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ABSTRACT: 

 

In Epidemiology, exposure assessment is the process of measuring or estimating the intensity of human exposures to an environmental 

agent such as air pollution. Healthcare agencies typically take into consideration yearly averaged pollution values and apply them to 

all citizens, in risk models. However distinct parts of cities can have significantly different levels of pollution and individual habits can 

influence exposure, too. Consequently, in epidemiology and public health, there is an increasing interest for personal exposure 

assessment, i.e. the capability of measuring the exposure of individuals. Within the EU H2020 PULSE project, an innovative 

mechanism for the individual and dynamic assessment of exposure to air pollution has been implemented. The present paper illustrates 

its technological and scientific components. The system has already been deployed to several pilot cities of the project and Pavia, Italy, 

has been the first one. In that city several hundreds of tracks have already been acquired and processed. Therefore, the paper thoroughly 

illustrates the assessment procedure with examples.      

 

 

1. INTRODUCTION 

1.1 Motivation 

In Epidemiology, exposure assessment is the process of 

measuring or estimating the intensity of human exposures to an 

environmental agent. In the case of air pollution, namely 

exposure to particulate matter, yearly averaged values are 

typically considered. More precisely, healthcare agencies 

typically take into consideration yearly averaged pollution values 

and apply them to all citizens, in risk models. 

The WHO (World Health Organization) globally monitors air 

quality and offers an online map (WHO website) of yearly-

averaged pollution levels. As an example, the city of Pavia is 

reported to have had an average value of 45 μg/m3 of PM 10 

(Particulate Matter 10) for the year 2015 (Figure 1). Data are not 

up-to-date and are aggregated at the level of the city and averaged 

on a one-year basis. So, there is no distinction between the 

seasons and the parts of the city are considered as a whole. This 

could be reasonable for Pavia, Northern Italy, being a small-size 

city (63 km2 and 70000 inhabitants) but is not justified for larger 

ones. However distinct parts of cities can have significantly 

different levels of pollution and individual habits can influence 

exposure, too (Moon, 2001).   

In epidemiology and public health, there is an increasing interest 

for personal exposure assessment, i.e. the capability of measuring 

the exposure of individuals. Personal exposure assessment is 

when exposure is evaluated for individuals: people living in one 

part of a city could have a lower exposure than others. People 

having different habits could also have different exposure values. 

Following most recent scientific papers (Steinle et al., 2016; 

Sanchez et al., 2019), personal exposure can be performed by 

equipping small groups of voluntaries with dedicated devices. 

The volunteers will carry the monitors for a time and then results 

will be summarized. Such implementations only allow to monitor 
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a limited number of people, as devices cost, and for a limited 

time, as devices typically are bulky and have memory and battery 

limitations.  

Moreover, most of the available personal monitors can only 

perform integral monitoring (Sanchez et al., 2019): they can 

quantify the total amount of pollution the carrier inhaled in the 

considered time frame. In other words, they will supply 

information such as: in the previous 24h the carrier inhaled a 

certain amount of PM 10. They can’t support the user in 

understanding where, when and what quantity of pollution he 

ingested. 

 

 

Figure 1. The WHO online map on air pollution and people’s 

exposure for Pavia, Northern Italy 

 

In summary, a limited number of people can perform, for a 

limited time, integral monitoring. On the contrary, it would be 

recommendable that all the citizens can perform lifelong 

exposure assessment in a differential or dynamic way, i.e. having 

the capability of distinguishing the contribution given by single 

activities or narrow time spans to the daily exposure amount. 
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With this approach the citizens could organize their life in order 

to minimize the inlet of pollution: they could appropriately 

choose the park to go jogging and the time. 

Indeed, an advanced personal exposure functionality should have 

the following distinctive characteristics: 

• to be open: being available to all the citizens and not 

requiring any special device; 

• to be dynamic: having the capability to assess the 

instantaneous inhaled pollution and thus being able to sum 

up for any time frame chosen by the user (one minute or one 

hour) and for any time;  

• being continuously available: it is performed routinely 

rather than for a special period when special arrangements 

are performed; 

• being upgradable at no-cost for the user: in the case that 

more advanced methodologies become available for air 

quality monitoring, changes will be performed in the 

monitoring stations and in the processing equipment, 

supposed to be owned by the municipalities; users will only 

have to upgrade the App running in their mobile phone.     

    

1.2 The PULSE project 

Since the beginning of the 21st century, an important increase in 

the percentage of population living in urban areas has been 

observed (Department of Economic and Social Affairs, 2014), 

and this trend is projected to increase at least up to the year 2050. 

Cities are economic drivers for countries, but also the best labs 

for innovation aiming at managing public health challenges 

deriving from demographic and epidemiological transitions 

(Innovating Cities, Environment, Research and Innovation 

website). 

Big cities are complex and heterogeneous environments in which 

socioeconomic and environmental conditions can vary 

considerably within small distances, and it has been widely 

observed that the technological progress and a progressive 

change in lifestyle are leading to increasing challenges for public 

health operators, deriving from increasing prevalence of 

respiratory and cardiovascular diseases (Anandan et al., 2010; 

Guarnieri and Balmes, 2014). In this context, the PULSE project 

(Participatory Urban Living for Sustainable Environments) has 

been funded by the European Commission under the Horizon 

2020 framework to undertake research and innovation in cities in 

Europe, the United States and Asia. The project started in late 

2016 and partners with municipality leaders of seven major cities 

- Paris, Singapore, Birmingham, Barcelona, Pavia, Keelung and 

New York - to collect information from the public health system, 

remote and fixed environmental sensors, and citizen-operated 

mobile devices, to develop a system for the management of 

public health policies in the urban environment. It focuses mainly 

on two pathologies, typical in the urban environments: asthma, 

usually linked to air pollution, and type 2 diabetes, linked to 

lifestyle and physical inactivity. Within PULSE, a multi-

technological integrated platform that connects citizens and 

Public Health Authorities has been constructed. The background 

idea is that health risk is the consequence of a complex 

combination of exposures and human behaviour, and big data 

technology can be used to predict and mitigate public health 

problems, analysing the situation in the cities with a high level of 

spatial and temporal granularity in order to take proper actions 

quickly, assisting citizens personally and promoting healthy 

habits and well-being. PULSE features several state-of-the-art 

technologies: through a personal App and after signing a consent 

form, the users can send their own data and GPS/GNSS positions 

to a backend system that contains Big Data analytics and risk 

models, and they receive feedbacks containing personalized 

advice in return in order to apply the best behaviour to reduce 

their risk of asthma and diabetes depending on their personal 

parameters and the environment they live in. 

Furthermore, an innovative WebGIS allows to visualize, explore 

and analyse environmental, social and health data with a 

geographic description and a dashboard featuring several 

analysis and simulation tools allows the public health authorities 

to inspect aggregated data and quickly organize proper 

interventions in the areas of the city that mostly need them. 

 

2. THE EXPERIMENTAL TESTSITE 

Within the PULSE project, and advanced solution to perform 

dynamic personal exposure assessment has been deployed. 

One of its main technological items is a dense network of low-

cost sensors. The city of Pavia started deploying its own network 

on September 2018, constituted by Purple Air sensors (Purple Air 

website). The sensors record numerous parameters related to both 

air quality and environmental factors such as PM 1.0, PM 2.5, 

PM 10, temperature, humidity and pressure. In addition, thanks 

to the presence of a Wi-Fi transmitter, they provide measured 

data in real time which can be downloaded for subsequent 

analysis and viewed via a proprietary WebGIS interface (Figure 

3). The sensors are installed on the balconies of some volunteers, 

specifically recruited, and on some structure belonging to the 

University of Pavia (Figure 2), or to the Municipality. Now, 48 

devices are installed (Figure 3) but those used to perform 

personal exposure assessment are 37, because some of them are 

installed indoor for calibration purposes and other projects. 

 

 

Figure 2. Example of a sensor installation at the University of 

Pavia 

 

 

Figure 3. Maps of the sensors deployed in Pavia 

 

An example of data acquired by the sensors is shown in Figure 4 

in which the behaviour of PM 1.0, PM 2.5 and PM 10 for one 

sensor and for the first week of the year 2019 is reported. The 

separation between the curves is well understandable as it is, by 
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definition, PM 10 ≥ PM 2.5 ≥ PM 1.0. Indeed PM 1.0 quantifies 

the mass of the particle matter having size ≤ 1 μm being contained 

in a cubic meter of air. PM 2.5 quantifies the mass of particles 

having size ≤ 2.5 μm so PM 2.5 includes PM 1.0 plus the mass 

of particles having size between 1.0 and 2.5 microns. The same 

holds for PM 10. 

 

 

Figure 4. Joint graphics of PM 1.0, PM 2.5 and PM 10 for 

sensor PA-1 and one week 

 

The capability of surveying both air quality and climate variants 

gives the possibility to analyse the pollution phenomenon in a 

combined approach evaluating interrelations and cause-effect 

connections. Figure 5 reports, on the left y-axis, humidity and 

pressure while, on the right y-axis, the hourly averaged wind 

speed and its maximum value. Wind data shown are collected on 

an hourly basis. As the wind is characterized by gusts, average 

values might report the increase of wind or not. Maximum values 

are even more interesting for some analysis, represented by the 

red continuous line. It comes out that on January 2nd, 2019, the 

wind suddenly increased, and PM suddenly decreased. Figure 5 

clearly demonstrates a connection between climatic variables 

(wind in our case) and air pollution and confirms that, when the 

wind arises and is strong, pollution almost disappears. Wind data 

are not recorded by the stations deployed by PULSE but were 

obtained from the repository of the local environmental agency 

(ARPA Lombardy). 

 

 

Figure 5. Joint graphic of relative humidity and PM 10 in blue, 

referred to the left y-axis and average and maximum wind 

speed, in red and referred to the right y-axis. Data are related to 

one sensor and the first week of the year 2019 

 

Since September 2019 the citizens of Pavia are constantly 

informed about the real time city's air quality, thanks to the 

Pulse@PV App. It is a free App purposely developed to show the 

most recent measurements of each active sensor of the network 

in Pavia. The data shown by the App are updated every 10 

minutes. Figure 6 contains some screenshots of Pulse@PV. Its 

functionalities are: 

• Display of the PM 10 (μg/m3) measured in real-time by the 

nearest sensor in the home page (Figure 6a). From this page 

the user can select one of the three main sections of the App: 

Sensors List, Map and About Pulse@PV; 

• Display of the list of the sensors active in the last 30 

minutes, sorted by distance from the current position. Each 

sensor is associated to a coloured icon, indicating the PM 10 

level (Figure 6b); 

• Display of the latest measurements of PM 1.0, PM 2.5, PM 

10, temperature, humidity and pressure of each sensor 

(Figure 6c), coloured according the US EPA colour codes 

for each pollutant (Figure 6d shows the PM 10 colour 

codes); 

• Display of the map of the sensors network in the city. Each 

sensor is coloured according to the PM 10 level (Figure 6e); 

• Display of different sections that report information about 

the PULSE project, the App, air pollution, the different 

types of particulates and the danger of being exposed to 

different levels of pollution. 

Currently, 150 Android users and 126 IOS users have 

downloaded the App. 

 

 

Figure 6. Screenshots of the Pulse@PV App. a. home page; b. 

list of all the active sensors; c. measurements provided by a 

selected sensor; d. colour codes for PM10; e. map of the active 

sensors. 

 

3. METHODOLOGY 

Personal exposure assessment implemented in PULSE needs 

some technological layers: (1) a methodology to determine dense 

air pollution models; (2) a methodology to track movements of 

people; (3) a breathing model, including the number of breaths 

per second and the volume of the inhaled air. In PULSE a dense 

network of small sensors is chosen as described in Section 2, 

smartphones equipped with inner GPS/GNSS sensor are used for 

trajectories survey and a basic model was adopted, which is 

described Section 3.4. 

a

d

cb

e
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The section will illustrate the methodology used to construct the 

dense air pollution models and to calculate personal exposure.  

 

3.1 Generation of dense and dynamic air quality maps  

The construction of dense and dynamic air quality maps is 

mandatory for personal exposure assessment. By dense, we mean 

that the considered variants (PM 10, temperature, etc.) are known 

almost on each location; dynamic means instead that such dense 

maps must be known almost at each time. 

Indeed, air pollution has a strong variability in time and a limited 

but significant variability on space (on the scale of the city of 

Pavia; space variability can be huge at the regional or national 

scale). Figure 7 reports the PM 10 time series for the three 

locations (shown in Figure 9) related to the first 20 days of 

January 2020. The figure highlights significant variations against 

time and position, thus highlighting the need of dense 

monitoring, in space and time. The two very low peaks are due 

to the wind. Figure 8 is related to one day, thus highlighting 

strong intra-day variability. 

 

 

Figure 7. PM 10 for the first 20 days of January 2020 for the 

sensors PA-1, PA-3, PA-26 

 

 
Figure 8. PM 10 for the three mentioned stations and for 

January 4th, 2019; graphic highlights strong intra-day variability 

 

 

Figure 9. Map of the 37 outdoor sensors; the three ones selected 

are shown in red; their name is also displayed 

It was decided to show only three sensors out of 37 regularly 

running in order not to clutter the figures: their position and name 

are shown in Figure 9. 

Staring from dense but discrete measurements, continuous maps 

have been calculated by adopting the gaussian kernel 

interpolation (Section 3.2). Indeed, raster are generated having a 

spacing of 100 m in space and 1 hour in time: see Figure 10 in 

which red dots represent where air pollution is measured (the 37 

Purple Air sensors), and black dots represent where it is 

estimated. Also, we underline that the developed methodology is 

capable to estimate the pollution level at any location and, the 

actual problem solved involves, together with spatial location, 

time: our methodology can estimate pollution level at any 

location and at any time.  

 

 

Figure 10. Interpolation of air quality data; red dots: where 

pollution is measured; black dots: where it is estimated 

 

3.2 Gaussian kernel interpolation 

Gaussian kernel interpolation (Wilson and Nickisch, 2015) is 

based on weighted average: the unknown pollution value 𝑧 

located at the location (𝑥, 𝑦, 𝑧, 𝑡), a point belonging to the 4D 

space, as time is added to the three spatial coordinates, is 

calculated by: 

𝑧 =
∑ ∑ 𝑧𝑖𝑗

𝑛
𝑖=1 𝑤𝑖

𝑠𝑤𝑗
𝑡𝑚

𝑗

∑ ∑ 𝑤𝑖
𝑠𝑤𝑗

𝑡𝑛
𝑖=1

𝑚
𝑗

 (1) 

 

where 𝑧𝑖𝑗  is the pollution level measured by the i-th monitor at 

the j-th epoch; indeed a certain number of epochs (times when a 

measurement is acquired) are considered around the selected 𝑡 
time: in our case a time window having a semi-width of 2 hours 

was selected. 𝑚 is the number of the considered epochs and 𝑛 is 

the number of the monitors (red dots). As the formula highlights, 

the weight is the product of the factors 𝑤𝑖
𝑠and 𝑤𝑗

𝑡. Both weight 

functions are based on a gaussian kernel. The first one is related 

to space-distance: 

𝑤𝑖
𝑠 = 𝑒

−
(𝑑𝑠)𝑖

2

2𝜎𝑠
2

 
(2) 

 

where 𝑑𝑠 is the spatial distance between the estimation point and 

the location of the i-th monitor; the function decreases when ds 

increases; the 𝜎𝑠 parameter controls how quickly the weight 

decays. The second weight function is related to time-distance 

and has the form: 

𝑤𝑗
𝑡 = 𝑒

−
(𝑑𝑡)𝑗

2

2𝜎𝑡
2

 
(3) 

 

where 𝑑𝑡 is the time span between the time of the estimation point 

(𝑥, 𝑦, 𝑧, 𝑡) and the time of the j-th measurement considered. See 
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Figures 11 and 13 for an example of the raw measurements used 

to perform the interpolation and of the continuous surface 

obtained. 

 

3.3 Tracking of users 

Smartphone’s onboard GPS/GNSS sensor is used to record users’ 

trajectories. The PulsAir App, which was developed within 

PULSE, has the tracking capability, among other features. The 

App measures the phone position at regular intervals, typically 1 

or 5 seconds, and produces sort of tabular data as shown in Figure 

15, including date, time and 3D position, for each recorded dot. 

  

3.4 Personal exposure calculation 

Once tracks are recorded, they must be processed in order to 

assess exposure. Velocity is determined first of all, by forming 

the quotient between space and time variations. Suitable 

smoothing methodologies are applied in order to limit 

propagation of significant measurement errors, as the App use the 

basic navigation solution. Figure 17 reports velocities for the 

considered track.    

Next step is to associate each dot with local pollution i.e. the 

concentration of the considered pollutant at that location and at 

that time. This is performed by space-time interpolation 

techniques previously illustrated. Results are shown in Figure 18. 

Finally, a link must be established between the motion of the 

user, local pollution and breathing activity (Zhou et al., 2001; 

Adams et al., 2009). Within the PULSE tools, the model 

(Breathe, 2016) is currently implemented which is described in 

Table 1. We only consider four motion statuses , for the moment, 

and for each of them we know from literature the average 

breathing pace and volume on the inhaled air. 

Each dot belonging to a recorded track is classified into the states 

listed in the Status column, according to the speed value, 

following the criteria reported in the Speed column. Each dot also 

has a time span, so the air volume inhaled at each dot is 

determined. Knowing pollution intensity (which is a 

concentration typically measured in micrograms per cubic meter) 

the mass is calculated of the pollutant inhaled at each dot. An 

example of such a calculation in shown in Figure 20. 

 

Speed 

[km/h] 
Status 

# breaths per 

minute 

Air volume per 

breath [litre] 

< 2 At rest 15 0.6 

2 - 6 Walking 28 1.8 

6 - 15 Running 40 2.5 

> 15 Driving a car 15 0.8 

Table 1. The breathing model adopted so far 

 

4. RESULTS 

The section will present main results obtained for dense and 

dynamic air quality monitoring and for personal exposure 

assessment.  

 

4.1 Continuous air quality maps construction 

In the following, an example of a continuous map of air pollution 

and climate variants will be shown for the day January 4th, 2020. 

Figure 11 shows the color-coded values of PM 10 recorded by all 

the monitors at the time 10:00 AM. The colour bar shown on the 

right side expresses the PM 10 concentration in μg per m3. To 

further highlight that climate variants are monitored as well, 

Figure 12 is analogous to the previous one but are related to 

temperature; colour bar on the right side express the temperatures 

in Celsius degrees. 

 

 

Figure 11. Color-coded measurements for PM 10 and all the 

monitors; day selected in January 4th, 2020 and time shown is 

10:00 AM 

 

 

Figure 12. Color-coded measurements for temperature and all 

the monitors; day selected in January 4th, 2020 and time shown 

is 10:00 AM 

 

 

Figure 13. The interpolated continuous model for PM10; day 

selected in January 4th, 2020 and time shown is 10:00 AM 

 

Continuous maps are obtained by gaussian-kernel interpolation 

applied to discrete measurements shown in Figure 10. It’s worth 
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reminding that the map calculated for the time 10:00 is not only 

obtained by measurements acquired at the same time (Figure 11) 

but all the samples measured in a suitable time span: they are 

inserted in the calculation with a suitable weight.  

An example of the so-obtained continuous map is reported in 

Figure 13; it shows the interpolated model for PM 10 referred 

once again to the 10.00 AM of the selected day. The colour bar 

shown on the right side expresses the PM 10 concentration in μg 

per m3 whereas the black dots represent the position of the 

original input data corresponding to the air quality sensors 

network. Such maps are produced every hour and for all the 

surveyed variables: for air pollution PM 1.0, PM 2.5 and PM 10; 

for climate variants temperature, humidity and pressure. 

 

4.2 Personal exposure calculation 

Several volunteer users have been monitored in Pavia since 

December 2019 for personal exposure calculation and more than 

300 tracks have already been acquired and processed. To 

illustrate the proposed methodology a track acquired by a single 

user at the beginning of the 2020 year will be used as example. 

The user can acquire a whole track related to all his day or 

monitor significant time frames only. For the sake of readability, 

reasonably shorter track is used in the following as example of 

the implemented functionality. The track is shown in Figure 14 

and it is related to January 14th, 2020.  

 

 

Figure 14. Example of the tracks acquired by a user 

in Pavia on January 14th, 2020 

 

After the user has recorded the path, data is stored in tabular 

format like the fragment shown in Figure 15: each line is referred 

to a measure and reports time and the 3D coordinates expressed 

in East, North and ellipsoidal height, in the WGS84 datum and 

according to the UTM projection; date and time are stored, too. 

Indeed, the PULSE backend services stores WGS84 geographic 

coordinates, being the project international and involving cities 

belonging to three continents. When exposure is calculated, 

projected coordinates are used instead, for the sake of simplicity. 

 

 

Figure 15. Excerpt from the stored tracks data 

Being the points located in space and time, it is possible to 

calculate velocity. This step requires some cautions because 

some smoothing is required, in order to avoid that differentiation 

introduces too high noise in the produced data. The last three 

columns of Figure 16 represent derived quantities: velocity (in 

m/sec, shown in red), time duration (the time span between one 

dot and the following, which it is not always regular, shown in 

blue) and distance between the i-th dot and the next one (in m, 

shown in green). They are all used for further calculations. 

 

 

Figure 16. Excerpt from the stored tracks data 

 

 

Figure 17. Velocity in m/sec for the path shown in Figure 14 

 

Figure 17 shows velocity for the path shown in Figure 14. It 

highlights that a part of the track was travelled by car, as velocity 

is in the 5-18 m/sec range, represented by light blue, yellow, 

orange and red. Another part was walked instead and is shown in 

blue in the city centre. Next step is to associate each 4D dot with 

local pollution and this is done by interpolation described in 

Section 3. Figure 18 shows the considered track coloured 

according to the local and instantaneous values of PM 10. 

 

 

Figure 18. The track coloured according to the local and 

instantaneous values of pollution 
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Finally, the amount of pollutant inhaled at each dot is estimated. 

In Figure 19 the red columns report the local pollutant 

concentration and the blue one the ingested amount. Figure 20 

shows point coloured according to exposure: noticeably, it is 

lower in the part where the car was used and is higher when the 

user walked. 

 

 

Figure 19. The same example-data above with two more 

columns added: air pollution (in our case PM 10; unit is in 

μg/m3; it is shown in red) and personal exposure (PM 10, units 

are absolute μg and are shown in blue) 

 

 

Figure 20. Exposure calculated at any location, measured in 

micrograms of PM 10 

 

The developed toolbox also shows a summary display for each 

processed track, as shown in Figure 21. It highlights that the total 

length of the processed track is around 12 km and have time span 

of 1 hour and 10 minutes; recorded dots are 2900 roughly and the 

total amount of the inhaled PM 10 is 227 μg. 

 

 

Figure 21. Summary statistics 

 

Personal exposure algorithms have already been integrated into 

the PULSE backend services and indeed the related data can be 

visualized through the PulsAir App and the project’s WebGIS, as 

Figure 22 and Figure 23 demonstrate. It could be observed that 

the one shown by the WebGIS doesn’t exactly agree with those 

shown in Figure 20. The reason is that, to speed up display, a 

hierarchical description of the paths is adopted, so that, according 

to the zoom level, a simplified version is shown. One last remark 

concerns privacy issue; while it is perfectly acceptable that a 

citizen can see on his own mobile phone the trajectories he 

followed, that could be a problem for the WebGIS. We answer, 

first of all, that data are anonymized, and the data management 

plan is defined in detail and is described in one report of the 

project. Moreover, the WebGIS has two configurations, one for 

the whole public and one for qualified users, such as the 

personnel of local healthcare agencies. The presented screenshot 

was obtained from such a mode, while the public version of the 

site is not enabled to show individuals’ trajectories. 

       

 

Figure 22. PULSEAIR App screenshot where personal 

expositor trajectory is visible 

 

 

Figure 23. PULSE WebGIS screenshot where personal 

expositor trajectory is visible 

 

5. CONCLUSIONS AND FURTHER ACTIVITIES 

The paper illustrates a dense air quality monitoring network 

deployed in Pavia-Italy and a novel implementation of personal 

exposure assessment. 

Data acquired by the monitoring network highlight that air 

pollution has a significant spatial variability, even at the scale of 

a medium city. Mostly, they have strong high-frequency time 
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variability, as Figure 8 confirms showing substantial intra-day 

variations. A first conclusion is that, to perform detailed 

assessment of personal exposure to air pollution, detailed air 

quality models are needed, which are dense in 4D (space plus 

time). Also, quasi-real time data availability is required, in order 

to make the service capable to notify people in real time on just 

after the end of the day; in PULSE, the second solution was 

adopted, but the first one is more attractive and could be really 

interesting for people.  

The depicted personal exposure implementation is independent 

from the sensing system supplying the data. In Pavia we adopted 

a network of low-cost sensors, but this is not mandatory. 

Alternative approaches are based on satellite data (some specific 

EU missions are already operational, and others are planned) and 

physical diffusion models. In future, integrated models will 

probably become the gold standard. The capability of providing 

4D-dense measurements in quasi-real time is compulsory 

anyway. 

The implemented personal exposure solution meets all the 

requirements mentioned at the beginning. It is open because it 

can be accessible by an unlimited number of users (all the 

population, one day), once the monitoring infrastructure is 

deployed, simply by installing a dedicated App on their 

smartphone. It’s dynamic or differential as it is able to quantify 

the inhaled pollution for each time frame chosen by the user: 1 

second, 5 seconds, 1 minute… It’s continuously available, 

meaning that it can be performed on a routinely basis and not for 

the limited time span of an experiment. Finally, it is freely 

upgradable when advances in the sensing technology will be 

available. This is true under the condition, which we assumed, 

that the development of the App installed by users is funded by 

local governments or governmental agencies. Finally, the App 

could become a tool for a more advanced interaction between 

citizens and local governments, healthcare agencies and 

environmental protection organizations.  

The benefits for the citizens and the environment are manifold. It 

will lead to awareness increase about air quality and the amount 

of the pollution inhaled. This will induce, very likely, behavioural 

changes and the adoption of more sustainable mobility styles: this 

will positively impact the environment. Even if the pollution 

levels remained the same, our proposed methodology will allow 

the users to optimize their mobility strategies and thus to mitigate 

pollution’s effects: “I’ll go jogging in the evening, rather than in 

the morning, because the inhaled pollution will be lower”. 

Several developments are already envisaged and partially under 

development. Line simplification algorithms are under 

development: there are many in literature which are fully 

satisfactory from the geometric point of view, while we need that 

simplification does not impact the exposure assessment.  

Line segmentation would be interesting too, i.e. the capability of 

separating a whole trajectory into homogeneous parts 

corresponding to different activities: at rest, walking, running, 

driving a car, biking, staying on a train… This is not yet under 

development and would be benefitted by considering, together 

with GPS/GNSS data, measurements coming from other sensors 

of the smart phone, such as accelerometers. We must say that the 

apps developed so far are not able to access such additional data.  

The breathing model adopted is quite simple. There is a running 

collaboration with the two major hospitals of the city focusing on 

the refinement of such a model, among several other topics. This 

part could be benefitted by the integration of data coming from 

smart watches and mobility trackers. Indeed, such devices can 

record additional data such as heart rate and several models 

(Greenwald et al., 2019; Klass et al., 2019; Schantz et al., 2019) 

have been developed to relate breathing activity to heart rate. 

Nevertheless, our developed methodologies will be scalable: 

basic functionalities are available through the phone-only 

configuration while additional ones are activated when 

supplementary devices are available. Data coming from 

dedicated trackers would also be beneficial for the previously 

mentioned segmentation.  

Finally, we aim at recruiting an adequate number of volunteers 

and at performing and initial, statistically significant sampling of 

personal exposure. This will be done after that the sensing 

network has been fully calibrated and tested. Such validation 

activity is running but is out of the scope of present paper and 

therefore not illustrated here.   
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