternative energy sources [Lee, 1978; Prakash et al., 1995; 
Fred  et al., 2008; Qin et al., 2011]. Our work has developed in this research framework 
as preliminary analysis of the spatio-temporal variability of MODIS LST for investigating 
surface thermal anomalies at regional scale.
Spatio-temporal variability of LST at the regional scale is driven by influencing factors 
such as vegetation cover characteristics (fractional cover, canopy structure, vegetation 
surface roughness, albedo, leaf conductance), surface thermal properties (soil type and 
moisture), topography, incoming solar radiation and meteorological conditions [Julien 
et al., 2006; Van de Kerchove et al., 2013; Veraverbeke et al., 2013]. Moreover, many of 
these controlling parameters interact thus creating a very complex interpretation scheme 
[Sandholt et al., 2002]. The development of quantitative models that describe the 
relation between spatio-temporal variability of LST and the driving factor is therefore 
crucial [Van de Kerchove et al., 2013] although few studies have addressed this issue 
using remotely sensed data [Ge, 2010; Westermann et al., 2011; Van De Kerchove et al., 
2013].
In this study we analyze day-time and night-time MODIS LST over Southern Italy as 
provided by the MOD11A2 product to investigate spatio-temporal variability of the 
surface temperature as a function of the land cover, topography (altitude) and potential 
solar radiation. According to previous studies, topography, land cover and incoming solar 
radiation and land cover are the major controlling factors on LST spatial distribution 
[Bertoldi et al., 2010]. Due to the relatively small size of the study area, latitudinal 
changes, which also influence surface temperatures, can be assumed negligible. The 
results presented in this paper are preliminary to further investigation of the presence 
of low enthalpy geothermal energy sources based on LST anomalies identified in the 
MODIS time series and cleaned of the most important influential factors analysed.
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Study area and data
The study area
The study area covers a region of about 400 km * 400 km over Southern Italy (Fig. 1) and 
centered on the Basilicata, Campania, Molise and Puglia regions. The area is predominantly 
flat with 88% of the land area below 1000 m a.s.l. . Mountain areas run along the central 
part with the Apennines oriented from north-west to south-east. The highest regions are 
located at the southern end of the central Apennines range; lowlands cover a significant 
part of the study area with the major plain located in Northern Apulia (Tavoliere delle 
Puglie). According to the MODIS Land Cover Type (MCD12Q1) Collection 5 product 
(see section 2.3), more than 60% of the land area in the study region is agricultural land, 
followed by extensive urban areas (about 11%); forests cover approximately 10% of the 
study area.

Figure 1 - (a) The land cover map as derived from the classification of the UMD land cover. (b) 
the Digital elevation Model (DEM) and at the bottom the histograms of frequency distribution of 
the elevation [m. a.s.l.] for the land cover classes.

The MOD11A2 product
The MOD11A2 Version-5 product (MODIS/Terra Land Surface Temperature/Emissivity 
8-Day L3 Global 1km SIN Grid V005) provides 8 day composites of LST [K] at 1 km
spatial resolution by averaging daily estimates [Wan et al., 2002]. This product includes
estimates of day-time (10:30 am, Terra descending node) and night-time (10:30 pm, Terra
ascending node) LST together with quality control layers which provide information on
the accuracy of the retrievals (QC_day and QC_night). More details can be found in the
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Collection-5 MODIS Land Surface Temperature Products Users’ Guide (https://lpdaac.
usgs.gov/products/modis_products_table, last access September 2013).
Ten years of the MOD11A2 product (2001-2010) have been downloaded from the USGS 
Glovis web site (http://glovis.usgs.gov/, last access September 2013) for tile h19 v04; LST 
and QC data provided as HDF (Hierarchical Data Format) files which have been subset 
over the study area, re-projected from Equal Area Sinusoidal projection to geographic Lat-
Lon, WGS 84 coordinates.

The land cover map and the digital elevation model
In order to describe the distribution of the land cover in the study area, we chose the 
1km UMD (University of Maryland) land cover map from the MODIS MCD12Q1 
Collection 4 product [Friedl et al., 2010]. The original classes of the UMD map have 
been grouped into four major land covers: forest (UMD classes 1 to 5), non forest 
(UMD classes 6 to 10), croplands and urban areas; Table 1 shows the distribution of 
these classes in our study area. Although the spatial resolution of the UMD land cover 
is not optimal for the fragmented pattern of land covers in the study area, we preferred 
to maintain a resolution comparable to the LST dataset thus avoiding re-sampling. The 
aggregation into four large synthetic classes further reduces the influence of the coarse 
spatial resolution.
We also downloaded the Global Land One-km Base Elevation Digital Elevation Model 
(Globe DEM) [GLOBE Task Team, 1998] from the NOAA NESDIS web site (URL: http://
www.ngdc.noaa.gov/mgg/topo/globe.html, last access September 2013). In this product 
elevation is provided globally for 1 km grid cells in geographic coordinate (Lat/Lon). Figure 
1 shows the land cover map and the Globe DEM over the study area; at the bottom of the 
figure the histograms show the land cover type distribution as a function of elevation.

Table 1 - The distribution of the major and cover classes derived from the 
UMD (University of Maryland) land cover map and the percentage of the 
study area covered by each class.

Name N pixels Percent study area
Forest 6479 10%

Non forest 10509 17%
Croplands 39300 62%

Urban and built up 6934 11%

Methods
Table 2 summarizes the QC information provided with the MOD11A2 product. The so 
defined good quality data have an average error for emissivity ≤ 0.01 and for LST ≤ 1 K  
[Wan et al., 2004b]. If these accuracies for LST and emissivity estimates are not achieved, the 
pixel is classified with the other quality flag value and an estimation of the error is provided 
by bits 4 to 7 of the QC code (Tab. 2). We first analyzed the quality flags to investigate 
the proportion of missing and/or bad quality estimates within the ten-year dataset. Then, 
we computed LST monthly average and standard deviation over the period (2001-2010) to 
describe the seasonal behavior of LST and to quantify the year-by-year variability. All these 
analyses were carried out in the original MODIS sinusoidal projection.
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Table 2 - The codes of the QC layer for the MOD11A2 product.

Bit N° Name Bit Comment

0-1 Mandatory 
QA Flags

00 LST produced, good quality, not necessary to examine more 
detailed QA

01 LST produced, other quality, recommend examination of more 
detailed QA

10 LST not produced due to cloud effects
11 LST not produced primarily due to reasons other than cloud

2-3 Data Quality
Flag

00 Good data quality of L1B in 7 TIR bands
01 Other quality data
10 To be defined
11 To be defined

4-5 Emis Error
Flag

00 Average emissivity error<= 0.01
01 Average emissivity error<= 0.02
10 Average emissivity error<= 0.04
11 Average emissivity error> 0.04

6-7 LST Error
Flag

00 Average LST error <= 1K
01 Average LST error <= 2K
10 Average LST error <= 3K
11 Average LST error > 3K

In the second part of our work we assessed the relationship between monthly average LST 
and topography (elevation), land cover and incoming solar radiation. MODIS data have been 
re-projected to geographic Lat/Lon coordinates and regression models were used to assess 
the influence of each variable on LST. Incoming solar radiation (or insolation) was computed 
with the Area Solar Radiation tool in the Solar Radiation Tools of ArcGIS 9.3 which computes 
the global incoming radiation across the landscape (image/raster) based on methods from the 
hemispherical view-shed algorithm [Rich, 1990; Rich et al., 1994; Fu and Rich, 2002]. The 
output raster map provides monthly solar radiation (Watt Hour m-2) with the same spatial 
resolution of the input DEM (in our case, 1 km) and the same projection (Lat/Lon). The tool 
computes the potential solar radiation from the sun position as a function of the day and time 
of the year and takes into account only the latitude range, variations in elevation, orientation 
(slope and aspect) and shadows cast by topographic features from the input DEM.

Results and discussion
LST time series: quality and gap issues
Figures 2 and 3 show example 2001-2010 time series of day- and night-time MODIS LST (black 
line) and QC (colored dots) for pixels over cropland, non forest and forest land cover classes of 
the study area. The gaps in the LST time series are those satellite observations that are discarded 
due the presence of clouds (red dots).
The frequency of the quality flags over the entire dataset is reported in Table 3 for day- and night-
time LST. Both datasets have a high rate of good quality data (>60%) mainly because compositing 
over 8-day periods reduces the proportion of gaps produced by daily missing observations. In 
the night-time dataset there is a greater proportion of good quality LST estimates (QC=0 and 
QC=17) and a larger proportion of pixels flagged as cloudy (3%), which are probably due to 
false detections in night-time images since reflectance bands are not available for accurate cloud 
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detection [Wan and Liang, 2009]. Among the pixels assigned the other quality flag value, the 
most frequent class is of pixels with average error in LST estimation less than 2K (QC=65) and 
it covers 25% and 28% of the night- and day-time data, respectively.

Figure 2 - Time series of the day-time MODIS Land Surface 
Temperature (LST) for the period 2001-2010 (black line) with 
quality information (green: good data, red: cloudy, yellow: 
average error emissivity <= 0.02, blue: average error emissivity 
<= 0.01 & average error LST <= 2K, cyan: average error 
emissivity<=0.02 & average error LST <= 2K) for example pixels 
from the croplands, non forest and forest classes.

Figure 3 - Time series of the night-time MODIS Land Surface 
Temperature (LST) for the period 2001-2010 (black line) with 
quality information (green: good data, red: cloudy, yellow: average 
error emissivity <= 0.02, blue: average error emissivity <= 0.01 & 
average error LST <= 2K, cyan: average error emissivity<=0.02 & 
average error LST <= 2K) for example pixels from the croplands, 
non forest and forest classes.
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Table 3 - The frequency of the quality flags as observed in the 2001-2010 day and night 
MODIS LST time series over the study area. Flag values that were not covered by at least 1% 
of the pixels were discarded. QC = Quality control, LST = Land Surface Temperature.

QC value 
(0-255) Description Day LST Night LST

0 Good quality 60.57% 63.16%

2 LST not computed due to the presence of clouds 2.67% 3.01%

17 LST produced, average emissivity error <=0.02 & 
average LST error <= 1K 1.05% 1.99%

65 LST produced, average emissivity error <=0.01 & 
average LST error <= 2K 28.31% 25.43%

81 LST produced, average emissivity error <=0.02 & 
average LST error <= 2K 6.60% 5.86%

Figure 4 shows the percentage of good quality day- and night-time LST estimates over land for 
each 8-day period of the year. The proportion of good data increases from the lowest values in 
winter (highest percentage of cloudy pixels) to the greatest in summer (predominant clear sky 
conditions). In July and August (periods 24 to 31 on the x-axis), more than 80% of the land pixels 
in the study area are assigned the good quality class, meaning that LST is retrieved with the highest 
accuracy. The graph also shows that there are very few outliers (circle markers) thus suggesting 
a consistent accuracy in the multi-year datasets. These figures confirm that the proportion of 
good quality data is consistent between the two datasets; neither the day- or the night-time LST is 
retrieved with a significantly higher accuracy over the ten years analyzed.

Figure 4 - Box-plot of the percentage of good quality day- and night-time LST 
from the MODIS Quality Control (QC) layer computed for each  8-day period. 
Median, upper and lower quartiles, and outliers are represented by the thick black 
line, the upper and lower boundary of the rectangle and the empty circle markers, 
respectively. All graphs are produced in RStudio, Version 0.97.551.
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Figure 5 shows the proportion of pixels flagged as other quality (lower accuracy) of day-time (top 
row) and night-time LST (bottom row) for the four land cover classes of Table 1. The quality of 
LST retrievals over vegetated pixels show the same trend as the entire dataset (Fig. 4) with the 
lowest proportion of good quality data in winter. The urban and built up class is assigned poorer 
quality flags throughout the year; although a seasonal behavior can be observed, the proportion of 
lower quality pixels is greater than 70%. These results suggest that MODIS LST estimates over 
urban areas might be less reliable compared to other land cover classes. In general LSTs are higher 
and more variable than concurrent air temperatures due to the complexity of the surface types 
(i.e., industrial areas, commercial areas, airports, and residential areas), in urban environments 
and variations in urban topography [Keramitsoglou et al, 2011].
For our purposes (regression and correlation analysis) we deemed the accuracy of LST estimates 
provided by the MOD11A2 dataset sufficient. Since gaps in the time series cover a small proportion 
(<3%) of the data, we deemed not necessary to apply interpolation procedures. Moreover, our 
study focuses on the analysis of LST variability which implies the use of average values which 
reduces the influence of local missing data.

Figure 5 - Box-plot of the percentage of other quality day- (top row) and night-time 
(bottom row) LST from the MODIS Quality Control (QC) layer computed for each  8-day 
period for the four land cover classes. Median, upper and lower quartiles, and outliers are 
represented by the thick black line, the upper and lower boundary of the rectangle and the 
empty circle markers, respectively. All graphs are produced in RStudio, Version 0.97.551.

Monthly LST
Figure 6 shows average monthly day-time LST and standard deviation as derived from 
the 2001-2010 dataset. LST increases from the winter lowest values to the highest values 
in summer. The spatial variability of LST reflects the topography of the region as shown 
by the DEM of Figure 1. Indeed, higher elevation regions are characterized by average 
monthly LST lower than the lowlands and this difference is greater during the summer 
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months (June to August) when, for example, the plain area of the Apulia region is warmer 
than the higher regions along the Apennines. Moreover, mountain areas are characterized 
by extreme variability of topography (steep slopes and altitude variations) which could also 
determine a significant variability of LST [Bertoldi et al., 2010]; Figure 6 shows in fact a 
greater spatial variability of LST along the Apennines chain. For what concerns the inter-
annual variability of LST, as observed in the standard deviation values, most of the pixels fall 
in the range 1-4 K (blue, green and yellow regions). Some notable exceptions are February 
and March when greater standard deviations (stdev > 4.0 K) are probably due to the effect 
of different times of snow melting from one year to the other. Higher standard deviation 
values in months such as August and October could be due to residual clouds over mountain 
areas. The flat areas along the Adriatic and Tyrrhenian coasts are characterized by the lowest 
variability as shown by the blue regions of the standard deviation maps thus suggesting that 
the year to year variability of MODIS LST is lower than in mountain areas.

Figure 6 - Average monthly day-time Land Surface Temperature (LST) [K] 
(first and third rows) and standard deviation [K] (second and fourth rows) as 
derived from the 2001-2010 multiyear dataset.

LST and elevation
Figures 7 and 8 show the linear regression models between average monthly day-time and night-
time LST and elevation. Table 4 present the coefficient of determination R2 for the four land cover 
classes. The negative Pearson-r (Figs. 7 and 8) confirms the well-known relationship between 
surface temperature and topography. In fact, LST decreases with increasing elevation [Hais and 
Kučera, 2009] for two major reasons: air temperature decreases with elevation and vegetation 
tends to be vertically organized [Bertoldi et al., 2010]. Our results highlight a significant 
difference in this relationship between the day- and night-time LST. First, the range of values 
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for Pearson-r is narrower for night-time data compared to day-time: 0.74-0.90 and 0.69-0.92, 
respectively. Second, the correlation between day-time LST and elevation is greater in winter 
months (December to February) and lower in summer (July-August) for all land cover classes; 
the opposite is observed for night-time LST. Other authors pointed out the greater correlation 
between night-time LST and elevation with respect to day-time LST [Fu and Rich, 2002; Pouteau 
et al., 2011; Van De Kerchove et al., 2013], but our results add that this relation is not consistent 
throughout the year.
The scatter plots also show the effect of the vegetation altitudinal distribution on day-time LST; 
starting in spring and with a maximum in July and August, points are more scattered around the 
regression line for lower regions where the variety of the land cover types is greater compared 
to higher areas (see histograms in Fig. 1). Vegetation characteristics play a primary role on how 
incoming solar radiation, which during the day is the direct source of energy, affects LST [Geiger 
et al., 2003]. The different effects of incoming radiation on the land cover types are mainly related 
to their stature and structure which influence turbulent heat transfer, radiation divergence and 
transpiration [Korner et al., 2003; Wohlfahrt et al., 2003; Bertoldi et al., 2010], hence LST. The 
absence of solar radiation at night annul the role of vegetation; indeed, the points of LST are 
homogeneously scattered along the regression line for all months of the year (Fig. 8).

Figure 7 - Linear regression models showing the relationship between average 
monthly day-time Land Surface temperature (LST) and elevation [m. a.s.l.].
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Figure 8 - Linear regression models showing the relationship between average 
monthly night-time Land Surface temperature (LST) and elevation [m. a.s.l.].

Table 4 - The coefficient of determination R2 showing the correlation between average monthly 
day- and night-time LST and elevation for the land cover classes of the study area.

R2 LST J F M A M J J A S O N D

Forest Day .88 .90 .74 .64 .67 .67 .58 .66 .79 .83 .86 .86
Night .64 .71 .79 .81 .79 .81 .79 .81 .81 .76 .72 .67

Non
forest

Day .79 .83 .67 .53 .43 .40 .32 .38 .59 .67 .79 .79
Night .55 .61 .72 .79 .79 .81 .79 .83 .83 .74 .66 .55

Crops Day .83 .88 .74 .62 .64 .62 .50 .49 .59 .62 .77 .85
Night .58 .67 .81 .83 .85 .85 .83 .86 .86 .77 .72 .62

Urban Day .61 .62 .30 .26 .24 .21 .12 .14 .32 .41 .58 .66
Night .37 .49 .59 .61 .62 .64 .59 .66 .64 .52 .46 .40

The difference between the day-time and night-time regression models varies with 
the class (Tab. 4): the difference is lowest (greatest) for the forest (urban) classes. In 
urban areas, the relation between night-time LST and elevation observed in summer 
months is significantly greater than the relation with day-time LST, with R2 dropping 
below 0.3. The fact that in urban areas the correlation between LST and elevation is 



Stroppiana et al.   Spatio-temporal variability of MODIS LST 

144

lower during the day means that other factors influence LST variability, such as for 
example, solar radiation.

LST and land cover
Figure 9 shows 2001-2010 average monthly day- and night-time LST and LST day-
night difference as boxplot graphs. The color keys represent the four land cover classes: 
forest, non forest, croplands and urban as red, green, cyan and purple, respectively. 
Day- and night-time LST show a clear seasonality through the months with a peak in 
July when the median values (black thick line) of day LST are above 300 K for the 
vegetated classes and almost 310 K for the urban class. Night-time maxima also occur 
in July but with median class values in the range 290-295 K.
All of the four land cover classes show an increase in the variability of day-time LST 
(inter-quartile range, the colored rectangle) from winter months up to the maxima in 
the June to August period. The largest increase of variability is observed for the non 
forest and croplands classes probably due to a larger heterogeneity of the vegetation 
characteristics within the class. Each 1 km pixel could in fact be composed by different 
land covers with different proportions (fragmented landscape). Moreover, LST is 
related to the physiological activities of leaves over fully vegetated areas (forests) 
and to a combination of both soil and canopy temperatures over sparse vegetation 
[Van Leeuwen et al., 2011]; it is likely that soil moisture has a greater variability thus 
leading to a larger range of LST values over sparser non forested areas. The same 
within class variability is not observed for night-time data; LST at day-time hours has 
been shown to have a greater heterogeneity compared to night-time LST because of 
the effect of solar radiation [Kahle et al., 1976]. Day-time heterogeneity has indeed a 
clear seasonal variation due to the surface incident solar radiation, the land cover and 
soil moisture.
Most of the outliers (black circle markers) are negatively biased towards the lowest 
values with a greater proportion of them in night-time data; these extremely low values 
could be due to undetected clouds which are more frequent in the night-time dataset 
when the visible bands are not available for accurate cloud masking . Thin clouds (e.g. 
cirrus) cloud detection is difficult and the pixel might pass the test and be identified 
as clear sky [Ackerman et al., 1998]. Cloud contamination remains a major issue 
in processing optical/thermal satellite data for land monitoring since clouds prevent 
from observing the Earth surface. The use of temporal composites rather than daily 
products, such as in the case of the MOD11A2 product, reduces the influence of cloud 
contamination although it does not solve it. Moreover, the least proportion of outliers 
in day-time surface temperature occurs in summer months when clear sky conditions 
are prevalent.
LST difference shows also an increase during the year with maximum values above 
15 K for the non forest, croplands and urban classes. The forest class has the lowest 
difference between day and night temperatures due to the cooling effect of forests [Van 
Leeuwen et al., 2011]; denser vegetation canopies prevent incoming radiation from 
reaching the surface and increasing the temperature; this effect also combines with 
a greater amount of evapotranspiration of dense canopies which has a cooling effect 
[Van Leeuwen et al., 2011]. Other authors reported that non forested areas experience a 
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greater cooling effect at night than forested regions [Goulden et al., 2006; Van Leeuwen 
et al., 2011; Van De Kerchove et al., 2013] with greater surface temperatures when 
vegetation gets denser.

Figure 9 - Average monthly day- and night-time LST [K] and day-night difference for the 
land cover classes (1=forest, 2=non forest, 3=croplands, 4=urban and built up). Median, upper 
and lower quartiles, and outliers are represented by the thick black line, the upper and lower 
boundary of the rectangle and the empty circle markers, respectively. All graphs are produced in 
RStudio, Version 0.97.551.

Finally, the day-night difference shows the greatest values for cropland areas which have 
a high surface temperature during the day which decreases significantly during the night; 
this effect can be observed when compared to the non forest class. The urban areas have 
the highest surface temperatures in both day- and night-time datasets in all months because 
of the urban heat island effect (UHI) [Schwarz et al., 2011] and the greatest day-night 
difference with the exception of the June to September period. 

LST and solar radiation
Figures 10 and 11 show the scatter plots of average monthly day- and night-time LST vs. 
potential solar radiation for altitude classes and figure 12 presents the histograms of the R2 

coefficient of determination for each land cover class and all classes together. As shown by 
scatter plots and the histograms, correlation is very low for day-time surface temperature 
if altitude is not taken into account and it increases in summer months when incoming 
radiation is greater. When the land cover is taken into account, forested areas show the 
greatest correlation; in non forest and croplands regions day surface temperature is not 
correlated to solar radiation probably because other factors affect LST spatio-temporal 
variability. As observed before this classes might be very heterogeneous and all factors 
interact to determine LST variability. Correlation significantly increases for nigh-time 
surface temperature with the highest values in summer months.
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Figure 10 - Scatter plots of monthly day-time LST vs. potential 
radiation for altitude classes.

Figure 11 - Scatter plots of monthly night-time LST vs. potential 
radiation for altitude classes.
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Other authors found no clear relationship between surface temperature time series and solar 
radiation [Daly et al., 2008; Pouteau et al., 2011; Van De Kerchove et al., 2013] suggesting 
that topography and insolation play an important role on the local scale climatology rather 
than on regional processes.

Figure 12 - Histograms of the coefficient of correlation R2 between LST day and 
night and solar radiation for the land cover classes and for all data together.

Conclusions and future activities
We analysed ten years (2001-2010) of MODIS day-time and night-time 8-day LST at 1 
km resolution over Southern Italy to characterize the spatial and temporal variability of 
the surface temperature and its variability with topography, land cover and potential solar 
radiation. These regional analyses are preliminary for the investigation of thermal anomalies 
of the Earth surface temperature in the framework of the characterization of geothermal 
sources. We first analysed the quality flags provided with the MOD11A2 product and found 
that the quality varies during the year mainly as a function of the cloud cover (winter/
summer seasons). We did not observe a significant difference between day-time and night-
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time quality but our analyses highlighted that urban areas have a significant proportion of 
data with very poor quality flags (low accuracy of LST estimates).
The regression analysis showed that monthly LST is significantly correlated to topography 
(altitude) although correlation varies with the month of the year and with the land cover. We 
highlighted that in summer months the correlation with topography significantly decreases 
due to vegetation development at lower altitudes which play a role in the energy fluxes 
exchange between the surface and the atmosphere. The spatio-temporal variations of LST 
are indeed influenced by the land cover characteristics which in particular influences the 
thermal excursion between day and night surface temperatures. Finally, we observed in our 
dataset that incoming solar radiation, which should be the direct factor to influence surface 
temperature, is not significantly correlated to LST if the contribution of other factors 
(e.g. altitude and land cover) cannot be separated. Our analyses confirm the high spatio-
temporal variability of LST and, compared to previous work, show that the correlation with 
factors such as topography and the land cover changes with the season (summer/winter). 
Despite the coarse resolution, MODIS LST data can be used for rapid identification of 
surface temperature anomalies at the regional scale to be further investigated with local 
measurements.
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